On the structure of intertwininig operators

By BELA SZ.-NAGY in Szeged and CIPRIAN FOIAS in Bucharest

A theorem proved in our previous paper [6] asserts that every operator X
ihtertwining two contractions, 7T; and 75, can be lifted, without increasing norm,
to an operator Y intertwining their minimal isometric dilations, ¥, and ¥,. This
theorem allows a study of the structure of such operators: this will be done, in a
purely geometric manner, in Sec. 1. Then, in Sec. 2, the results of Sec. 1 will be
reformulated for the case where the contractions 7} (k=1, 2) are completely non-
unitary and appear in their functional models S(0,).

* Particular interest lies with intertwining operators X which have a (bounded)
inverse and thus establish similarity between 7', and 7',. We obtain in this way
among others a criterion for a contraction to be similar to some isometry (and a new
proof of the known criterion for a contraction to be similar to some unitary oper-
ator). The main criteria of similarity concern two contractions, arbitrary or com-
pletely non-unitary, in the latter case given by their functional models S(O,)
(k=1, 2). One of these criteria, stated in Sec. 3, is particularly interesting since it
only involves relations between analytic functions and a certain equidimensionality
condition. This criterion generalizes a former result of KRieTE {3], which concerns
operators S(O,) with scalar valued contractive analytic functions O,.

Sec. 4 is devoted to problems concerning the commutant (T)" of a c.n.u. con-
traction T=S(@). Namely, a necessary condition is given for the characteristic
function @ (z) in order that (7)Y should consist of functions ¢(7), ¢ belonging
" to the Nevanlinna class Ny. Moreover, it is proved that if 7=S(0) with scalar
O, then (T) is always commutative, with the exception of a single case.

Finally, in Sec. 5, functions u(T) (with u¢ H~) of a c.n.u. contraction T are
considered, and a criterion is established for #(T") to be boundedly invertible; this
crlterxon generalizes an earlier result of FUHRMANN [1]. -
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1. Co_ntractigns of géneral type

1. For any two operators on Hilbert spaces, say 7; on §, and T, on §,, denote
by S(Ty, T,) the set of (linear, bounded) operators X:$; —~$, such that

an . i T,X=XT,.

If T, and T, are contractions, and ¥, and V, are their minimal isometric dila-
tions (cf. [5], Chapter I) acting on the spaces R and.RZ, respectively, then let
FH(T,, T,) denote the set of operators Y:{, -~ &, belonging to #(V,, V,) and
satisfying the additional condition
(] 2) . PzYP1=P2Y

1

where P; denotes the orthogonal projection from §; onto ;.

Clearly #(T,, T,) and #*(T,, T,) are subspaces of the Banach spaces of
all operators from §, into $, and from K, 'into K,, respectively.

As T; and ¥ are connected by the relation

(1. 3) , | : T,P;=PV;,

condition YEf*(T.I-, T,) implies

| . rpy=p, V,Y=P,YP,V,=P,YT,P,,

i.e. the operator '

(1.4 | X:PZYIS:)I

belongs to J(Tl, T,). Thus the transformation ¥ —~X defined by (1. 4) is a map
C r (T, Ty~ F(Ty, T),

- which is obviously lmear and does not increase norm (i.e., | X ||=]/Y||). Observe that
. on account of (1.2) relation (1.4) implies

(1. 5) » . XP,=PY

conversely, relation -(l. 5) implies both (1.2) and (1. 4).

The “Lifting Theorem™ for intertwining operators (see [6), or [5], Sec. 1I.2)
asserts that the above map n,, is actually onto, moreover for every X¢ I (T, T,)
there exists at least one Y& & *(T,, T,) satisfying (1. 5) and such that | X||=|Y].

The aim of this paper is a further analysis of this map =n,,, and some of its
applications.’ ‘

_To begin with, let us state the following immediate consequence of relation

(1. 5):
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Multzplzcatron Property If Ty, T5 are any three contractions and if

‘:

YESH(T,, T,), ZcF*(T,, Ty),

then

(1.6) ' ZYeSH(T,,T5) and 113(ZY)=n,3(Z)7;,(Y).
~ Also note that _ -

(1.7) Ig e s%(T,,T,) and ﬁll(lﬁl)zls,l.

2. Let us return to the case of two contractions, T; and T ,. Consider the
Wold decomposition of the space &; generated by the minimal isometric dilation ¥; of
ST (i=1,2), ie. let
(1.8) ) K, = 6*1@9{,-, where R; = V,-"Ri;

: e T L
the subspaces S, ; and R, reduce V; respectively to its unilateral shift part S,; and
' its unitary part R; (one of these subspaces may be missing, i.e. equal {0}). Then we
have for any Y& (V,, V,):

YR, = n YV,RI_ n YRiC n Vzﬁz_mz

Therefore,-if both K and K, are decomposed according to (1. 8) the operator Y
will be represented by a matrix

1.9) | Y 4.0

(1.9) | =5 c|’

where ' ' .

(1.10) A, €5(5,1,5,2), BEF(S,1,R), CEH(Ry,Ry). -

Clearly, conditions (1. 10) are also sufficient for Y. to belong to #(V,, V,).
Now we are going to analyse condition (1 2) To this end first reca]l (cf. [5],
Sec. II. 2) that the subspace

(1.1]) 6,,:5{[@&.
is invariant for ¥; and that
(1.12) ' CSi=VE;
is a unilateral shift. (It may happen that &,= {0}: this is the case if T; itself is an
isometry.)
Introduce the operators
- @i ' .. . *i
(1.13) = 3 = orthogonal projection of &, into R

As & ; and R, are reducmg subspaces for the isometry V we obviously have
(1.14) o 0,€ 55, S.), A€ 5(Si; Ry).

15*
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Condition (1. 2) means that Y transforms €, into &,. Hence we infer that an
operator Y¢S (V,, V,) satisfies condition (1.2) if and only if A=Y|S, belongs to '
F(S,, S;). Using for Y the matrix form (1.9) and for x; €€, the column vector
representation

(6] =12
xi_ 2'. X; Q_‘ ’ )9
and comparing the corresponding components we arrive at the following result:

Lemma 1. 1. The operator Y with the matrix (1.9) belongs to S+ (T, T,) if
and only if its entries satisfy conditions (1. 10) and

(1.15) © A,0,=6,4, BO,+Ci, = 4,4,
with some operator , .
(1. 16) 4 AcS(S,, S,). : n

d

3. Consider a YE.}”(TI,TZ) for which 7,,(Y)=0, ie.. YH, CHF(=E,). As
by virtue of (1. 2) we also have Y&, ©&,, condition Y$, cG, is equnvalent to.the
condition YK, c&,. Hence we infer first that

Ym1= n Y[/lan ﬂ V2 YRlC n '622{0}
n=0

(the latter eduation holds because V,|@,(=S,) is a unilateral shift); as a conse-
quence we have C=0. Next, YR, cS, also implies Y& ,cS,, and hence we
S,). Therefore we have for

~ deduce that the operator D=Y|S,, belongs to J(S,,,
xXe6, . . : )
A4, 0]1[x _ 0,Dx] ' R ”
[B C] [0]=Yx:Dx=[22Dx}, t.e. A,=60,D, B=4,D.
Conversely, one easily verifies that if D is any operator satisfying
a1y , DEI(S,,, S3) '
then the oberators defined by ‘ A
(1.18) A=DO,, A ,=6,D, B=4,D, C=0

satisfy conditions (1. 10), (1. 15), and (1. 16), and therefore the corresponding oper-
A, 0] . - '
ator Y=[B* C] belongs to S (T, T,). Moreover we have then

Yx ézD)lc .C. ; x )
vl |4,Dx = Dxe€, for ¥y €

7,2 (Y)=0.

and therefore

. Thus we have proved:
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Lemma 1. 2 T/ze general form of an operator Y€J+(T1,T2) -satisfying,
n,,(¥Y)=0 is
@,D 0 . )
:[EZD 0] with ‘arbztrary D‘EJY(S*I,S;‘).

4. Suppose we have

’
*

Br C,:IEJ-*‘ (TZ’ Tl)

A4, 0 -,
Y= B CE,}‘ "(Ty,T,) and Y'=

Let X=n,,(Y), X’=mn,,(Y’). From the multiplication property (1. 6) and from
(1.7) we deduce that X and X’ are inverse to each other if and only if

T, =Y Y)=0 and n,,(J;, —YY')=0.

On account of Lemmas 1. 1 and 1.2 these two conditions in turn are equwalent to
the condition that there éxist operators

Des(S,.,, S), D'€S(S,,, S,)

. . x19

satisfying the equations
e, —ALA, O 6,p ©
—~B'A«—C'B Iy ~C’C|] ™ |4;,D 0)
Is,,~A A% 0 6,0 0
—BA,—CB’ 1y,—CC’| " |4,D" 0O)

thus in particular C'=C"". Since C¢#(R,, R,), this implies that the unitary
operators R,, R, are similar, and therefore unitarily equivalent.

Note that the existence of a boundedly invertible X in #(T;, T,) means that
T, and T, are similar. Thus, also using Lemma 1. 2, we can summarize our results as
follows:

Theorem 1. 3. A necessary condition for the contractions T, and T, to be
similar is that the unitary parts R, R, of their minimal isometric dilations be unitarily
equivalent. Necessary and sufficient is the existence of operators :

( ){ A*EJ(S*19 S*Z)’ AEJ(SI9S2)’ Dej(S*l,Sl)
I o1 A;EJ(S*Z:S*I)’ A/Ef(SZ’Sl)’ D’GJ(S*Z’SZ)’l

©) |
: 1 { B €5(S,1, Ry, CEF(R,,Ry),
@] BesSaR) CesRR)
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sariyyiné the conditions . .
(] A*@1=é2/‘is B BB, +CA4, = 4,4,
@) 4.6,=6,4, (B) BO,+C'4,=4,4,
() 44, +0,D =1, (5) BA+CB=—4,D,
G A, A+ 0,0 = I, (¥) BAL+CB =—4,D,
(e C=cC1 :

5. From conditions (x)—(g) we deduce some further ones. Namely we have
O,(A’ A+ DO, — 1)L 4,0,4+ (s, — AsA)0,— O, = A,(0,A-A4,0,)=20,
A\(AA+DB,— 1) (B 6,+C 4,)A—(B'4,+C'B)O, -0, =

=B (0,4—A,0)+C'(4,A—-BO)—4,%2C'CA,—4, =0,

and therefore

@) - AA+DO, = I,
By analogous reasons, we have A
) , AL +D O, = I,.

Furthermore, ‘

6,(AD—D'A,) %% 4,0, D—(lg,,— A, A A, = A,(0, D+ A, A,)~ 4,220,

2,(AD—D'A4,)% (BO, +CA,)D+(BA, +CB) A, =

= B(O,D+A,A)+C(A,D+B'A)=B_CC’'B=L0,

and therefore ' } : ‘
M - AD=D'A,.
By analogous reasons, ‘
o) : A'D'=DA,.

- Conversely, if the operators bccufping in (o) except B’ satisfy conditions ()—(#’)
except (8’), (6), (6'), then the operator B’ defined by

B B = —C'(A,D' + BAL)

will obviously satisfy conditions B € #(S,,, R,) and (6"); let us show that it also
satisfies (f”) and (). Indeed, we have

B’@2+C'32 == —.C’Zzl)/éz—c,__BA;éz ‘f‘C,ZZ =
Y _C'Ay(le,~ AA)—C'BOA'+C' 4, =
= C'(A,A—BON A L C'CA A= 4, 4,
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Te! _C'4,AD—~C'B(ls,,— O, D)+C’'B =

: =—C'(3,A-BO)YDL —C(CA)D= —4,D.
~Thus we have: ' ' '

Theorem 1.3". The contractions Ty, T. , are similar if and only if there exist
operators A, A,.; A, A’, D, D', C, C’ and B satisfying condmons (o) and (a), (o ),

(B () ), O, (), ().

6. Consider the particular case that T, is an isometry. Then K,=§,, S,= {0};
thus 4 -and D (whose ranges are in &,) as well as 47, 0, and 4, (which are defined
on &,) are all zero operators. Hence conditions (oz) (11 ) occurring in Theorem 1. 3’
reduce to the following ones: :

(@) A,0,=0, (B BO,+CA; = 0,

(7)o Axd,+6,D =I,,, (e)op C: boundedly mvert1b1e
(Yo A Ai=1Ig,,, (o )o DA*_o

o D@1 =Is,, . N .
Thus in partlcular the existence of De.f (S, 1, Sy) satisfying (y), is a nec_eésary
condition for T, to be similar to some isometry. This condition turns out to be also
sufficient. '

"~ To this effect first observe that by account of relation D E.ﬁ (Sy15 S1) the null-
space D=ker D is invariant for S, ,. As S, , is a unilateral shift 50 is S,.1|D (possibly
of multiplicity 0) Consider now the lsometry

_ = (S, D)®R, on H, =DOR,.
Then, clearly .
S,.=9, R;=R,, S..=5,]D, and R,=R,.
Set A4, = I, — @, D; by virtue of condition (y), we have DA, = (I; —D&,)D = 0,
whence 4,:S,; ~G_,(=D). The intertwining properties of @ and D 1mply that
A eF (S*l, *2) Furthermore, set .
Ay=Is,|D, B=-4,D, C=C'=Iy,. ,

It is easy to show that all the intertwining propemes hold, and so do condmons
(0)o—(1")o; indeed, ‘

(@)o: A, @1 = (Ie*,“@lD)@i = ,@1—(@11))@1 =0, by (7)0.,

(#): BO,+CA, =—4,D6,+4, =0, by (¥,

(1o AiA,+6,D = (I, —0,D)+6,D = Ig,,,

(ot A A= (s, ~ -6,D)D = Ien| D= Isn,

(n)o: DAL=D|D=0. '



232 . T B Sz.-Nagy—C. Foiag

So we have proved:

Theorem 1. 4. The contraction T, is similar to some isometry if and only if @,
has a left-inverse D€ F (S, , S1). The unitary part of this isometry must be equal to R,
(up to unitary equivalence). .

Corollary. T, is similar to some unilateral shift if and only if T%" -0 (n — )
and O, has a Iéft inverse DEF (S, , Sy).

Proof. Necessity of 77" —~0 follows from the same property of unilateral
shifts. On the other hand, this condition is equivalent to R,={0}; ¢f. [5], Chapter
II, Theorem 1.2 and formulas (2. 1), (2. 7). The isometry to which T is similar
by virtue of Theorem 1.4 must therefore have R,={0}, i.e. be a unilateral shift.

7. If T, is unitary, we not only have &,={0}, but &, ,={0} as well, so the
operators A, A, are also zero, and the set of conditions (a);—(1"), reduces to the
following: . ‘
Bloo BO,+CA; =0, (1)o0 ©:1D=1Is,,, (Voo DO,=1s,
with C boundedly invertible. Thus a necessary condition for T, to be similar to
some unitary operator is that @, be boundedly invertible. This condition is also
sufficient. For, if we choose for T, any unitary operator U unitarily equivalent
to R, and for C any unitary operator satisfying UC=CR,, then the operators

D=067! and B=-C4,67!
will obviously satisfy the conditions above as well as the mtertwmlng conditions (o).
So we have

T heorem 1.5. The contraction T, is similar to some unitary operator if and
only if the operator ©, is boundedly invertible. This unitary operator must then be
equal to R, (up to unitary equivalence).

See [5], Sec. IX. 1 for another proof.

2. Coﬁlpletely non-unitary contractions

1. For c.n.u. contractions we shall use their functional model. All Hilbert spaces
to be considered are separable

For a Hilbert space €, L2 (€) will denote the Hllbert space of E-vector valued
functions u=u(z) on the unit circle (z=e'*), which are (strongly) measurable and
norm-square integrable with respect to normed Lebesgue measure, i.e. with

] 2n 1/2
: uuu=[—2; J |u<z.)|2dr] :
0

where |- | denotes vector norm in €. Then HZ(E) is the Hardy subspace of L*(€).
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We shall be aléo considering functions @ =@ (z), whose values are operators
from a Hilbert space € into a Hilbert space §&; we require that these operator-
valued functions be (strongly) measurable and essentially bounded, i.e. with

ess sup |P(z)| <eo;

here |- | denotes the norm of operator from € into §. Multiplication on L*(€) by
such a bounded measurable function @ is an operator from L*(€) into L2(§), which
we denote by the same letter @; thus

(d)u) (2)=2(2)u(2) (ue L*(©)).

Note that the norm [|@|| of this operator €quals the essential supremum of |<P(z)[
In particular, the operator & is a contraction if and only if the function @ is “con-
tractive”, i.e. if its values are contractions @(z):€ —Fa.c. on the unit circle.

A bounded measurable function ¢ is analytic if the cotresponding operator

" @ maps the subspace H2(€) of L?(€) into the subspace H*(§) of L*(§), or equiva-

lently, if its values @(z) are the radial (strong) limits, a.e. on the unit circle, of a
bounded holomorphic function ¢(4) in the open unit disc, |A[<1.

Let © be a contractive analytic function with values operators @(z):€—~GC,,
and which is, moreover, “pure” in the sense that it also satisfies

|0(O)al<la| for all acE, a=0.
We associate with @ the function .
' A(z) = [Ie— O (2)* O (2)]'2,

which is also measurable and whose values are selfadjoint operators on €, bounded
by 0 and 1. We form the Hilbert space

| = H}(E)PAL(E)
(where the closure is in the metric of L?(€)) and its subspace
= [HZ((E*)@ALZ(@)]e{eu@Au ue H*(®)},
and deﬁne on 5 the operator S(@) by ,
S@)(u@dv) = Py(xu®yv),

where y(z)=z and Pg denotes orthogonal projection of K onto its subspace $.
‘ This operator S(@) is a c.n.u. contraction, and moreover, one obtains in this
way all c.n.u. contractions T, up to unitary equivalence. For T given, one has indeed
to choose for @ (1) the “characteristic” function of T. See [5], Chapter \%8
The operator V defined on the space | by

V(udv) = yudyv
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turns out to be the minimal isometric dilation of 7= S(0), and in the Wold de-
composition of & for ¥ we have :

S,=H*(E,) and. R=4L?(C)

(with the natural embeddings in & as H2(€,)® {0} and {0}®AL*(€)). The corre-
sponding parts S, and R of V both. are multlpllcatlon by y. On the other hand
we have -

S =KR0H= {@u@Au:uEHz((?)}.

As u -~ OQu® du is a unitary map of H2(€) onto S, which commutes with multi-
plication by y, it is justified to identify & with H2(€); S will then be represented by
multiplication -by x on H*(€). The projection operators @ and 4, from & into €,
and R, will be represented by the restrictions to H 2(€) of the operators @ and A
respectively.

' We shall use the fundamental fact that if € and G are Hllbert spaces, and if Q
and Q' are bounded measurable functions with values operators

. Q(z):(ﬁ =€, Q)¢ ¢,
then those operators _
a) ¢ H*(©)~H?* (),
b) &: H2(€)—~Q' L*(E),
c) ¢: QL*(€)—~Q L*(€)

which commute with multlpllcatlon by ¥ can be represented as multiplication (on
the left) by an operator valued, bounded -function ¢(-) which is

a) analytic, with values @(z): €€ a.e.,

b) measurable, with values &(z): € -~ Q)¢ ae,

c) measurable, with values ¢(z): Q(2)€ -~ Q' (2)E ae.
Here, in case c), “measurability” means that there exists a measurable function ¥
with values ¥ (z):€ -+’ such that

&(z) = T(z)lQ_(zﬁ a.e.

For the case a) the above fact is proved e. g i m [5}, Sec. V. 3; the cases b) and ¢) can
be dealt with in an analogous manner.

2. Consider now two c.n.u. contractions, or rather their functional models, say

T, = S_(@ ) and T,=S5(0,),
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where @, are .p.urely contractive - analytic ‘functions ’ with values: ‘opera'tors
@k(z):(ﬁk ~C€,, (k=1,2). Then ‘

S = H@D0 4,12 E) (k=1,2) |
are the corresponding dllatlon spaces; the elements of K can also be thought of as
* column vectors [ ] . ' |
For these operators, Lemmas 1 1 and 1. 2 appear in the following form'

Lemma 2.1. The general form of an operator Y €FHT,, T, is multzpltcatton
(on &) by a matrix Junction.

@0 o S 'Y(Z):[A*(Z) 0 ]

B(z) C(2)}

where A, is a bounded analytic functlon ‘and B C are bounded measurable Sfunctions
. with values operators :

. 2) 4,(2): (E ~€,, B(z): (6 14 (z)(il, C(z) (D)€~ 4,(2)E,,
a.e. on the unit circle, satzsfymg the conditions _
Q. 3) , A*GI:@ZA, BO,+C4, = 4,4,
- where A is some bounded analytic function with values operators
Q. 4) ' A@): €, ~C, ac. |

Lemma 2. 2. The general form. of an ‘ operator Yes (T, T,) satisfying
7,2(Y)=0 is multiplication (on ;) by a matrix function o

[0,@D() 0
[A_z (2)D(2) 0] ’

where D is a bounded analytic function, with values operators

@5 _ . D(): €,~C; ae.

3. Let us consider besides the functions 4,(z) their duals

4,42 = s, — O O(@)*V? (k=1,2).

Then Okﬁk=A*k @k’ Suppose A,, A, B, C are functions sat1sfymg the conditions of
Lemma 2.1 and derive from’ them the function

E@z) = [B(Z)A*1 @)—-C(2)0, @) |4,1(2) (5*1
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Clearly, E is a bounded measurable function such that

(2.6) E@@): 4,,(2)€, - 4,(2)€, a.e.
Then, using (2. 3) we get _
EO, 4, = (B4,,0,—-CO10)4, = (BO, 4, —C+CAN A, = (4,44,-C) 4,

and therefore ' o

@n C@) = [~E@)0, @)+ 4@ A 4,@)| 4, DE,.

Furthermore, we have , E - |

‘Ed,, = BA}, —CO%4,, = B—BO,0;—C4,0%;

.and hence by. (2.3):

(2.8) _ . ' B=FEA, +4,A07.

Conversely, for an arbitrary bounded measurable function E with values ‘opera-

tors as in (2. 6), the functions B and C generated by (2. 7) and (2. 8) will satisfy con-
ditions (2.2) and (2.3). Indeed, we have in particular '

_391 +C4; = [EA*1+A2A@T]@1 +[-EO+4,44,]4, =
= E[A*1@1—91A1]+A2A =A2A

Thus we can give Lemma 2.1 the following alternative form:

Lemma 2.1, The generbl Jorm of an operator Y ¢ 5 *(T,, Tz) is multiplica-
tion by a matrix function (2. 1), where A, is as in Lemma 2. 1,V while B and C derive
by means of formulas (2. 7) and (2. 8) from some bounded measurable . function E with
values operators - -

E(2): 4,,(2)€,; ~4,(2)€E,.

4, The similarity theorems 1.3 and 1.3 can be formulated for operators
T,=S(@,) (k=1,2) as follows: '

Theorem 2.3. The operators. S(0,) (k=1, 2) are similar if and only if there
exist bounded analytic functions A, , A, A, A’, D, D" and bounded measurable func-
“tions B, B’, C, C’ with values operators

(o- ){A*(Z): (E*I»G*Z’ A(Z): @1—’@2, D(Z): @*1_'(?’17
! Ai(2): €€, A'(2):C€,>C,, D'(2): €,,~C,,

1) 1. e. bounded analytic with values operators €, »(E*Z, satisfying the relation 4+0,=6,4,
. where A4 is some bounded analytic function with values operators €, —~E,.
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B(2): €.~ 4,(2)€,, C(): 4,(2)€,~4,2)€,,
B'(@): €,,~ 4,08, C'@): 4,0€~4,0)E,,
satisfying a.e. the conditions : ‘
(@ A4,(2)0,(2)=0,(2)A(2), (B) B(2)0,(2)+C(2)4:(2) = 4:(2)4(2),
(@) 4i(2)0:(2)=0,(2)A"(2), - (B) B'(2)0:(2) +C'(2) 42(2) = 41(2) 4'(2),
(1) 442 4,0+ 0, D@ = Ig,,, () B' (DA, (2)+C ()B(E) = -4, D),
(1% 4, (D AR+ 0, (2)D'(2) = Ig,,, () B(2)4i(2)+C(2)B'(2) = — 4,(2) D’ (2),
(&) C'(z2)=C() 1. o ' ' ‘

Tﬁeorem 2.3". The operators S(Oy) (k=1,2) are similar if and only if there
exist bounded analytic functions A,, A’,, A, A’, D, D', and bounded measurable

Sunctions B, C and C’ satisfying conditions (o), (o), ("), (), (7,0, (¥",) of Theorem 2.3
and conditions

() A@AD+DEDO@) =g, - (1) A@RDE)=D'(2)A4,()
0N A@QA @D +D'(2)0:(2) = L,, () A (@)D (2)=D(2)4i(2).
Corollary 1. The equation . :
(2.9) dim4,(z2)€¢, =dim 4,(z)€, a.e.
is a necessary condition for S(0,) and S(O,) to be similar.

(0'2){

Proof. Immediate from the invertibility of C(z) a.e.

We shall return in Sec. 3 to the question how (2. 9) can replace in some cases
the conditions on B, C, C’ in Theorem 2. 3".

Consider now the case that @.(z) (k=1,2) are inner functions (i.e. with
values isometries a.e. on the unit circle). Then 4,(z)=0 (k=1, 2) a.e., and hence,
by (g,), the values of B, B’, C, C’ are operators with range {0} so that conditions -
B, (B), (6), (87), (¢) of Theorem 2. 3 become trivial. Thus we have:

Corollary 2. If ©.(2) (k=1,2) are inner functions then _conditions‘(allv), (@)
@), (v4), (v2) are necessary and sufficient for S(O©,) and S(O,) to be similar.

Taking D=0, D’=0 we get a sufficient condition:

Corollary 3. If ©,(2) (k=1., 2) are inner functions then for the similarfty of A

S(0,) and S(O,) it is sufficient that there exist bounded analytic functions A (z),
A(z) with bounded inverses A, ()™, A(z)~* such that

A, (2)0,(2)=0,(2)4(z) a.e.

This sufficiency condition was obtained in a direct manner in MOORE—
NORDGREN [4].
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5. Theorems 1.4 and 1. 5 can also be given a functional form, and here one
need not restrict himself to c.n.u. operators. Indeed every.contraction T is the direct
sum of a unitary operator and of a c.n.u. contraction 7. Clearly T is similar to an
isometry or to a unitary operator if and only if so does T,. As T and T, have the
same characteristic function © we deduce from the theorems above:

"Theorem 2.4. A contraction T is similar to some isometry or to some unitary
operator if and only if its characteristic function © has a bounded analync left-inverse,
or inverse, respectively.

(For the unitary case see also [5], Sec. IX. 1.}

3. An equidimensionality criterion for similarity

1. The following theorem differs from Theorems 2. 3 and 2. 3’ in that it only
involves the analytic functions A4, , ..., D", plus the equidimensionality condition
(2.9). More precisely, we prove '

Theorem 3.1. Suppose O,(z) (k=1,2) are purely contractive analytic func-
tions, with values. operators €, —~€,,, and also suppose that the values of the function
A4, (2) are compact operators a.e. on the unit circle. Then S(O,) is similar to S(O,)
if and only if

(%) ' dim 4,(2)€, =dim4,(2)€, a.e.
and if there exist bounded analytic functions A, _(2), ..., D'(z) 3atisfying conditions
(@1), (@), @) (va)s 05, () (), (), (') of Theorems 2.3 and 2.3'.

Observe that these conditions can be expressed by the fo'llowing properties of
the diagram: 1) it is commutative along epen two-step paths (e.g. AD=D"A4,);
2) products corresponding to ad_]acent closed two-step paths add to identity (e.g.

A'A+DO, =1 )

:
Atz)

G A
Atz

Qrz' Dizy Qrz)  Diz)

Aelz)
&, e

Az
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Proof. Necessity follows from Theorem 2. 3" and its Corollary 1. So we have
to prove sufficiency, that is, on account of Theorem 2. 3’, the existence of func-
tions B(z), C(z), C'(2) satlsfymg conditions (a,), (B), (¢). Thxs will be done as fol-
lows.

a) First we introduce the spectral family {E, (z)}(,s,cs , of the selfadjomt operator
4,(z), normed by the conditions Ey(z)=0, E,(z)=1, and, say, continuity from
the right for 0<x<1. As E.(z) is the limit of a sequence of polynomials of -
44(z), we conclude that E,(z) is, for any fixed x, a measurable function of z=e'
along with ©(z) and 4(2). :

Note that if aE[I(EI—E,;(z)](ﬁ1 for some x and z (0=x=1, z=¢"), then

6D 4@ad=zxlal, 10,(al = lal*—4,@al* = (1—x)al*

(norms in €, and €_,). .
Denote by M the least common upper bound of the functions

A, @, s D)
For Vectors a of the type considered above we have then
la A (@) AE)a L |D(Z)@l(z)al = M0, (2)al = M(1-x»)'7? lal

As we also have
|4’ (Z)A(Z)al<M |A(2)a]

we deduce la] = M(l— 2)12 4| + M|A(z)al, and hence

3.2) '. |A(z)a| =[M! ;(1 x?)112]|q] = 23_| |

for x close enough te 1. Moreover, we have _
4:()A@)al* = |4@)al~[0,() AG)al? =
=2 |4(Da*~ |4,(2)0, (Z)aI2 = lA(Z)fll2 M?|0,(2)al*;
ueing (3.1) and (3'. 2)-we get

o - ’ - 3 ) 2 2 2 = - : 2
(3. 14E@4@d = [[W] — M- )]lal m o
for x close enough to 1 (0<x<1). Let us fix such a value of x, say 5, and denote
Ef(2) =1Ig '—E;(Z)
On account of (3 3) we have then for a€ E; ()€, °
(3.4) lAz(Z)A(Z)aI (2M) 1Ial (2M)“ |4, (2)al.
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On the other hand, (3. 1) implies, for such q,

(3.5) |4,(2)A(2)a] = |4 (2)al = Ma| =(M/O)) 4, (2)al.
b) Now set '
(3.6) , F(z):f%dex(z) and. G(z):Az(z)A(z)Fv(z);
: . 4 o .

these are bounded, measurable functions, and as

(3.7 F(z)acEg €, and 4,(:)F()a=a for ac kG
.we deduce from (3. 4) and (3. 5) that ' o
(3. 8) M) a|SIG @Al =(MOla] for acE;G,.

Because 4, (z) is a compact operator for a.e. z, its spectral projection E; (2) is
of finite rank, a.e. By virtue of (3. 8), G(z) maps E; (2)€,, for a.e. fixed value of z,
bicontinuously onto the space

CRE; D€, (c4,(2)Ey),

which is therefore of the same dimension as E~(2)€,. From the hypothesis (*) it
then follows that the spaces '

M (z) = 4,2)€, 0Er €, and M,(2) =4,(2)€, ©G ) Ez (2)€,
are also equidirﬁensional. Thus
dim M, (2)=dim M, (2)=d(z) ae.,

where d(z) is a measurable function with the possible values 0, 1., oo (=Nq)-
Note that : ‘

2,D€, = (Ie,—E40(2))€,, and hence M, (z) = (Es(z) — E.0(2))E;.

By_an.appropriate orthogonalization procedure (commonly used in reduction
theory) we construct sequences {@,}7, {/};" of €, - and €, -vector valued measurable
functions such that if ¢, denotes, for n=0, 1, ..., o, the set of points z on the unit
circle where

d(z)=n,
* then for every fixed z€ o, the values

012, o 0a(2) and Y1 @) .., (2
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form orthonormal bases of IR, (z) and M, (z), respectively. Then it is easy to define a
measurable function with values unitary operators

Uz): My (2) M, (2),
notably we set
U@ (@)=Y, (z) for z€o, and k=1,

and extend lmearly (On 6, we can set e.g. U(z)= 0)
Now consider the function

3.9 . CW) =[G Es @) +U (@) (Ee() - E+o(2))]]é11(2)@1, '

this is also measurable and its values are operators

(3.10) . C(@): 4,0)€,~4,(z)€, (onto)
satisfying, by virtue of (3. 8), the inequalities

@3.1D M, la|=|C(@)a|=M;|a] for acd,(2)€E,

with the constants o
M;=min {1, 2M)~'}, M,=max {1, M/E}.

Hence the function -
C'(2)=C(2)~*

has sense, is measurable and bounded,
IC’(2)|=1/M,.
c) Consider now the function -
(3.12) H(z) = 4,(2)A(z)—C(2)4,(z).

As ) :
C(2)4,(2)Ef (2) = C()Ef (2)4,(2) = GR)E; () 4,(2) =

= 4,4 F@) 4, (D) Eg (2)= 4,(2) 4(2) Ex (2)

by virtue (3. 9), (3. 6) and (3. 7), we have H(Z)E; (z) 0. Therefore and from (3. 9)
and (3.6) we have

H(Z) = H(2)E¢(2) = 4,(2) A(D E¢(2) U (2) 4, (2) (Ex(2) — E 1 ¢(2)).
Hence, .
|H(2)a| = (M+1)|Es(z)a] for acC,.
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On the other hand,
. : 1
10, (2)al* = |a]*—|4,@)a|* = [ (1-x?)d,|E,(2)al* =
[1]

=(1-)|E@al* for acE,;
- combination of the two results gives _
' |HZ)a|=N-|0,(2)a| for acE,

with the constant N = M+1)(1-¢H712
This shows that, for a.e. fixed z, the operator B,(z) defined on o, (z)(E1 by

(3.13) B0, (@a=H@a  (acE,)

is (linear and) bounded by N; its definition extends by continuity to the closure of
0,(2)€,. Denote by P(z) the orthogonal projection of €_, onto 1ts subspace O, 0,)€E,
and set

(3.14) - : B(2)=B,(z)P(2).

On account of (3. 12) and (3. 10) the range of H(z) is contained in 4,(2)E, . From
these results we copclude:

B(@): €,,~4,)C,, |B@)|=N
and : '

(3.15) B(Z)Gl(Z)iBo(Z)P(Z)@l(Z)=Bo(2)91(Z)=H(Z),

i.e. the function B(z) is bounded and satisfies conditions (¢,) and () of Theorem 2. 3.
It remains to prove that it is also measurable. .

To this effect first note that, by its definition (3. 12), H(z) is measurable. From
(3.15) it follows therefore that B(z)u(z) is measurable for every function
u€@,L*(€,), and hence for every function u€@,L?(€,) also. Next note that
- since @,(z) is a measurable function, so is P(z); and hence w(z)=P(z)v(z) is
measurable for every €, -vector-valued measurable function v, in particular for
every function veLz((ﬁl). Now in this case it is obvious that w is the orthogonal
projection of v onto the subspace ©,L*(€,) of L2(E,). Since we have, moreover, .

B(@)v(z2)=B(z)w(2)

" on account of (3. 14) we conclude that B(z)v(z) is measurable for every v€ L%(E,),
thus B(z) itself is measurable.

This completes the proof of Theorem 3.1. Observe that the compamty
assumption on 4,(z) can be weakened: all we have used is that, for a certain
¢<1, the spectral projection E; (z) is of finite rank, a.e.
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" 2. If both @,(z) and 0, (2) arc scalar valued then so are all functions occurring
‘in Theorems 2. 3, 2.3, and 3. 1, .z_md therefore commute. From conditions (), (y)
it follows in this case ’

A,0,A4 = 0,44 = O, 4'A = 0,(I-DO,), O, = (4,4 +0,D)0y;
and from (a) and (y,) we get on a similar way '

0, = (4,4A+D'0))0,.
Thus both functions . '

3. 16) 0,(2)/@,(z) and @z(z)/al(zj belong to . H™.

Conversely, if (3. i6) holds then. conditions (x)—(n") are fulfilled e.g. by the
functions - ' ' '

A4,=0,/0,, A=1, D=0; A,=0,/0,, A'=1, D'=0,

Clearly, “dim 4,(2)€, is 0 or 1 according as |@,(z)] is <1 or =1. Thus we
obtain from Theorem 3. 1: A

Corollary 1. Let O,(2), 0,(z) be scalar valued contractive analytic functiéns.
Then the corresponding operators S(©,)," S(O,) are similar if and only if

() 0,(2)/0,(z) and O,(2)/0,(z) belong 1o H~,
(iD) the sets {z:10:(2)|=1} (k=1,2) coincide up to subsets of zero measure.
This result was obtained earlier by KRIETE [3].
3. We shall now consider an N XN matrix valued, purely contractive analytic -
" function . ,
9(2):[9,-,((2)] (i,k=1,2,...,N).
Let ' : ;
Q(Z)=[a),-k(z)] (i,k=1,2,...,N)
denote the algebraic adjoint matrix; then

(3. 17) Q(z)é(z)=e(z)g(z)zd(é)1,v;' where d(z):det@('z).'

. If © is inner, it is known that the operator S(@) is quasisimilar to an operator
S(9) generated by a scalar valued inner function 9(z) if and only if the functions
wy (z) have no non-constant inner common divisor, and in this case we necessa-
rily have 9=d. (See [3], Sec. IX. 2, and [6].)

16*
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Still in the case of inner O, a necessary condition for S(@) to be similar to
S(d) was proved in [8], Sec. 8 (see in particular the last row on p. 17). In an equiv- .
alent form, this condition reads as follows:

There exist functions u;, v;,, we H® (i=1,..., N) such that

" N
© 2> U v +dw = 1.
i j=1
Necessity of condition (c) easily follows, even for not necessarily inner @, from
Theorem 2.3 when applied to @,=6 and ©,=d. Indeed, conditions (x), (v;)
and equation (3.17) give: _
A,O0=dA, A _A,+dD = 1|, Q@:@Q=d~[~;
hence . .
(dA)QA, = (A4,0)QA4; = A, dA, = d(1 —dD’)
and dividing by d, ‘ :
© (3.18) ' AQA, = 1 —dD'.
Since by condition (s,) the values of the functions A4, A, D’ have to be operators
E'—~EN ENE!| E'+E', respectively, i.e. of the “matrix” form
. T, :
(3.19)  A=[uy,...;uy], Ai=|: |, D' =[w] with u,v, weH>,
Un
- (c) immediately follows from (3. 19).

In [6] we did not ask whether for an inner @ condition (c) is also sufficient for
§(0) to be similar to S(d) Now we shall show that it is sufficient, even for not inner
O, if we add the condition

dim A(z)EVN=1
which in our case is equivalent to (). _

Thus suppose (c) holds and write it in the form of a congruence modulo d in
the algebra H™:

(3.20) - 2 u;w;v;= 1 (mod d).
ij

By virtue of a well—kﬁown theorem in matrix theory we have
(3.21) , 0 Wy, — Wiy Wy; =+ d At [$n]msti kineiin- )
From (3.20) and (3. 21),

(3.22) . W= D ;0,050 = J U 0y,04;0;  (mod d).
i 7

*) See e. g. F. R. GANTMACHER, Matrizenredmung. I (Berlin, 1958), p. 20, formula (33).
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Thus there exist functions t,(,l € H™ such that

(3 23) ) wk;,— Zwkjvuw,h‘{'(ltkh (k,hzl,...,N).
iJj ' - [
Let us set A ‘ _
} (2% ’ tll".‘ th "
A=[uy,...,uy), Ai=|:|, D=]|: P, D=[w
2] . Iny---Inn

and .
'  A=AQ, A'=04.
~On account of (3. 17) we have then
4, 0=A00=Ad=dA, OA'=OQA,=dA,- =4,d,
i.e. conditions (o), (") -of Theorem 3. 1. On-the other hand, condition () 1mplles
‘ A*A*+a’D L
(3.24) : = AQA, +dw = 1,
‘ AA'+D'd- _ .

i.e. conditions (y}) and (y') of Theorem 3. 1.
Next observe that equation (3. 23) takes the forms
o S | QA A, +dD,
(3.25) Q= QA ,AQ+dD =
S ' ' A’AQ +dD;
multipling' by O -on the left or on the right and dividing by d we get
Iy=A,A,+0D and Iy = A'A+ D6,

i.e. conditions (y,) and (y) of Theorem 3.1. From (3. 25) we also denve mul-
tiplying by 4 on the left or by 4} on the right: :

AQ = AA'AQ+AdD and QA = QA, A, A, +dDA,,
ie. .
(I-A4)4, =dAD and A'(I-A4, A}) =dDA4,,.

Recallmg (3 24) and d1v1dmg by d we deduce from these equatlons that -
D'4A, = AD and AD = DA,
i.e. conditions (n) and (n") of Theorem 3. 1.
Thérefore Theorem 3.1 has the following

Corollary 2. Let ©(z) be an N XN matrix valued, purely contractive analytic
Sunction and suppose that det @ (z) 20. Then condition () together with condition
dim A(z)EY¥ =1 a.e., are necessary and sufficient for S(@) to be similar to S(det Q).
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4. Theorems on commutants’

1. As an instructive application of Lemma 2. 1" we are going to-prove:

Theorem 4. 1. Let T be a c.n.u. contraction on a separable Hilbert space,
whose commutant (T) consists of operators ¢(T), where @ is a meromorphic func-
tion in the unit circle, of class Ny (cf. [5], Chapter 1V). Then the characteristic func-

. tion of T has only values isometries and -coisometries, a.e. on the unit circle. '

Proof. It suffices to consider an operator T'= S(©) generated by a purely con-
tractive anzilytic function O (z), with values operators €€, . Suppose that the
set of points on the unit circle, where both 4(z) and A‘*(z) are non-zero, is of posi-
tive measure. As € and €, are separable, this implies that there exist vectors ecE
and e, €€, .such that both 4(z)e and 4, (z)e, are non-zero on some set w of posi-
tive measure. Consider the function E,, with values operators ¢, —€, defined by

‘ Eo(z)az(&, 4,(2)e,)A(z)e for acC

.
It is bounded, measurable, and so is its restriction

| E@)=Ey2)|4,@)E,,
which has values .

@.1) E@): 4,0F, - A@)E.
Note that ‘
4.2) ' (A(z)E(z)A (2)e,,e)=14,(2)e,]? |4(z)e|250 on w.

Split'w into two disjoint sets of positive measure, say w; and w,, and set
4.3) ' E(@)=i(2)E(z) (k=1,2),

‘where 7, (2) designates the indicator function of the set w, on the unit circle. The
functions E,(z) also saﬁsfy, (4. 1) so we can apply ‘Lemma 2. 1’ with ©,=0,=0,
4,=4,=4,4,,=4,,=4,,A4,=0, 4=0, and E, (k=1, 2). Thus we obtain that the
operators Y, of multiplication by the functions

0

Yi(z) = [Ek(Z)A (@) —E(2)0@4@E (k= b2

belong to f*(T T). Let X, denote the corresponding operators in J(T, T), i.e. in
(T)Y. We claim that X, =0. For if, e.g., Xl 0 then there exists, by Lemma 2.2, a
bounded analytic function D, (z) such that

O@D,(z)=0 and 4(G)D,()=E, ()4, (2)
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Hence, D, (2)=A4()E, ()4, (z) and, by (4.2),

#0 on g,

(D1 (De,, €)=i\(2) (A ER) 4, (2)e, e){

=0 on w,.-

But this is impossible on account of the analyticity of the function (Dl(z)e*, e).
By the hypothesis of the theorem there exist functlons u, vkEH"’ (k=1,2)
such that v, (T) is injective and

4.4 . ‘vk(T)Xk u(T) = 0.

As X, #0 we have 1, (T)#0. Thus beth u,(T) and v,(T") are non-zero, and therefore
1, #0, v, 0.

"Again using Lemma 2. 2 we infer.from (4. 4) that there exist analytic functlons
D.(z) not necessarlly the same as in the above argument such that

0 ] [LE ] [Q(Z)Dk(z) 0]
”"(Z) E(2)4,() —Ek(z)@(z)l (2) Ie ) 4@ D 0

where |, denotes restriction to 4(2)€. Hence,
® _uk(z)le*=@(Z)Dk(z):

(i) 0.()E ()4, (2)=A4() Dy (),
(iii) (Uk(Z)Ek(Z)@(Z)+uk(Z)I(E)|z =0.

From (i) we infer that ©(z)D,(z) commutes with every operator on €,, in
particular with 4, (z). As ©(2)4(z)=4, (z)©(z) we deduce using (ii) that

@DkA* :A* ODk=OADk=vA OE]\A*
and therefore o

@3 OF,=0 for F, = DA, —vEdd,.

On the other‘hand, (iii) and (4. 5) imply _
uAF, = —0,E,0AF, = —v,E,A,OF, =0,

Since u(z)#0 a.e., it follows

(4. 6) - AF,=0.

Now (4.5) and (4. 6) imply Fk=0, ie. we have

@7 DA, =v E . A,;
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again using (i) we get

(4.'8) : DA, =4D,  (k=1,2).
Setting o
(4.9) ' G =u,D,—u,D,

we have from (i): ©G=0 while from (4. 8): GA,=4G. Hence, G42=4*G, GOO*=
=0*0G=0, GOO*G*=0, O*G*=0, GO=(0*G*)*=0, GOD,=0, and by (i),
1, G=0. Since u,(z)0 a.e., we conclude: G=0. Then, using (4. 7) and (4. 9),

(ul UZEZ_uZl)l‘El)A* = (UIDZ_uZ‘Dl)A* = GA* = 0,
and hence :
(uv,i,—uyv i )E = 0.

As E(z) is non-zero on w, its factor must be zero there. But this factor equals
1, (2)v,(z) on w,, and we arrive at a contradiction to the fact that u, v, ¢ H* and
1y v, #0.

This contradiction proves the theorem.

Corollary. Let T be as in Theorem 4. 1 and suppose, moreover, that its charac-
teristic function @ (z) has a scalar multiple € H=, 670. Then T belongs to the class
Cy; indeed, 6(T)=0.

Proof. Since the function © has a scalar multiple, its values @ (z) are boundedly
invertible a.e. As an isometry or a coisometry is not invertible unless it is unitary
we infer that @ (2) is unitary a.e., and as a consequence T€ Cy, (i.e., 7" ~0, T** —0).
By [5], Theorem VI. 5.1, we have then §(T)=0.

2. Consider the c.n.u. contraction T=S(@) associated with a scalar valued
purely contractive analytic function @ (z) (i.e., |@(z)|=1 and @(z)> is not a constant
of modulus 1). We shall show that if ©(z) 20 then (T) (i.e. #(T, T)) is commuta-
tive. We shall even show that any two operators Y, Y, €5 * (T, T) commute.

Let ' '

[A*k(z) 0
Bi(z2) Ci(2

be the corresponding matrix functions. As the entries are scalar valued functions,
commutativity of ¥, and Y, will be proved if we show that the function

F12(2) = Bi(2)4,,(2)+C:(2)B, (2)

] (k=1,2)

" is symmetric in the subscripts 1, 2. Since the values of B,(z) outside the set
o={z:4(z)0} vanish (¢f. condition (2.2) in Lemma 2. 1) it suffices to consider
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F,(2) on the set ¢. Now by virtue of condition (2. 3) in Lemma 2. 1, we have
A,,0=04, and B,O+Cd =44, (k=1,2).

Since O(z) cannot vanish on a set of positive measure we deduce from the first
equation that A, =A,, and from the second, that

Fi2(2) = B, @) [B,(2)0 (2)+ C, (2)4 (Z)]/A(Z)+'C 1 (Z)Bz (z) ono,
ie. :
Fy, (Z) Br (2)B,(2)©(2)/4(2) +B1 (Z)Cz (Z) + Cl (Z)Bz (Z) on o,

and the symmetry in the subscrlpts 1, 2is apparent.
The case O(z)=0 is different. Consider in this case e.g. the matrices

10
Yl(z):'[0 O] and . Yz(z) [B() 0]

where B(z) is any vsoalar valued, non-analytic bounded measurable function. Both
matrices satisfy conditions of Lemma 2.1 (for @,=0,=0=0 and A=0), thus
the corresponding operators Y,, Y, belong to J*(7, T). Then X,=n(Y,) and
X,=n(Y,) belong to (T)". By virtue of the Multiplication Property of the map n
given in Sec.1l, we have X;X,—X,X; = n(Y,Y;-Y,Y,;). Now the operator ,
Q=YY,—- Y2 Y1 is multlphcatlon by the matrix functlon r

o O
06 = 50y o]

and this is certainly not of the form v
0D 0] 0 0]
4@D0E o) "% |pE o)
with analytic D(z), ‘and therefore, on account of Lemma 2.2, n(Q);fO Thus X, and
X, do not commute. ' : '
Observe that the characterlstrc functlon O()= 0 corresponds to an operator

of the form
T=8SoS*

* where S is a simple unilateral shift. That for such a T the commutant is not commu-
tative can also be deduced from the fact proved in [7], Proposition 5, that there
exists a non-zero operator X (indeed, a quasi-affinity) such that $*X=XS§.

So we have pro{led :

Theorém 4.2. Every c.n.u. contraction T with defect indices 1, 1 has a com-
mutative commutant (TY, with the only exception of the operator T = S&® S*, where
S is a simple unilateral shift. S
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5. Inverse of a function of T’

1. Let T be a c.n.u. contraction on the space $ and let ¥ be its minimal 'iso-A
metric dilation on & (we use the notations of Sec. 1). By the functional calculus
developed in (5], Chapter III, the operators u(T) and u(V’) have sense for every func-
tion u€ H= and are connected by the relation

(. 1) i(T)=Pyu(V)]9.

If R is the unitary part of ¥ then u(R).also has sense (it is the restriction of u(V)
to R). ' ‘ ' : -

Theorem 5.1. If u(T) is boundedly invertfble then so is u(R) and we have
(5.2) - ; lu(R)~ ] =[u(T) |1

Proof. We use the fact, proved in the proof of Proposition I1.6. 2 in (5],
that for every k€ R there exists a sequence of elements /1, € $ such that

k=1lim V*h,.
This implies: .
lu(RYKI = lu (P Yl =lim [l (V) V" bl =lim: | V" u(V || =
=lim [[u(¥)h,|| =lim inf [u(T)h,) =c lim inf |4,] =c k],

where c¢=|u(T)~"||7*. As u(R) is normal we conclude that u(R) is boundedly in-
vertible and (5. 2) holds.

2. Thus the existence of u(R)™! is necessary for the existence of u(7)~'.
Necessary and sufficient conditions follow from results of Sec. | when-we observe
that (1. 3) implies u(T)Py=Pgyu(¥) so that on account of (1. 5) we have u(V)€
€S ¥(T, T) and n(u(V))=u(T). Using matrices corresponding to the decomposi-
tion & = S, &N we deduce from Lemmas 1. 1, 1. 2, and the Multiplication Property
of th_e map 7, that «(T) is boundedly invertible if and only if there exist operators

A, e#(S,,S,), AcH(S,S), B€S(S,, R), CcH(R, R), DEJ(S*,S), Des(S,.S)
satisfying the equations .

(@) A,0=04, (B BO+CA=1i4,

A, O|[uS,) 0] _ [6DO
){ [B CH 0 u(R)]"‘[ZD 0]"
X

u(S,) 0 1[4, 0 6D 0
[ 0 u.(R)] [B c] 21_[21)' 0]‘
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Asa conlsequence of the intertwining properties of A, , B and C we can take D'=D
and condition (x) is equivalent to the following system of conditions:

(t)) A,u(S)+6D =1, () Bu(S,)+4D=0, .(x;) C=u(R)~.
Taking into account that (1. 14) i'mplies
u(S,)0=0u(S) and u(RA=4u(S) -

we deduce: )
O(Au(S)+DO~1)= (4,u(S,)+OD—-1)6 2 0,

' ZI(A11(S)+D@4l)’9_4’ZAu(S)_—Bu(S*)@—Cu(R)Z-z(ﬁA—VB@—CZ)u(S)é

and hence

O - Au(S)+D6 =1.

| Conversely, ([3) and (x,) are implied by (1) and the rest of the conditions if
we set » ' . ) ' )
: B =—CA4D.
Indeed, the intertwining property for B follows immediately from those for C, a,
and D, while: (xz) follows from the equations )

Bu(S,) = —CAD u(S) = = CAu(S)D = —Cu(R)AD =-A4D;
finally, (f) follows from the equations

4(R)(BO + CA —AA) = — ADO +A— A u(S)A = 3(=DO +I—-u(S)4) £ 0

when we multiply by C on the left.

Thus the initial set of conditions can be replaced by the set («), (%,), (¢3), (A).
Multiplying (»,) and (1) by & on the right and on the left, respectively, and using the
intertwining properties and substracting we obtain that

u(S,) (4,6 -64) = 0.

As the -unilateral shift S, is the restriction of é bilateral:shift U,‘and hence u(S,).
is a restriction of u(U), and as u(U) has zero null-space for u>0 (because then
u(z)=0 a.e.), we conclude that («) also holds, i.e. it is a consequence of (x,) and (4).

So we have proved:

Theorem 5.2. Letu € H=, u#0. In order tlzat u(T) be boundedly invertible it is
necessary and sufficient that
a) u(R) be boundedly mvertzble :
b) there exist operators A, € #(S,, S,), A€F(S,S), DEJ(S S) such that

Au(S)+DO = I, Au(S)+0OD = I,,.
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Remark. Since u(R) is normal, condition a) is equivalent to the condition that

IIu(R)f"Em[IfH‘ for some m=0 and all feR.

3. If T=5(0), @ being a purely contractive analytic function with values
operators O(z):€~E,, then the above conditions a), b) can be expressed in the
following form:

a) [u(z)|=m=0 at a.e. point z where 4(z)=0, i:€. @(z) is not an isometry,

b) there exist bounded analytic functions 4_, A, D with values operators

A,(2): €, —~C,, A(z): €—~C, D(z): €, ~C ae.
such that

(5.3) u(z)A(2)+D(2)0(z) = I, ;I(Z)A*(z);l—@(z)D(z)_= lg, ae.

Now u(T) is boundedly invertible if and only if 50 is u(TY*; and u(T)* is unit-
arily equivalent to u (T”), where 7’=S(© ). Here we use the notations ~ and @~
for the functions defined by

u(@)=u(z), 6(@=0()

(¢f. [5], Theorem HI. 2.1 and Chapter VI).

Thus conditions a), b) imply that |u (z)|=m, >0 at a.e. point z where © (z)
is not an isometry, i.e. [u(z)|=Zm, at a.e. point z where ©(z) is not a coisometry.
Hence, a), b) imply that |u(z)|=p(=0) at a.e. point z where @(z) is not unitary.

So we have:

Theorem 5.3. Let T=S(0) and uc H>, us0. In order that u(T) be boundedly
invertible it is necessary and sufficient that there exist bounded analytic functions
A, . A, D satisfying conditions (5. 3), and a positive number p such that

5.9 u(@)|=p at ae. point z=e" where ©(z). is not unitary.

4. Consider the particular case when ©(z) is an NX N matrix valued function,
limit on the unit circle of a (purely contractive, analytxc) functlon ©(2) on the open
unit disc. Let d(1)=det @ ().

As a contraction on a finite dimensional euclidean space is unitary if and only
if its determinant is of absolute value 1, condition (5. 4) can be expressed in the form

5.4) ]u(z)]Zp at a.e. point z where |d(z)|=1.

_ Next we notice that the equations (5: 3) hold in the unit disc as well. Thus at
every point 4 where O (4) has a bounded inverse we have

O = uHAMO @)~ +D(A),
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and hence ‘ . o
G5 oW =M@ +1), or [u@I+lOW ! =1/M

where M equals the larger one of the .values ||A|l_ and |ID||; As for every inver-
tible operator Z on EY we have |det ZIN>IZ =1 (cf Lemma 2. 3.in [l]) inequality
(5. 5) implies

Iu(l)l+'|d(l)|”’v = 1M,
and hence

(5.6) - Iu(l)|+|d(i)l = ¢(=>0).

If d().) #0 then @ (1)~ ! exists at every point A of the open unit dlSC perhaps with
the exception of countably many points, therefore (5. 6) holds then everywhere in
the unit disc. By virtue of the “Corona Theorem’ condition (5. 6) is equivalent to-
the existence of functions a, b€ H™ such that :

(5 o C u(l)a(l)+d(/1)b(,1)
Conversely, (5 7) 1mplxes equations (5. 3), with A(A)=A4,(1)= a(/l)IN, and D(,{)—
=b(1)Q(4), where Q(4) designates the algebraic adjoint of the matrix @ (4). -

We state our result as follows: -

Theorem 5.4. Let ©() be a purely contractive analync NXN matrix func- ‘
tion with d(2)=det © (1) 20, and let T= S(@) and uc H”. The operator u(T) is
boundedly invertible if and only if there exist constants p, >0 such that :

@) |u(z)|=p at ae. point z=e" ‘where .|d(z)|;§l, and
By luD+|d(A)| =g at every point 4, |A|<l.

The particular case of this theorem when-@(4) is an inner function, was con-
sidered in FUHRMANN [1]. Let us add that another generallzatlon of Fuhrmann’s
result was given in HERRERO [2].
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