Thin operators in a von Neumann algebra

By CATHERINE L. OLSEN in Toronto (Cahada)

1. Introduction. Let .»/ be a von Neumann algebra, # a uniformly closed two-
sided ideal in o/ and & the lattice of projections in #. Let the center, &, of o/ be
identified with C(Q), the algebra of all continuous complex-valued functions on
'some Hyperstonian space [3]. We say that 4 €7 is thin relative to # if 4 = Z+K,
Z<cZ, K¢ #. 1t is shown that the thin operators relative to # form a C*-subalgebra
of o/. The lattice 2 is a directed set under the usual ordering (if &/ C# (), the
algebra of all bounded linear operators on a Hilbert space #, then P=Q means
(Px, x)=(Qx, x) all xes#). It was conjectured by P. R. Harmos, and proved by
" R. G. DoucLas and C. PEARcY [5] for of =%(H#), # separable, and . the ideal

of compact operators, that A4 is thin relative to .# if and only if . .

(H) - lim |[PAP— AP| =0.
. Pe?

Douglas and Pearcy asked whether (H) characterizes the thin operators relative
to an arbitrary uniformly closed ideal in any von Neumann algebra. It is the purpose
of this note to show that this characterization holds for any such ideal in a von
Neumann factor. Also, it is proved for maximal ideals in certain more general von
Neumann algebras, and for certain ideals in type I algebras.

2. Let # be a uniformly closed ideal in a von Neumann algebra «#. The set
of thin operators S +% forms a C*-subalgebra of &7 [4, 1. 8. 4]. There is .a two-
sided (not necessarily closed) ideal % of o/ with the property that 7¢ & if and only
if the range projection of T is also in .&; furthermore, £ is the uniform closure of
Z. This fact, due to W. WILs [10, p. 56, Theorem 1. 4] will be used in the proof of
the f'ollowing‘ proposition. '

. Proposition 2. 1. Let &/ be any von Neumann algebra, $ any. uniformly
closed ideal in of. If A is thin relative to #, then A satisfies (H). '

Proof.let A = Z+K, Zc¢ %, K¢ #. Note that ]lPAP—APH = [(I—P)AP| =
=|([—P)KP|, so it is enough to show Il,im (({—P)KP| = 0. Let ¢=0 be given.
- L)

It suffices to find a Py€2 such that Q€2 and Q= P, implies. [(I—Q)KQ| < e.
Then for any P¢#, P\NPEP, PoNVP = P, ar_ld if Q¢ with Q > P,V P, the’q
1I-0)KQ| < e.
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By the theorem of Wils, choose T€ # with Py=rp(T)¢ 4, and || T— K| —<¢. Then
I —Po)K|| = |(/=P N T—K)|l <&
Now, if Q€2 and Q= P,, then I—Q = [—P,, 5o
IT-Q)KQI = |U—-O)K|| = I(/-Po)K| < &

Hence the proposition follows.
It is easy to see that the converse of Proposition 2.1 is usually false if & is
not weakly dense in &. In this case, each A €./ with AF={0}=F4 satisfies (H).
The techniques in the proof of the next proposition are adapted from those
in [1], [5], and [6]. As in [1], we define for any B€Z (), any projection P€B(H).
Ng(PH) = sup  ||Bx—(Bx, x)x|.

XePH,||x|l=1

Proposition 2.2. Let of be a von Neumann algebra, 5 a uniformly closed
ideal insd, and @ an irreducible representation of s on a Hilbert space A with ¢ (F) 0.
Then for any AcsA,

inf 1,0 (@ (1 — P)#) =lim sup | PA(I— P)).
Pe» PcP

Proof-. Let £>0 and Py€Z be given. It suffices to show that for each unit
vector x in @ (1 —Py)#, there is a projection Q€P, Q= Py, with

e () x—(p(d)x, x)x| = |QAUT—Q)l +e.
For, we then have that
m,w(fp(l Po)%’)<QSUP HQA(I Ol +,

and in particular, there is some Qy > Py in  with

Ny —Po) #) = ]|Q0A([— Qo)ll +2e.
From this it follows that
inf 7,4 (@I — P)H#) = lim sup |[PA([— P)|.
PcP? Pe#

Fix P€2 and ¢>0. Let x be an arbitrary fixed unit vector in ¢ (/—P)s#. (If
@(I—P)s# = 0, we are done.) Set y = @(A)x—(p(4)x,x)x. By a theorem of Ka-
DISON [9, p. 274, Theorem 1] there is a self-adjoint operator C¢ # such that ¢(C)
is equal to the one-dimensional projection with range spanned by y at the two points
x and y; that is, o(C)y=y and ¢(C)x=0. By considering C?, we may assume C is a
positive. operator.

Following the argument in {6, p. 61, Proposition 3. 1], we may assume 0=C=1,
For, let f be the continuous real-valued function defined on the interval [0, ||C|| +1]
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by /=0 on[ ] =1 on[— I}Cli +1]andflmearbetween ; nd — 3 . Then fis.a uni-

4
form limit of polynomials {p,} with real coefficients and with no constant terms.
Thus 1fp,,(t) Za,t™, then ‘

@ (p.(C))y = Za,o(C)"y = pn(l)y and ¢(p..(C)X) 0.

Since p,(I)=1, we have

o(S(O)y=lim ¢(p,(C))y=y and ¢(f(C))x=0.

Let E(1) be the spectral resolution of C and set E=E ((5 1]) Then Ec.#
[2, p. 855, Lemma 4. 1], and 6E = C = E+4. Thus

1717 = o (O = (0(O.2) = (0B +0,5) = ucp'(E)y||2+6||yn2.
Thus for sufficiently small 5>0 we have |[(p(E)y|[ = ||yl —e. Furthermore
| 3 @ (E)x] = ((p(cSE)x, X)=(5(C)x, x)=0.
Now set Q = EVP. Then Q¢ .7,

|l</)(Q)y|! = e (E)yl

v

llyll—a ~and’ @(Q)x=0.
Thus, .

IIQA(I O = lo(QAU—))x] = lp(Q4)x|
=Ilw(Q)(w(A)x—(q?(A)x,X)X)+<P(Q)(<P(A)x,X)XIl le@yll = Hyll—c

So, [QA(I—0)ll+¢ = llp(4)x—(p(A4)x, x)x||, and the proof is complete.

Note that the following theorem does not conflict with Proposition 2. 1, when
o/ has non-trivial center & =C(fQ). The hypothesis that .# contain a primitive
ideal insures that .# ()2 is some maximal 1deal 1€ Q. Hence for any Z¢ %', we have
Z(weC, and Z-Z(We S

Theorem 2. 3. Let o/ be avon Neumann algebra and % a uniformly closed ideal in
o which properly contains a primitive ideal of /. If A€ satisfies (H ), then A = A+ K,
K¢ #, A ascalar operator.

Proof. Note that ||[PA*(I—P)|| = ||[PAP—AP] and that 4* = A+ K implies
A = 1-+K*. Hence it is equivalent to assume that lim |PA(/—P)| = 0, and show
Pco :

that A = A+K, A a scalar, K¢ J. _
Let ¢ be the irreducible representation of &/ on # whose kernel is the primitive
ideal properly contained in #. Thus ¢(#)# {0}, and by Proposition 2. 2, -

inf n, (9= P)#) = 0.
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‘In a particular, there is a sequence of projections {P,}c2 with

e = Ney(@U—P)H) < 1/n, . n=1,2,..;

and we may assume the sequence {P,} is increasing.
Following the proof of [1, p. 115 Theorem 1] we have that

Won(pU—P)H#) = {(9(A)x, x): xCo (I~ P #, |x] = 1}
is a nested sequence of convex sets. Furthermore, by [1, p. 114, Lemma 2. 2],
diameter W, (o~ P)#)=8|o(DlI1n,. -

Hence there is a “unique compléx number A which is adherent to every
W(,,(A)((P(I—-P,,)Jf). Set K= A—2, ¢(K) = ¢(4)—A. Applying [1, p. 115, Lemma
2. 3], we have - ' )

' Ilfp(K)(f—w(P,.))llz = 65l (A1,

Thus {@(K)(I—¢(P,))} converges to zero. Since ¢(KP,)€@(F) for each n, where
¢ (#) is uniformly closed, we see that ¢ (K) € ¢ (). But ker (¢) < # then implies that
Ke #. Since A = K+ 4, the proof is complete. -

Theorem 2.4. Let of be a von Neumann factor and S any uniformly closed
ideal inof . Then A € satisfies (H) if and only ian = A+K, K€ #, Aascalar operator.

Proof. Let ¥ be a non-zero irreducible representation of the C*—algcbm 57
on some Hilbert space . Let ¢ be an extension of ¥ to an irreducible representa-
tion of o on # [4, 2. 10. 2 and 2. 11. 3]. The uniformly.closed ideals in the factor
& are totally ordered [12]. Since the kernel of ¢ is such an ideal, # & ker ¢ implics
ker ¢ < 4. Thus the theorem follows by Theorem 2. 3 and Proposition 2.1,

Theorem 2.5. Let o/ be a semifinite, properly infinite von Neumann algebra,
or atype Il algebra with no a*finite central projection. If M is-a maximal ideal in o,
then A€ol is thin relative to M if and only if A = A+ M, A a scalar and Me. 4.

Proof. We may assume 4 is _not a factor, by the preceding theorem. Let #
denote the strong radical of o7 ; then _# » {0}. In fact, if o7 is semi-finite, ,# contains
all the finite projections of & [6, p. 55—56 and p. 58, Proposition 2. 3]. Thus every
projection in &/ dominates a projection in _#. This is also the case in the type Il
algebra of the assumed sort [6, pp. 56—57]. The ideal .# N% = { is maximal in

Z [10]. Let [¢] denote the ideal in & generated by ¢. Then.# = ¢ +[{], [6, p. 58,
Proposition 2. 3], and [{] is p11m1t1ve [7, p. 213, Theorem 4. 7]. Furthermore, # ¢[(],
so . properly contains [{] [6 p. 62]. Thus the result follows by Theorem 2. 3 and

. Proposition 2. 1.
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3. A different approach yields partial results in the type I case.

Theorem 3. 1. Let o/ bé a type 1 von Neumann algebra-such that o = B(H)®
® C(Q). Let F be auniformly closed weakly dense ideal in s of the form S = B(H)®
@ £, for some ideal ¥ in C(Q). Then Acsf is thin relative to S if and only if A-sa-
tlsﬁes (H).

Proof. The ideal ¢ is f -{feC(Q): flr=0}, for some closed set I'c Q.
Since .# is weakly dense, the’ mterlor of I' is empty. Let {x;} be some orthonormal
basis for #. Then 4 €/ may be written A=(g;;), a;;€ C(Q). o

Suppose A€sf is not thin. We wish to show 11m |PAP—AP| = 0. We clalm_

- it suffices to consider A=(a,;) with some a,s&f for r#s. For, suppose a,,e/,
all i#j. Then A # Z+K any ZeZ, K¢ # implies that for some vérl, and some
indices r#s, a, (V) #a,(v). Let U=(u;;) be the unitary in &/ given by u,, =u,,=u,=
=1/1/§, u, = —1/]/5, and u; =1 if isr, s; u;=0 otherwise (all these being constant .
functions on Q). It is easy to compute that if B=U*AU=(b;;), then b, (v)=0. .
Thus b,,¢ _#. Observe that hm ||PAP AP| = llm IPBP—BP|, so it suffices to

show that this latter limit is non zero. Thus the clalm is established.

Assume a,;¢ #, so fix peI' with |a,(1)|>0. Let >0 be a number such that
|la,s(v)]=0, all véV some open neighborhood of u. Choose any Pc2, P=(p;)).
We construct a projection Q €2, Q > P with ||QAQ —AQ| > /2. This will suffice to
show l1m |\PAP—AP| = 0

There is an open »neighborhood X of I' in © with p,,(vj<a, Ps(v)<g, all veX.
Since the interior of I' is énipty, VN(X\JI) is a non-empty open'set. Let W be a
non-empty open and closed subset of VN (X\J). Define projections in 2: E=(e;)),
F=(f;;) with e,,=yw=Ff,,, and ¢;;=0=f;; otherwise. Set Q = PV E, so Q€2 also.
If T=(t;)€o, denote T(v)={t,;(v)}€B(H) for each veQ.

Then

v)#
lle

Similarly, |PF||?<¢, and EF=0.
Observe that | @ F| is also small. For, let v € Q, and consider f'¢ F(v)#,q € Q(v)o#,
pEPWH and ec E(v)o#. Then o ’
IO EMI?= sup 1Q()/1*= sup  sup |ig,/)I*
‘ lAI=1 : IAI=1 ligli=1
For an arbitrary fixed pair of such vectors g and f, we can write ¢ = Y. p+7y2€
where p and e are unit vectors. Then we can find some unit vector g with (e, g)=0,
such that p = v,e+v,g. Using the fact that |PE|*<e, |PF||*<e and EF=0, a

. “PE"2=Slelp Sup (P(v)x, x)—-sup (P(V)Xs, X, )—Sup pss(v)<8
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routine calculation shows that |(g, f)|> < &/1 —&2. Thus |QF2| = sup | Q(W) F(v)|? <
=< g/l —&2. Therefore,

V- AQI=F(I - Q) AQE| = IFAE| ~ | FQAE|-> sup IEG)A@) EMI—
~(g/1—¢%)'"?| 4| = sup la,, ()] — (e/1 —£2)!2 4] > 6 — (/1 —£7) /2|1 A4].

For a sufficiently small choice of &, |(I—0)AQ| = §/2.

The converse follows by Proposition 2. 1, and the proof is complete.

Note that if & is a type 1 infinite algebra, and .# a maximal ideal, then Theo-
tem 2. 5 characterizes the thin operators relative to .. If # is a finite intersection
of maximal ideals in &, it is not hard to show that an operator satisfying (H) is
thin relative to #. For example, if J# is separable and &/ = #(#)@ C(Q), then
there is a finite set ' @ with #={4 ¢/ A(v) is compact, all verl}.
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