On Σ -ordered inverse semigroups

By S. SRIBALA in Madras (India)

In this paper we define Σ -ordered inverse semigroups (Definition 1) which are partially ordered inverse semigroups whose partial orders are completely determined by families of normal sub-semigroups (Theorem 2). The set of normal sub-semigroups determining the partial order is analogous to the positive cone in a partially ordered group ([2]). We next consider the set $\mathfrak{O}(X)$ of all partial *o*-isomorphism between *o*-subsets (Definition 6) of a partially ordered set (X, \leq) . This set is an inverse sub-semigroup of the symmetric inverse semigroup $\mathfrak{I}(X)$ on *X*. A partial order is defined on $\mathfrak{O}(X)$ in a natural way which makes $\mathfrak{O}(X)$ a Σ -ordered inverse semigroup (Theorem 11). We call $\mathfrak{O}(X)$ the symmetric Σ -ordered inverse semigroup on (X, \leq) . Finally, we prove the Preston—Vagner theorem for Σ -ordered inverse semigroups claiming that any Σ -ordered inverse semigroup can be embedded *o*-isomorphically into a symmetric Σ -ordered inverse semigroup of partial *o*-isomorphisms (Theorem 12). Questions of order theoretic interest will be studied separately and are not dealt with in this paper.

For terminology and information on semigroups we refer to [1].

Let S be an inverse semigroup and E the set of idempotents of S. Let Σ be the lattice of all idempotent separating congruence on S with greatest element μ . If M_e $(e \in E)$ is the μ -class containing e, it is known that M_e is a normal subgroup of H_e .

Definition 1. A partially ordered inverse semigroup (S, \leq) is called a Σ -ordered inverse semigroup (and \leq a Σ -order on S) if the following conditions hold in S:

(1) $a \leq b \Rightarrow a\mu b$.

(2) If $Q_e = \{x \in S | e \leq x\}$, then $a^{-1}Q_e a \leq Q_{a^{-1}ea}$ for all $e \in E$ and $a \in S$.

Note that in a Σ -ordered semigroup no two idempotents are comparable.

Theorem 2. Let S be an inverse semigroup and $\{Q_e : e \in E\}$ a collection of subsets which satisfies the following conditions:

(i) Q_e is a sub-semigroup of M_e containing e and $Q_e \cdot Q_f \subseteq Q_{ef}$.

(ii) $a^{-1}Q_e a \subseteq Q_{a^{-1}ea}$ for all $e \in E$ and $a \in S$.

(iii) $Q_e \cap Q_e^{-1} = \{e\}$, where Q_e^{-1} is the set of inverses of elements of Q_e in H_e . Then there exists a partial order \leq on S such that $Q_e = \{x \in S | e \leq x\}$ and (S, \leq) is a Σ -ordered inverse semigroup. Proof. If a partial order \leq exists on S such that (S, \leq) is a partially ordered inverse semigroup, then it is clear that (S, \leq) is a Σ -ordered inverse semigroups. Hence it is enough to establish the existence of such a partial order on S. Let $a, b \in S$. Say $a \leq b \Leftrightarrow a\mu b, ba^{-1} \in Q_{aa^{-1}}, a^{-1}b \in Q_{a^{-1}a}$. Clearly $a \leq a$. Let $a, b \in S$, $a \leq b$ and $b \leq a$. Then $a \leq b \Rightarrow a\mu b, ba^{-1} \in Q_{aa^{-1}}, a^{-1}b \in Q_{a^{-1}a}$; $b \leq a \Rightarrow b\mu a, ab^{-1} \in$ $\in Q_{bb^{-1}}, b^{-1}a \in Q_{b^{-1}b}$. Now, $a\mu b \Rightarrow aa^{-1} = bb^{-1} = e$ and $a^{-1}a = b^{-1}b = f$. ba^{-1} and ab^{-1} are inverses of each other in Q_c and $a^{-1}b$ and $b^{-1}a$ are inverses of each other in Q_f and so a = b. Thus \leq is asymmetric. To show transitivity, let $a \leq b, b \leq c$,

$$a \leq b \Rightarrow a\mu b, \qquad ba^{-1} \in Q_{aa^{-1}}, \qquad a^{-1}b \in Q_{a^{-1}a}.$$

$$b \leq c \Rightarrow b\mu c, \qquad cb^{-1} \in Q_{bb^{-1}}, \qquad b^{-1}c \in Q_{b^{-1}b}.$$

Thus $a\mu b\mu c$ and $aa^{-1}=bb^{-1}=cc^{-1}=e$ and $a^{-1}a=b^{-1}b=c^{-1}c=f$ so, $ca^{-1}==cb^{-1}ba^{-1}\in Q_e \cdot Q_e \subseteq Q_e$ and $a^{-1}c=a^{-1}bb^{-1}c\in Q_f \cdot Q_f \subset Q_f$ and so $a\leq c$. Thus \leq is a partial order on S.

If $x \in S$ and $e \leq x$, then $x \mu e$ and $x = xe = ex \in Q_e$ and so $\{x \in S | e \leq x\} \subseteq Q_e$. On the other hand if $x \in Q_e$, then $x \mu e$ and $xe = ex = x \in Q_e$ and so $e \leq x$ and $Q_e \subseteq \subseteq \{x \in S | e \leq x\}$. Thus we have $Q_e = \{x \in S | e \leq x\}$.

Let $a \le b, c \in S$. Then $a \le b \Rightarrow a\mu b, ba^{-1} \in Q_{aa^{-1}}, a^{-1}b \in Q_{a^{-1}a}$; also $a\mu b \Rightarrow ac\mu bc$: $(bc)(ac)^{-1} = bcc^{-1}a^{-1} = ba^{-1}acc^{-1}a^{-1} \in Q_{aa^{-1}} \cdot Q_{(ac)(ac)^{-1}} \subseteq Q_{(ac)(ac)^{-1}}$;

 $(ac)^{-1}(bc) = c^{-1}a^{-1}bc \in c^{-1}Q_{a^{-1}a} \cdot c \subseteq Q_{(ac)^{-1}(ac)}$. Thus $ac \leq bc$. Similarly we can show that $ca \leq cb$. Hence (S, \leq) is a partially ordered inverse semigroup. It now follows that (S, \leq) is a Σ -ordered inverse semigroup.

Let (S, \leq) be a Σ -ordered inverse semigroup. Then,

Lemma 3. $a \leq b \Rightarrow b^{-1} \leq a^{-1}$.

0

Proof. $a \le b \Rightarrow a\mu b \Rightarrow a^{-1}\mu |b^{-1}|$. Hence $b^{-1} = b^{-1}aa^{-1} \le b^{-1}ba^{-1} = a^{-1}$.

Proposition 4. If T is an inverse sub-semigroup of (S, \leq) , then (T, \leq) is a Σ -ordered inverse semigroup.

Proof. Let μ_0 be the maximum idempotent separating congruence on T and μ_T the restriction of μ to T. Then $\mu_T \subseteq \mu_0$. Let $Q_e^T = Q_e \cap T$. Now $Q_e^T \neq \emptyset \Leftrightarrow e \in T$. The nonempty sets Q_e^T ($e \in E \cap T$) satisfy the conditions of Theorem 2 and so there exists a partial order \leq' on T such that (T, \leq') is a Σ -ordered inverse semigroup. We now show that \leq coincides with \leq' on T. It is immediate that $a \leq b$ $(a, b \in T) \Rightarrow a \leq'b$. Conversely if $a, b \in T$ then

$$a \leq b \Rightarrow \{a\mu_0 b, ba^{-1} \in Q_{aa^{-1}}^T, a^{-1} b \in Q_{a^{-1}a}^T\} \Rightarrow$$

 $\Rightarrow \{aa^{-1} = bb^{-1} = e, \ a^{-1}a = b^{-1}b = f, \ ba^{-1} \in Q_e \subset M_e, \ a^{-1}b \in Q_f \subseteq M_f\} \Rightarrow$

 $\Rightarrow \{a\mu b, a^{-1}b \in Q_f, ba^{-1} \in Q_e\} \Rightarrow a \leq b.$

The following lemma follows immediately.

Lemma 5. (H_e, \leq) , where H_e is the maximal subgroup containing e in (S, \leq) , is a partially ordered group. Further, if $e \mathfrak{D}f$, then H_e and H_f are o-isomorphic.

Inverse semigroups

We shall now describe the symmetric Σ -ordered inverse semigroup on a partially ordered set. Let (X, \leq) be a partially ordered set. Let $\Im(X)$ denote the symmetric inverse semigroup of all partial (1-1) transformations on X. If $\alpha \in \Im(X)$ denote by $\Delta(\alpha)$ and $\nabla(\alpha)$ the domain and the range of α , respectively.

Definition 6. A subset $A \subseteq (X, \leq)$ is called an *o*-subset of X if $a \in A$, $a \leq b$ (or $b \leq a$) implies $b \in A$.

It is clear that the set of all o-subsets of (X, \leq) is closed for the operations of set-intersection and set union and contains the null set φ and X.

Let $\mathfrak{O}(X)$ denote the subset of $\mathfrak{I}(X)$ consisting of all *o*-isomorphisms between *o*-subsets of X. $\mathfrak{O}(X)$ contains the map 0 and the identity map of X.

Proposition 7. $\mathfrak{O}(X)$ is an inverse sub-semigroup of $\mathfrak{I}(X)$.

Proof. If $\alpha \in \mathfrak{O}(X)$, then α^{-1} is also an *o*-isomorphism between *o*-subsets and so belongs to $\mathfrak{O}(X)$. Thus it is enough to show that $\mathfrak{O}(X)$ is a subsemigroup of $\mathfrak{I}(X)$. Let $\alpha, \beta \in \mathfrak{O}(X)$ and $A = \nabla(\alpha) \cap \Delta(\beta)$. If $A = \emptyset$, then $\alpha\beta = 0 \in \mathfrak{O}(X)$. If $A \neq \emptyset$, let $A_1 = A\alpha^{-1}$, $A_2 = A\beta$. A is an *o*-subset of X. A_1 , and A_2 are also *o*-subsets. For, let $x \in A_1$, $y \leq x$. Since $A_1 \subset \Delta(\alpha)$, $y \in \Delta(\alpha)$ and so $y\alpha \leq x\alpha \in A$. Since A is an *o*-subset, $y\alpha \in A$ and so $y \in A\alpha^{-1} = A_1$. Now $A_1 = \Delta(\alpha\beta)$, $A_2 = \nabla(\alpha\beta)$ and $\alpha\beta: A_1 \to A_2$ is clearly an *o*-isomorphism with $\beta^{-1}\alpha^{-1}$ as its inverse. Thus $\mathfrak{O}(X)$ is an inverse sub-semigroup of $\mathfrak{I}(X)$.

Definition 8. For $\alpha, \beta \in \mathfrak{O}(X)$ put $\alpha \leq \beta \Leftrightarrow \alpha \mathscr{H}\beta$, $x\alpha \leq x\beta$ for all $x \in \Delta(\alpha)$ and $y\beta^{-1} \leq y\alpha^{-1}$ for all $y \in \nabla(\alpha)$.

Note that $\alpha \mathscr{H}\beta \Leftrightarrow \varDelta(\alpha) = \varDelta(\beta)$ and $\nabla(\alpha) = \nabla(\beta)$.

Proposition 9. $\alpha \leq \beta \Rightarrow \alpha \mu \beta$, where μ is the maximum idempotent separating congruence on $\mathfrak{D}(X)$.

Proof. We will show that $\alpha \leq \beta$ implies $\alpha^{-1} \varepsilon \alpha = \beta^{-1} \varepsilon \beta$ for all idempotents ε in $\mathfrak{O}(X)$ which proves that $\alpha \mu \beta$ ([1] Lemma 7.57). $\alpha \leq \beta \Rightarrow \alpha \mathscr{H} \beta$, $x\alpha \leq x\beta$ for all $x \in \Delta(\alpha)$ and $y\beta^{-1} \leq y\alpha^{-1}$ for all $y \in \nabla(\alpha)$. Let $A: \Delta(\varepsilon) \cap \Delta(\alpha) = \Delta(\varepsilon) \cap \Delta(\beta)$ and $B = A\varepsilon \cap \Delta(\alpha) = A \cap \Delta(\alpha)$, since ε is identity on A. Then ε is also identity on B and so $\alpha^{-1}\varepsilon\alpha$ is the identity map of $B\alpha$ and $\beta^{-1}\varepsilon\beta$ is the identity map of $B\beta$. Since α , β , ε are o-isomorphism and $\alpha \leq \beta$ we have A and B are o-subsets and so $B\alpha = B\beta$. Hence $\alpha^{-1}\varepsilon\alpha = \beta^{-1}\varepsilon\beta$.

Proposition 10. Let $Q_{\varepsilon} = \{\alpha \in \mathfrak{O}(X) | \varepsilon \leq \alpha\}$, where ε is an idempotent of $\mathfrak{O}(X)$. Then $Q_{\varepsilon} \cdot Q_{\varepsilon_1} \subseteq Q_{\varepsilon_1}$, $\nu^{-1} Q_{\varepsilon} \nu \subseteq Q_{\nu^{-1} \varepsilon \nu}$ for all elements ν and idempotents $\varepsilon, \varepsilon_1 \in \mathfrak{O}(X)$.

Proof. Let $\alpha \in Q_{\varepsilon}$, $\beta \in Q_{\varepsilon_1}$. Then $\varepsilon_{\mu\alpha}$ and $\varepsilon_1 \mu\beta$ and so $\varepsilon \varepsilon_1 \mu\alpha\beta$. Now $\Delta(\varepsilon) \cap \Delta(\varepsilon_1) = \Delta(\varepsilon\varepsilon_1) = \Delta(\alpha\beta) = \nabla(\alpha\beta)$. $x \in \Delta(\varepsilon\varepsilon_1) \Rightarrow x \le x\alpha$ and $x \le x\beta \Rightarrow x \le x\beta \le x\alpha\beta$. $y \in \Delta(\varepsilon\varepsilon_1) \Rightarrow y\alpha^{-1} \le y$ and $y\beta^{-1} \le y \Rightarrow y\beta^{-1}\alpha^{-1} \le y$. Thus $\varepsilon\varepsilon_1 \mu\alpha\beta$, $x\varepsilon\varepsilon_1 \le x\alpha\beta$ and $x\beta^{-1}\alpha^{-1} \le x\varepsilon\varepsilon_1$ for all $x \in \Delta(\varepsilon\varepsilon_1)$ and hence $\varepsilon\varepsilon_1 \le \alpha\beta$.

14 A

S. Sribala: Inverse semigroups

Let $\alpha \in Q_{\varepsilon}$ and $\nu \in \mathfrak{O}(X)$. Then $\nu^{-1} \varepsilon \nu \mu \nu^{-1} \alpha \nu$. So, $\Delta(\nu^{-1} \varepsilon \nu) = \Delta(\nu^{-1} \alpha \nu) = \nabla(\nu^{-1} \alpha \nu)$. $x \in \Delta(\nu^{-1} \varepsilon \nu)$ and $\varepsilon \leq \alpha \Rightarrow x\nu^{-1} \in \Delta(\varepsilon) \cap \Delta(\nu) = \Delta(\alpha) \cap \Delta(\nu) \Rightarrow x\nu^{-1}\varepsilon \leq x\nu^{-1}\alpha$ in $\Delta(\nu) \Rightarrow x\nu^{-1}\varepsilon \nu \leq x\nu^{-1}\alpha \nu$. $y \in \Delta(\nu^{-1}\varepsilon \nu) \Rightarrow y\nu^{-1}\alpha^{-1} \leq y\nu^{-1}\varepsilon \Rightarrow y\nu^{-1}\alpha^{-1}\nu \leq y\nu^{-1}\varepsilon \nu$. Thus $\nu^{-1}\varepsilon \nu \leq \nu^{-1}\alpha \nu$.

Theorem 11. $(\mathfrak{O}(X), \leq)$ is a Σ -ordered inverse semigroup. It is called the symmetric Σ -ordered inverse semigroup on (X, \leq) .

Proof. From propositions 9 and 10 it follows that the sets $Q_{\varepsilon} = \{\alpha \in \mathfrak{O}(X) | \varepsilon \leq \alpha\}$ satisfy the conditions (i) and (ii) of Theorem 2. To show condition (iii) consider $\alpha, \alpha^{-1} \in Q_{\varepsilon}$. $x \in \Delta(\varepsilon), \ \varepsilon \leq \alpha \Rightarrow x = x\varepsilon \leq x\alpha \Rightarrow x\varepsilon\alpha^{-1} \leq x\alpha\alpha^{-1} = x\varepsilon$; and $\varepsilon \leq \alpha^{-1} \Rightarrow x =$ $= x\varepsilon \leq x\alpha^{-1} \Rightarrow x\varepsilon\alpha \leq x\alpha^{-1}\alpha = x\varepsilon$. Thus we have $x\varepsilon \leq x\alpha \leq x\varepsilon$ and $x\varepsilon \leq x\alpha^{-1} \leq x\varepsilon$ for all $x \in \Delta(\varepsilon)$ and so $\alpha = \varepsilon = \alpha^{-1}$. It then follows that \leq is a Σ -order on $\mathfrak{O}(X)$ defined by the sets $\{Q_{\varepsilon}\}$. Hence $(\mathfrak{O}(X), \leq)$ is a Σ -ordered inverse semigroup.

We now consider representation of Σ -ordered inverse semigroups by partial transformation.

Proposition 12. If (S, \leq) is a Σ -ordered inverse semigroup, then the mapping $\varrho_a: x \rightarrow xa$ of Sa^{-1} onto Sa, belongs to $\mathfrak{O}(S)$ for every $a \in S$.

Proof. The sets $Sa \ (a \in S)$ are o-subsets of (S, \leq) . For, $x \in Sa, y \leq x$ (or $x \leq y$) $\Rightarrow x \mu y \Rightarrow Sy = Sx \subseteq Sa \Rightarrow y \in Sa$. Further ϱ_a and $\varrho_{a^{-1}}$ are order preserving maps which are inverse of each other. Hence $\varrho_a \in \mathfrak{O}(S)$:

Theorem 12. A Σ -ordered inverse semigroup (S, \leq) is o-isomorphic to a Σ -ordered inverse sub-semigroup of the symmetric Σ -ordered inverse semigroup $(\mathfrak{D}(S), \leq)$.

Proof. The mapping $\varrho: a \to \varrho_a$ of S into $\mathfrak{O}(S)$ is clearly an isomorphism of the inverse semigroups. We now show that for $a, b \in S, a \leq b \Leftrightarrow \varrho_a \leq \varrho_b \cdot a \leq b \Rightarrow$ $\Rightarrow a\mu b \Rightarrow Sa = Sb, Sa^{-1} = Sb^{-1} \Rightarrow \varrho_a \mathscr{H} \varrho_b$. Further, if $x \in Sa^{-1}$, then $x\varrho_a = xa \leq \leq xb = x\varrho_b$ and if $y \in Sa, y\varrho_b^{-1} = y\varrho_{b^{-1}} = yb^{-1} \leq ya^{-1} \Rightarrow y\varrho_{a^{-1}} = y\varrho_a^{-1}$. Hence $\varrho_a \leq \varrho_b$. Next, if $\varrho_a \leq \varrho_b$, then $Sa^{-1} = \Delta(\varrho_a) = \Delta(\varrho_b) = Sb^{-1}$ and $Sa = \nabla(\varrho_a) = \nabla(\varrho_b) = Sb$, and for all $x \in Sa, xa \leq xb$. Hence $aa^{-1} = bb^{-1} = e$ and $a^{-1}a = b^{-1}b = f$ and so $ea \leq \leq eb \cdot i \cdot ea \leq b$. Hence ϱ is an o-isomorphism of (S, \leq) into $(\mathfrak{O}(S), \leq)$.

References

 A. H. CLIFFORD-G. B. PRESTON, Algebraic Theory of Semigroups, Vol. I. & II, Amer. Math. Soc. Survey 7 (1961, 1967).

[2] L. FUCHS, Partially ordered algebraic systems, Pergamon Press (1963).

THE RAMANUJAN INSTITUTE FOR UNIVERSITY OF MADRAS MADRAS-5. INDIA

(Received March 30, 1971)

210