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Abstract: This paper has two parts. In the first one it is shown that a Banach 
algebra with identity whose lattice of closed left ideals is order isomorphic to 1 +a>* 
with "dimension gaps" equal to one, f r o m one ideal to the next one, is always a 
(commutative) Banach algebra of power series with one-point Gelfand spectrum. 
In the second one, the fact that the algebra £(3£) of all bounded linear operators on a 
complex separable Banach space 3; contains a subalgebra with the above mentioned 
characteristics, is used to show that £ ( £ ) can be generated by two elements. 

1. Throughout this paper X will denote a complex separable infinite dimensional 
Banach space. Let £ ( £ ) be the set of all operators in 3£. Here and in what follows, 
operator will mean bounded linear map ( from 31 into X); similarly, algebra and sub-
space will mean weakly closed subalgebra of £(£) containing the identity I of 36 and 
closed linear manifold, respectively. For a given algebra 2i, Lat 2t denotes the lattice 
of invariant (under every operator in 91) subspaces of 21. 91 is called a strictly cyclic 
algebra (s. c. a.) if there exists a vector x0 <E X such tha t 

is separated by x 0 £ di if A £ 21 and Ax0 — 0 imply A —0. If 21x0 = X and x 0 separates 
points of 21, then we shall say that 21 is a separated s. c. a. and that x0 is a separat-
ing s. c. vector for 21. It is known that if 21 has a separating s. c. vector x0, then 
the m a p A -~Ax0 f r o m 21 onto X is an isomorphism of Banach spaces. By means 
of this map, X can be identified with a Banach algebia 93 with identity e; then 21 
is identified with 23^, the algebra of all left multiplications in 23 by elements of 23 
(i.e., the regular left representation of 23) and 21', the commutan t of 21 in £ ( £ ) , is 
identified with 23^ the algebra of all right multiplications (or, the regular right represen-
tation of 23) (see [2; 5; 6; 10]). 

Let 23 be a Banach algebra with identity and let 23 t be its regular left representa-
t ion; the invariant subspaces of S L are, precisely, the closed left ideals of 23. This 
justifies the following nota t ion : 
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Lat 23 = Lat 23^= (closed left ideals of 23}. 
The first part of this papèr is devoted to proving that a class of Banach algebras 

with linearly ordered lattice are singly generated. 

T h e o r e m 1. Let 21 be a separated s. c. a. on X and assume, that 

(1) Lat 21 = {(0)}U{a>U:=o, 

where 

(2) X ^ o ^ W ^ m ^ - - : a n d 

(3) dim №„/ïï>l„ + t = 1. for all n = 0, 1,2, ... . 

Then there exists a quasi-nilpotent operator TÇ_ 21 such that 

i) closure Tn(X), n^0, 1, 2, ... ,' 
ii) 2t = 2 l r =5i rong closure of the polynomials in T, and 
iii) 21 is a Banach algebra of power series in the sense of Lorch and Shilow (see 

[8; 10, p. 317; 12]). In particular, 21 is abeliatr, the Gelf.ind spectrum of 9f 
consists of a single point. 

oo 

R e m a r k s , (a) Lat 21 is always complete; hence (1) and (2) imply [~| ®i„ = (0). 
n = 0 " 

(b) (2) says that Lat 21 is order isomorphic to 1 +co* (where where œ is the 
first non-finite ordinal number). (3) says that the "dimensional gaps" are all equal to 
one. An invariant subspace (or closed left ideal) lattice satisfying (1), (2) and (3) will 
be denoted by: Lat 21 1 +a>*(dg = 1). 

(c) It was shown in [6] that, if 21 is a separated s. c. a., then the uniform and 
the strong operator topologies coincide on 21. Hence, in Theorem 1, ii), "strong 
closure" is actually equivalent to "uniform closure". 

Because of the previous identification of X with a Banach algebra with identity, 
Theorem 1 can be rephrased as 

T h e o r e m 1'. Let SB be a Banach algebra with identity e and assume that 
Lat 25 s 1 -\-(£>*{dg = 1). Then 23 is a Banach algebra of power séries with a quasi-
nilpotent generator t. The Gelfand spectrum of 23 consists of a single point and the 
only non-zero dosed left ideals o / © are those of the form 9JÎ„ = cl (/"23), (n—0, 1 ,2 , . . . ) . 

2. In what follows, 23 will always denote a Banach algebra with identity e. 
The proof of Theorem 1. follows f rom a combination of Banach algebra methods 
and invariant subspace theory. 

L e m m a 1. If Lat 23 is linearly ordered, then every closed left ideal is a bilate-
ral ideal. 
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L e m m a 2. / / L a t 23 = 1 'r<jj*(dg = 1), then © has no zero divisors. 

C o r o l l a r y 3. Assume that Lat 23 1 f f f l * ^ = 1) and let /£23, t^0. Then 
the map 

N N 

Z c k z k - Z c k t k 

k= 0 k = 0 

from the polynomials in one indeterminate into 23 is one-to-one. 

Lemma 1 follows f rom a general fact about operator algebras: consider Lat © = 
=La t23 L under the topology for invariant subspaces given in [7] (see also [1, 11]); 
since Lat 23 L is linearly ordered, every point of Lat 23 L is isolated. Therefore, ([7]) 
Lat 23 L c Lat (23L)' = Lat 93 R . Finally, observe that Lat 23R = {closed right ideals of 23}, 
f rom which the result follows. 

Now assume that Lat23 ^ 1 + co*(dg = 1) and let a,b£23, a^0 and ab=0. 
Then 9Ji = {c£23 :c£=0}=ker Rb (/?,, = right multiplication by b£23R) is a non-zero 
closed left ideal and therefore 9^ = 90^ for some /ci?0, hence dim 23/9Jlft=/c<o°. It 
follows that rank 

On the other hand, closure range Rb=cl ( ^ 2 3 ) £ Lat 23 t . Thus, either cl (i?ft23) = 
= (0) (and therefore 6 = 0 ) or cl (/?ft23) --= S0i;,, for some /J&0. Since d imc l (i?623) = 
= rank Rb^=lc~^<=° and dim9Jl;, is not finite, the second case must be ruled out. We 
conclude that b=0, and the proof of Lemma 2 is complete. 

Finally, Corollary 3 is an easy consequence of Lemma 2. 

L e m m a 4. Assume that Lat 23 = 1 +m*(dg = 1) and let a£23. Then 
i) a (a) ( = t h e spectrum of a in 23) consists of a single point; moreover, a (a) = 

= o(La) = o(Ra), where cr(La) (a (Ra), respectively) denotes the speqtrum of the left 
(right, respectively) multiplication by a as an operator on 23. 

ii) a is invert ible in 23 if and only if for some n^0 and some b £ 9Ji„\9)i„ + [, 
abrcm„\mn+l. 

P r o o f , i) Observe that 23 has a unique maximal bilateral ideal, , and that 
dim 23/9)1! = 1; hence, given a £93, there exists a unique complex number / = / ( a ) 
such that a—Xe £ 9Jii. Therefore, X £ a {a). 

If n ^ X , then cl(a—^e)93 is a closed left ideal of 23, not contained in . It 
follows that cl (a—¿¿e)93 = 23; then (a—/ze)23 is a dense left ideal of 93 and therefore 
(see [10, Chapter 1]) (a—fie) has a right inverse b in 23. Since, by Lemma 2, 23 has no 
zero divisors, a—tie -A 0 and (a—fie)[e —b(a—¿te)] = 0, we conclude that b = 
= (a—//e)-1, i.e. fi$(r(d). Therefore a(a)~ {?.(a)}. 

The remaining statements follow f rom [6; 10] (in particular, a is invertible 
in S if and only if La is invertible in £(23) if and only if Ra is invertible in £(23)). 

ii) If a is invertible, then Jt„c9Jl„ and c T ^ , , c9K n , for all nS0. It follows 
that a S T C ^ a - ^ l ^ a J ? , , for all n. Therefore, a(3[R)I\®in+ i )=aW,\®i«+1 - for all n. 
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Conversely, if ab£9Ji„\i)Ji„ + , for some 6€®i„\9.1f„+ , (and some //SO), then 
we can write 9Jl„ = 9Ji„+1 ©{A6:A£C} and ab = Xb+b', for some A^O and some 
¿ /£9J t„ + , . Hence, (a — Xe)b b' £9Jt„+ j . If (a — Xe) were invertible, then 
b = (a —Ae)-1Z>' would belong to 9ii„+1 (because 9JJ„., , is invariant under 23!), con-
tradicting our assumption. This proves that a— Xe is not invertible in 23. Now, i) 
implies that u(a)={A}; since A^O, we conclude that a is invertible. 

P r o o f of T h e o r e m 1'. L e t / be any element of 9J{,\9Ji2 . 

C l a i m . 23 coincides with the uniform closure of the polynomials in /. 

Assume that, for each n ^ O , / "69) i „ \9J i n + , . Then, since dim S)l„/S)la+1 = 1, for 
all n, it is not difficult to see that the finite linear combinations of the ?"'s, « —0, 1,2, ... 
(i.e. the polynomials in /) are uniformly dense in 23. 

Thus, in order to prove our claim, we only have to show that /" f s.l)f„\9.1|,l+,, 
for n — 0, 1,2, ... . We proceed by induction. Our choice of / implies that the above 
result is true for « = 0, 1; let m > 1 be the first index such that /"' (f 9Ji,„\9-'t l ,H.Since 
/m_1<E9Jim_,, / m _ 1 is not invertible and Lemma 4 implies that i m ^ t m ~ i l €9Jlm; 
thus, our hypothesis on tm is equivalent to : tm 69>lm + , . It follows that 931 = {Xtm~l) © 
©9)tm + 1 t L a t L ( \ L a t © ; therefore, there exists a~23 such that aSlicf90i. 

Let b t9J i ,„ \9J i m + , ; it is not hard to see that a can be written (in a unique 
form) as 

a = A0c -i-Aj H HA,„_ t /m_1 +Xmb +a', 

where Au, . . . . Am'£ C and a' £ 1. 
Now, the invariance of SOi under L, implies that /"9Ji c9Ji , for all 0. On 

the other hand, since a'£9Ji„H , and 9Jim+, is a bilateral ideal (use Lemma 1), it is 
not hard to see that . 

Thus, ^ J i 0:9)1 if and only if A m ^ 0 and MR Moreover, ¿9Jtra+ , c 9 ) i m + 1 ; 
therefore, «9)1$9Jt is equivalent to : btm~l $9Jt. But this last statement cannot be 
true. In fact, since b is no t invertible and / m _ 1 £9Ji,„_ j\9J?,„, it follows from Lemma 4 
that 6/m- 1e9Ji ,„ , i.e., ¿ r - 1 ' = Xb + b', for some X€Cand some 6'£9H„1 + 1 . Now if 
A=0 , then btm~x €®{„H t c9Ji , contradicting our assumption. If A ^ 0 , then 
b(tm~1-Xe) - 6 '£93tm + 1 and (by Lemma 2) ( i 0 1 - 1 - Xe) is invertible in 23; hence 
b ¿>'(/m_1 — Xe)"1 £9Jlm + , (here we are using the fact that 93i,„+, is a bilateral ideal, 
i.e.. Lemma 1), again we obtain a contradiction. 

We conclude that /"69Ji„\9Ji„+, , for all 0 and 23 is the uniform closure of 
the polynomials in /. . 
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By Lemma 4, / is quasi-nilpotent. To complete the proof we only have to show 
that 53 is a Banach algebra of power series in /. This is also clear: observe that , for 
each fixed 0, -93 can be written (in a unique fashion) as the direct sum 

® = { V } © { ; . , ' }©•• • © { ¿ „ ' " J e s R . + i 

with complex X0, ..., Xn.\ 
Define yk by yk(t")=l, yk(tk) = 0 for n = 0, 1, . . . , A r - l and y / t № + 1 ) = 0. It is 

clear that yk is a cont inuous linear functional on © and that every element a of © 

can be written as a (unique!) formal power series in t: a = yk(a)tk. S ince . / 
k = 0 

generates © and / is quasi-nilpotent, it is not hard to infer that the only non-zero 
continuous multiplicative functional on © is y 0 ; i.e. Gel fand 's spectrum of © is a 
single point. 

It is completely apparent that SHi„ = cl ( /"©); /7 = 0, 1, 2, ... . The proof is com-
plete now. 

3. Generators of fi(3£). Recently, S. GRABINER ([3; 4]) showed that , for any X 
satisfying our requirements it is possible to construct a chain 3 .S ; 1 -f-o)*(dg = 1) of 
subspaces and a nuclear operator T such that 

(4) T is a quasi-nilpotent; is a separated s. c. a., and Lat 

We are indebted to Professor GRABINER for sending us his unpublished paper 
[4] and to M. IMINA for several helpful discussions. We shall use Grabiner 's result 
to prove that £ ( £ ) is always generated by two elements. In fact, we have the fol-
lowing. 

T h e o r e m 2 . Let L££(X), L ^ XI (for all X£C). Then there exists Tf £'(£) 
such that £(3E) = 9l (T, L), the strong closure of the polynomials in T and L. 

The construction of a chain 3 = 1 -\-(o*(dg=\) of subspaces of 3£ is s tandard. This 
is equivalent to finding a sequence { ] 8 , } " = 0 c i P (the topological dual of X) such that 

n— 1 
the /?„' s are linearly independent, 9Jl„ = f) ker (ik (/?= 1, 2, 3, ...) and f) ker pk = (0) 

k= 0 k= 0 

(i.e., {Pn} is total on X). Then, if 9 J i 0 = £ , the lattice 3 = {(0)} U {9)i„} satisfies our 
requirements; fur thermore , Poi^O) can be arbitrarily chosen in X*. We shall need 
two auxiliary lemmas; the first one says that a "small per turba t ion" of {/?„) provides 
a new lattice, 3 ' with similar characteristics. 

L e m m a 5. Let {/?„},7= o be a total set of linearly independent functionals such 

that n ker/?„=(0) and ||jSJ|^l for all 0. If 0s8|I^(2||/?J)-1
> then {p'n = p„ + 

n=0 

+ , /i„+1},7=0 is also a linearly independent total set of linear functional on X. 
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P r o o f . Let X and assume that P'„(x) = 0, for all n. Then P„(x) = —en+, Pn+, (x) 
and. by induction on k, we have 

P„(x) = (-l)ksn+1nn + 2...en + k_lBn + kPn+k(x), k — 2, 3, ... . 
Hence 

2_ ( l : _ 1 )! |s„ + /(/?„ + J | | .*i | ||x|| — 0, as • 

Therefore P„(x)=0 for all «SO. Since {P„}~=o i s total, it follows that x = 0 ; 
i.e., {p'n} is also a total set. The linear independence of \P'n} is also clear. 

L e m m a 6 . Let L£Q(X), L^-AL. Then there exists a lattice 3 = 1 + co*(dg = 1) 
such that Lat L D 3 = {(0), X}. 

P r o o f . If every P^X* is an eigenvector of L*. then L*~AI* (7* = the identity 
operator on $*), for some A^C, and therefore L — AI, contradicting our hypothesis. 
Therefore, we can find a vector P0£X*, | | ^ 0 | | s l . which is not an eigenvector of L*\ 
equivalently, ker /?0 = 9J?, $ Lat L. 

Complete {p0} to a total set {/?„}"_,0 of linearly independent f u n c t i o n a l of 
norm S i and set P'a = Pn+s„+iPn+1, where e„ = (21|j8„||)— 1, « = 0 , 1,2, ... . 

Write £ = (0*), 2, = {Ap0:A£C}. Now we proceed by induction; assume that 
£„ has been defined in such a way that fi,,clin span [{P0, •••, P„}, S„ i Lat L* and 

<££„,-< for /? = 0, 1 , . . . , m - \ . If both £„,_, ®{//i ,„_,} and I m - , © { € , - i } 
belong to Lat L*, then £„,_, = (£„,_, © {Apm.,}) f l (f im_, © 6 Lat L*, con-
tradicting our inductive hypothesis. Hence, either £,„_, © { ^ „ „ J ^ L a t L* or £,„_, © 
© W , -1} c Lat L* and £,„ _ 1 © {AP'm_,} $ Lat L*. In the first case, we write £,„ = 2,„ _ © 
(D{Apm-!} and = in the second one, we take £,„ = £ „ , _ , © {XPi„_,} and 

Thus we have constructed a sequence {£„}"= o of subspaces such that l ) £ , c £ „ + , ; 
2) dim £ „ = « , n—0, 1, ... , and 3) £„(fLat L*. It is not hard to see using Lemma 5 

n- 1 
that the lattice 3 = {(0)}U {9ttn}~=0 where 9Ji„ = £n

x - f | ker p i satisfies our re-
k = 0 

quirements, i.e. 3 ^ 1 +co*(dg = 1) and Lat L 0 3 = {(0), X}. 
Now we are in a position to prove Theorem 2. Let L^2(X),. L^AI and let 3 

be chosen as in Lemma 6. Using Grabiner 's result, we construct an operator. 7 g £ ( £ ) 
satisfying (4). It is clear that 21(7", L) is a transitive subalgebra of £ ( £ ) (i.e., it has no 
non-trivial invariant subspaces); in fact, 

Lat 21 (T, L) = Lat LC\ Lat T = Lat L D 3 = {(0), X}. 

On the other hand, 2 i r . i s a strictly cyclic subalgebra of 21(7, JL). These two 
properties of 21 (7, L) and the results of [2; 5] imply that 21(7, £ ) = £ ( £ ) . 

R e m a r k s , a) In [9], H. RADJAVI and P. ROSENTHAL proved that if L is any 
operator in the complex (or real) separable Hilbert space X such that L^AI ( ¿ £ C ) , 
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then there exists a compact hermitian operator H£2(X) such that £(3t) = 2í(Z,, H). 
Thus, Theorem 2 can be considered as a result for Banach spaces which is analogous 
to the above one. 

b) Let X be as usual and let /? be a non-zero continuous linear functional 
on X. For each z£ ker/? and each I t C, define Azky = Áy+P(y)z and 
21 == {Az>A: z <E ker /?, a £ C } ; it is not hard to check (see [2]) that 21 is an abelian sep-
arated s. c. a. (x 0 is a separating s. c. vector for 21 if and only if fj(x0) ¿¿0). A straight-
forward computa t ion shows that the subalgebra generated by {Az ,A v w(¿Z} is 
equal to {AZ¡Á:A£C, z£closed lin span [zv: v£ 2]}; in particular, 21 cannot be finitely 
generated. 

With minor modifications of the same example it is not hard to show that 
2(3E) contains, fo r each n (« = 2, 3, 4, . . . , an abelian separated s. c. a. 2l„ which 
can be generated by n operators, but no set of n—\ operators generates 2T„. Thus, 
the statement of Theorem 2 cannot be extended to arbitrary subalgebras of £ ( £ ) . 
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