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1. Introduction. Let si be a von Neumann algebra, J a uniformly closed two-
sided ideal in si and & the lattice of projections in J. Let the center, of si be 
identified with C(Q), the algebra of all continuous complex-valued functions on 
some Hyperstonian space [3]. We say that A£si is thin relative to J if A = Z + K, 

K £ J . It is shown that the thin operators relative to J form a C*-subalgebra 
of si. The lattice 8? is a directed set under the usual ordering (if si the 
algebra of all bounded linear operators on a Hilbert space 34?, then P ^ Q means 
(Px, x)^(Qx, X) all x £ J f ) . It was conjectured by P. R. HALMOS, and proved by 
R. G. DOUGLAS and C. PEARCY [5] for si=SS(Jf), separable, and J the ideal 
of compact operators, ' that A is thin relative to J if and only if . 

(H) lim \\PAP — AP\\ = 0 . 
pgs» 

Douglas and Pearcy asked whether ( H ) characterizes the thin operators relative 
to an arbitrary uniformly closed ideal in any von Neumann algebra. It is the purpose 
of this note to show that this characterization holds for any such ideal in a von 
Neumann factor. Also, it is proved for maximal ideals in certain more general von 
Neumann algebras, and for certain ideals in type I algebras. 

2. Let J be a uniformly closed ideal in a von Neumann algebra si. The set 
of thin operators J+2C fo rms a C*-subalgebra of si [4, 1. 8. 4]. There is a two-
sided (not necessarily closed) ideal S£ of si- with the property that if and only 
if the range projection of T is also in J5f; fur thermore, J is the uni form closure of 

This fact, due to W. WILS [10, p. 56, Theorem 1. 4] will be used in the proof of 
the following proposit ion. 

. P r o p o s i t i o n 2. 1. Let si be any von Neumann algebra, J any. uniformly 
closed ideal in si. If A is thin relative to J , then A satisfies (H). 

P r o o f . Let A = Z+K, Z£2£, K<£j. Note that \\PAP-AP\\ = \\{I-P)AP\\ = 
= \\(I-P)KP\\, so it is enough to show lim \\(I-P)KP\\ = 0. Let e > 0 be given. 

Pi» 
It suffices to find a Po£0> such that Q£0> and Q>P0 implies. | | (7 -Q)KQ\\ < e. 
Then for any P<£0>, P0yP£9>, P0VP > P, and if Q£0> with Q > P 0 V P , then 
\\(I-Q)KQ\\ < e. 

13* 
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By the theorem of Wils, choose T6 f with P0 = r p ( 7 ) £ J f , and || T-K|| e. Then 

H( / -P 0 )* l l = W-Po){T-K)\\ < £. 

Now, if and Q>P0, then I-Q S I-P0, so 

W-Q)KQ\\ S \\{I-Q)K\\ s \\{I-P0)K\\ < £. 

Hence the proposition follows. 
It is easy to see that the converse of Proposition 2. 1 is usually false if J is 

not weakly dense in si. In this case, each with AJr—{0}=J A satisfies ( / / ) . 
The techniques in the proof of the next proposition are adapted f rom those 

in [1], [5], and [6]. As in [1], we define for any any projection 

tlB(P3tf)= sup \\Bx-(Bx,x)x ||. 
xiPJtT, | | x | | = l 

P r o p o s i t i o n 2 .2 . Let si be a von Neumann algebra, J a uniformly closed 
idea! in si, and (p an irreducible representation ofsi on a Hilbert space X with (p (*/) ^ 0. 
Then for any A £si, 

mfrlq,(A)((p(l-P)je)sl\m sup \\PA(I-P)\\. 
Pi» Pi» 

P r o o f . Let £ > 0 and P 0 £ 8 ? be given. It suffices to show that for each unit 
vector x in <p(l — Po)^, there is a projection Q>P0, with 

\\(p(A)x-(cp(A)x, x)x\\ S \\QA(I-Q)\\+s. 

For, we then have that 

^ u M t - P o ) ^ sup \\QA{I-011 + e , 
Q=~P0 

and in particular, there is some Q0 >• P0 in SP with 

1viAMr~poW) ^ \\QoA{.I-Qo)\\ +2e. 

From this it follows that 

inf lim sup \\PA(I-P)\\. 
Pi» Pi& 

Fix P£0> and £ > 0 . Let x be an arbitrary fixed unit vector in (p(I-P)X. (if 
<p(I—P)X — 0, we are done.) Set y = (p(A)x — ((p(A)x,x)x. By a theorem of KA-
DISON [9, p. 274, Theorem 1] there is a self-adjoint operator C£J such that <p(C) 
is equal to the one-dimensional projection with range spanned by y at the two points 
x and y; that is, q>(C)y=y and <p(C)x=0. By considering C 2 , we may assume C is a 
positive operator. 

Following the argument in [6, p. 61, Proposition 3. 1], we may assume 1. 
For, let / b e the continuous real-valued function defined on the interval [0, ||C|| + 1] 
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by / = 0 on » • 1 ,f=\ on IICII + 1 
1 3 

and / linear between — and —. T h e n / i s a uni-

form limit of polynomials {/>„} with real coefficients and with no constant terms. 
Thus if pn(t) = Iamtm, then 

<p(Pn(Q)y = Zamcp(C)my=pn(I)y and <p(pn(C)x) = 0. 

Since pn(I)= 1, we have t 

<p{f(C))y = \imcp(pn(C))y=y and <p(f(C))x=0. 

Let E(X) be the spectral resolution of C, and set £'=£'(((5,1]). Then E £ J 
[2, p. 855, Lemma 4. 1], and i f s i s E+Ô. Thus 

M2 = \W(C)y\\2 = {<p(C)y,y) S {(cp(E)+ô)y,y) = \\<p(E)y\\2 + ô\\y\\2. 

Thus for sufficiently small <5>0, we have \\q>(E)y\\ S ||j>|| — e. Furthermore, 

ô2 \\cp(E)x\\ = (cp(ÔE)x, x)^(ô(C)x, x) = 0. 

Now set Q = EM P. Then Q £ / , 

\\<p(Q)y\\ S \\cp(E)y\\ \\y\\-e\ a n d ' <p(Q)x=0. 

Thus, 

\\QA(I-Q)\\ ^ \W(QA{I-Q))x^\ = \\<p(QA)x\\ 

= \\(p(Q){(p(A)x-(cp(A)x,x)x) + (p(Q){<p(A)x,x)x\\ = \\<p(Q)y\\ = M - e . 
So, \\QA(I— Q)\\ + e ^ \\(p(A)x-{(p(A)x, x)x\\, and the proof is complete. 

Note that the following theorem does not conflict with Proposition 2. 1, when 
si has non-trivial center 2£ = C(Q). The hypothesis that J contain a primitive 
ideal insures that J is some maximal ideal p £ Q. Hence for any we have 
Z(p)£C, and Z—Z(p)£j. 

T h e o r e m 2. 3. Let si be a von Neumann algebra and J a uniformly closed ideal in 
si which properly contains a primitive ideal of si. If A £si satisfies ( I f ) , then A = X + K. 
K£ J , X a scalar operator. 

P r o o f . Note that \\PA*(I-P)\\ = \\PAP-AP\\ and that A* = X + K implies 
A = X + K*. Hence it is equivalent to assume that lim \\PA{I—P)\\ = 0, and show 

that A = X + K, X a scalar, K£J. 
Let (p be the irreducible representation of si on «?f whose kernel is the primitive 

ideal properly contained in J>. T h u s > ( , / ) # { 0 } , and by Proposition 2. 2, 

m t ^ A ) ( c p ( I - P ) œ ) = 0. 
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In a particular, there is a sequence of projections {P^czSP with 

tin = %W(<P(I-Pn)^) < 1 In, n=l, 2, ...; 

and we may assume the sequence {P„} is increasing. 
Following the proof of [1, p. 115 Theorem 1] we have that 

KiAfV-Pn)^) = {((p(A)x,x):x£(p(I-P„)^, ||X|[ = 1} 

is a nested sequence of convex sets. Furthermore, by [1, p. 114, Lemma 2. 2], 

' diameter W 9 ^ { q > { I ~ - P ^ ) d % \ \ q > { A ) \ \ ^ n : • 

Hence there is a unique complex number X which is adherent to every 
Set K= A-X, (p(K) = (p(A)—X. Applying [1, p. 115, Lemma 

2. 3], we have 
• I I < P ( * ) ( / - < P ( P „ ) ) I I 2 ^ 65\w(A)\\nn: 

Thus {<p(AT)(/-(p(JP,I))} converges to zero. Since <p (KPn) 6 (p ( J) for each n, where 
<?(./) is uniformly closed, we see that (p{K)£ip{J). But ker (cp) c J then implies that 

Since A = K+X, the proof is complete. 

T h e o r e m 2.4 . Let si be a von Neumann factor and J any uniformly dosed 
ideal in si. Then A (¿.si satisfies (H) if and only if A = X + K, K£J-,Xa scalar operator. 

P r o o f . Let IP be a non-zero irreducible representation of the C*-algebra J-
on some Hilbert space X . Let <p be an extension of to an irreducible representa-
tion of si on X [4, 2. 10. 2 and 2. 11. 3]. The uniformly .closed ideals in the factor 
si are totally ordered [12]. Since the kernel of cp is such an ideal, cp implies 
ker <p<zJ. Thus the theorem follows by Theorem 2. 3 and Proposition 2. 1. 

T h e o r e m 2. 5. Let si be a semifinite, properly infinite von Neumann algebra, 
or a type III algebra with no a-finite central projection. If Jl is a maximal ideal in si, 
then A£si is thin relative to Jl if and only if A = X + M, X a scalar and M£Jl. 

P r o o f . We may assume A is not a factor, by the preceding theorem. Let # 
denote the strong radical of si\ then , / ^ { 0 } . In fact, if si is semi-finite, f contains 
all the finite projections of si [6, p. 55—56 and p. 58, Proposition 2. 3]. Thus every 
projection in si dominates a projection in f . This is also the case in the type III 
algebra of the assumed sort [6, pp. 56—57]. The ideal Jlf\2£ = £ is maximal in 
2£ [10]. Let [C] denote the ideal in si generated by Then Jl = / + [£], [6, p. 58, 
Proposition 2. 3], and [£] is primitive [7, p. 213, Theorem 4. 7]. Furthermore, «/$[£], 
so Jl properly contains [£] [6, p. 62]. Thus the result follows by Theorem 2. 3 and 

. Proposition 2. 1. 
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3. A different approach yields partial results in the type I case. 

T h e o r e m 3. 1. Let si be a type I von Neumann algebra such that si = 
© C(Q). Let J be a uniformly closed weakly dense ideal in si of the form J = © 
© for some ideal f in C(Q). Then A £si is thin relative to •? if and only if A sa-
tisfies (H). 

P r o o f . The ideal / is / = { / € C ( i 2 ) : / ! r = 0}, for some closed set f c i 3 . 
Since J is weakly dense, the interior of T is empty. Let ( x j be some orthonormal 
basis for Then A^si may be written A={ai}), j €C(i2). 

Suppose A £si is not thin. We wish to show lim \\PAP—AP\\ ^ 0. We claim 

it suffices to consider A—{atJ) with some arsi#, for r^s. For, suppose a^df, . 
all i ^ j . Then A ^ Z+K any Z££f, K<iJ implies that for some v£F , and some 
indices r^s, arr(v)^a^(y). Let U={ui}) be the unitary in si given by urr = urs = uss = 
= l / | / 2 , usr = —1/ /2 , and uu= 1 if iVr , s; wiy = 0 otherwise (all these being constant 
functions on Q). It is easy to compute that if B=U*AU^ib^), then- 6 r s(v)7 i0. . 
Thus b r s i f . Observe that lim \\PAP-AP\\ = lim | |PBP-BP\\ , so it suffices to 

Pi0> P<L0> 

show that this latter limit is non-zero. Thus the claim is established. 
Assume a r s i f , so fix ¿ idF with \ars(p)\>0. Let <5>0 be a number such that 

|a„(v)|><5, all v g F some open neighborhood of p. Choose any P=(pi]). 
We construct a projection Q<i0>, Q>P with \\QAQ-AQ\\ > ¿/2. This will suffice to 
show lim \\PAP-AP\\ ^ 0. 

There is an open neighborhood X of F in Q with prr(v)<s, /?jS(v)<e, all v ^ X . 
Since the interior of F is empty, VC](X\r) is a non-empty open set. Let W be a 
non-empty open and closed subset of F f l ( Z \ F ) . Define projections in 3P:E=(e¡J), 
F = ( / y ) with ess = Xw=frr» and eu = 0=flJ otherwise. Set Q = P\J E, so Q^SP also. 
If T=(tij) ^si, denote T{v) = {tij(v)}i@(y?) for each v^Q. 

Then 

[|F£||2 = sup sup (P(v)x, x) = sup (P(v)x s , xs) = sup pss(v) < e. 
v(S} i f E W * vilV v£W 

11*11=1 . 

Similarly, | |PF | | 2 <e , and EF=0. 
Observe that || QF\\ is also small. For, let v 6 fi, and consider / f F(v)Jif, q£Q , 

p£P(v)3V and e^E(v)3^ . Then 

| |6(v)F(v) | | 2= sup | | 6 ( v ) / | | 2 = sup sup \(q,f)\2. 
ll/ll = i ll/ll = i ll«ll = i 

For an arbitrary fixed pair of such vectors q and f we can write q = y^ p + yie 
where p and e are unit vectors. Then we can find some unit vector g with (e, g) = 0, 
such that p = vie + v2g. Using the fact that | | P£ | | 2 <e , | |PF | [ 2 <e and EF= 0, a 
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routine calculation shows that \{g,f)\2 < e/l - e 2 . Thus | | g F 2 | | = sup [ |g(v)F(v) | |2 < 
v e n 

e/l — a2. Therefore, . 

I l ( / - Q)AQ\\ s \\F{l~Q)AQE\\ £ I IF^ I I - \\FQAE\\> sup | |F(v)>l(v)£(v)| | -v ë f t 

- (e/l - e2) \\A || = sup |a„(v)| - (e/l - e 2 ) 1 ' 2 \\A\\ > «5 - (e/l - e 2 ) 1 / 2 \\A\\. 
ÏÉW 

For a sufficiently small choice of e, \\(I—Q)AQ\\ > <5/2. 
The converse follows by Proposit ion 2. 1, and the proof is complete. 
Note that if si is a type I infinite algebra, and Ji a maximal ideal, then Theo-

rem 2. 5 characterizes the thin operators relative to Jl. If J is a finite intersection 
of maximal ideals in si, it is not hard to show that an opera tor satisfying ( H ) is 
thin relative to J . For example, if X is separable and s i = 9 > ( X ) ® C ( Q ) , then 
there is a finite set TczQ with J" = {A £s/:A(v) is compact , all v Ç f } . 
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