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A theorem proved in our previous paper [6] asserts that every operator X 
intertwining two contractions, 7 \ and r 2 , c a n b e lifted, without increasing norm, 
to an operator Y intertwining their minimal isometric dilations, and V2. This 
theorem allows a study of the structure of such opera tors : this will be done, in a 
purely geometric manner , in Sec. 1. Then, in Sec. 2, the results of Sec. 1 will be 
reformulated for the case where the contractions Tk (k = 1, 2) are completely non-
unitary and appear in their functional models S(0k). 

Particular interest lies with intertwining operators X which have a (bounded) 
inverse and thus establish similarity between 7 \ and T2. We obtain in this way 
among others a criterion for a contraction to be similar to some isometry (and a new 
proof of the known criterion for a contraction to be similar to some unitary oper-
ator). The main criteria of similarity concern two contractions, arbitrary or com-
pletely non-unitary, in the latter case given by their functional models S(0k) 
(k=l, 2). One of these criteria, stated in Sec. 3, is particularly interesting since it 
only involves relations between analytic funct ions and a certain equidimensionality 
condition. This criterion generalizes a former result of KRIETE [3], which concerns 
operators S(0k) with scalar valued contractive analytic functions 0k. 

Sec. 4 is devoted to problems concerning the commutan t (T) ' of a c.n.u. con-
traction T=S(0). Namely, a necessary condition is given for the characteristic 
funct ion 0 (z) in order that (T)' should consist of funct ions <p(T), (p belonging 
to the Nevanl inna class NT. Moreover, it is proved that if 7 = 5 ( 0 ) with scalar 
0, then (T ) ' is always commutative, with the exception of a single case. 

Finally, in Sec. 5, functions u(T) (with u£_H°°) of a c.n.u. contraction T are 
considered, and a criterion is established for u(T) to be boundedly invertible; this 
criterion generalizes an earlier result of FUHRMANN [1]. 

15 A 
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1. Contractions of general type 

1. For any two operators on Hilbert spaces, say Tx on and T2 on , denote 
by < / ( 7 \ , T2) the set of (linear, bounded) operators § 2

 s u c h that 

(1.1) T2X=XTi. 

If T1 and T2 are contractions, and Vl and V2 are their minimal isometric dila-
tions (cf. [5], Chapter I) acting oh the spaces and St2, respectively, then let 
J+(T1, T2) denote the set of operators Y:$t1->-R2 belonging to / ( K , , V2) and 
satisfying the additional condition 

(1.2) P2YP,=P2Y, 

where P, denotes the orthogonal projection f rom ft, onto 
Clearly J(Tt, T2) and J+(T i> T2) are subspaces of the Banach spaces of 

all operators from into § 2
 ar>d from into respectively. 

As Tt and Fj are connected by the relation 

(1.3) T . P - P ^ , 

condition Y£J+{T1,T2) implies 

T2P2Y=P2V2Y=P2YP1V1=P2YT1P1, 
i.e. the operator 

(1 .4) X = P 2 Y \ ^ 

belongs to J{Ti, T2). Thus the transformation 7 — X defined by (1,4) is a map 

which is obviously linear and does not increase norm (i.e., || JV|| Y||). Observe that 
. on account of (1 .2) relation (1.4) implies 

(1.5) XP^P2Y-, 

conversely, relation (1. 5) implies both (1.2) and (1.4). 
The "Lifting Theorem" for intertwining operators (see [6], or [5], Sec. II. 2) 

asserts that the above map nl2 is actually onto, moreover for every T2) 
there exists at least one YeJ+iT^, T2) satisfying (1. 5) and such that ||X|| = | | i l . 

The aim of this paper is a further analysis of this map n i 2 , and some of its 
applications. 

To begin with, let us state the following immediate consequence of relation 
(1 .5) : 
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Multiplication Property: If T2, T3 are any three contractions and if 

Y(iJ + (Ti, T2), Z£S+(T2,T3), 
then 

(1.6) ZY^+(T,,T3) and n13(ZY) = n23(Z)n12(Y). 

Also note that ' 
(1-7) I ^ J + i T ^ T , ) and «!! ( /* , ) = /«,• 

2. Let us return to the case of two contractions, Tl and T2. Consider the 
Wold decomposition of the space generated by the minimal isometric dilation Vt of 
Tt (i= 1, 2), i.e. let 

(1.8) = where W, = f l 
n = 0 

the subspaces S^,- and reduce Vt respectively to its unilateral shift part SMi and 
its unitary part (one of these subspaces may be missing, i.e. equal {0}). Then we 
have for any Y ^ i V ^ V ^ : 

7 « ! = H W * i = H VîYKtC f i F2"ft2 = tt2. n=0 n=0 n=0 
Therefore, if both ftj and a r e decomposed according to (1. 8) the operator Y 
will be represented by a matrix 

A* 0 
B C 

(1.9) 7 = 

where 

(1.10) 2), BiS(S^,R2), c e ^ i . / i , ) . 

Clearly, conditions (1. 10) are also sufficient for Y to belong to S(Vt, V2). 
Now we are going to analyse condition (1. 2). To this end first recall (cf. [5], 

Sec. II. 2) that the subspace 

(1.11) s . ^ e S ; 
is invariant for and that 

(1.12) . = 

is a unilateral shift. (It may happen that 8 ; = {0}: this is the case if Tt itself is an 
isometry.) 

Introduce the operators 

(1.13) ^ J = orthogonal projection of <5. into j ^ . 

As S^,- and are reducing subspaces for the isometry Ft we obviously have 

(1-14) 8 , e S ( S t , S J , A i C J i S , , /?,). 
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Condition (1. 2) means that Y transforms S , into © 2 . Hence we infer that an 
operator V2) satisfies condition (1. 2) if and only if A= F|<3, belongs to 
JiS^, S2). Using for Y the matrix form (1. 9) and for •xi£<Si the column vector 
representation 

r ^ x . l 
( ¿ = 1 , 2 ) , XI = 

A, X, 

and comparing the corresponding components we arrive at the following result: 

L e m m a 1.1. The operator Y with the matrix (1. 9) belongs to (Tt, T2) if 
and only if its entries satisfy conditions (1. 10) and 

(1.15) Aif@l = §2A, B01 + CAl = A2A, 

with some operator 

(1.16) A£J(SUS2). t 

3. Consider a Y £ j * ( T i , T 2 ) for which 7 r 1 2 (y )=0 , i.e. ( = e 2 ) . As 
by virtue of (1. 2) we also have Y<5{ c S 2 , condition Xi), c S 2 is equivalent to.the 
condition 7 f t , c < 3 2 . Hence we infer first that 

y « , = n YVC&x = n ^ F f t . c n Kf®2-={0} 
n= 0 n— 0 n = 0 

(the latter equation holds because V2|S2(=52) is a unilateral shift); as a conse-
quence we have C = 0 . Next, also implies F S ^ c S j , and hence we 
deduce that the operator y ^ i belongs to ^ ( S ^ i , S2). Therefore we have for 

*6<3*i 
\@2DX} A, O l f x l 

B C O 
= Yx = Dx = 

A2DX 
i. e . A T - 0 2 D , B=A2D. 

Conversely, one easily verifies that if D is any operator satisfying 

(1.17) D £ J { S ^ , S 2 ) 

then the operators defined by 

(1.18) A = D0X, AJf = ê2D, B = 22D, C = 0 

satisfy conditions (1. 10), (1. 15), and (1. 16), arid therefore the corresponding oper-

ator Y-
0 

B c 
belongs to T2). Moreover we have then 

02DX 

A2DX 
and therefore 

Thus we have proved : 

= DX£<Z2 f o r 

7IT2(Y) = 0 . 
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L e m m a 1.2. The general form of an operator Y£^+(T1,T2) satisfying, 
Tr1 2(r) = 0 is 

\0,D 01 

ÄD 0 W h h a r h i t r a r y 

4. Suppose we have 

M . 01 
Y= 

B C 
£ S+(T,,T2) and Y' = 

A'+ 0 

B' C' t S H T z , ^ ) . 

Let X= 7112(F), X' — 7T2i(F'). From the multiplication property (1. 6) and f rom 
(1. 7) we deduce that X and X' are inverse to each other if and only if 

7 r 1 1 ( / f l i - r y ) = 0 and n ^ - Y Y ' ) = 0. 

On account of Lemmas 1. 1 and 1. 2 these two conditions in turn are equivalent to 
the condition that there exist operators 

satisfying the equations 
S,), 2,S2) 

l ^ - K A , 0 
— B'A* — C'B I«,.-C'C 

-BA'^-CB' I^-CC' 

0,Z> 0 

ÂyD 0 

ê2 D' 01 
Â2D' OJ; 

thus in particular C ' = C _ 1 . Since C^J(Ri, R2), this implies that the unitary 
operators Rx, R2 are similar, and therefore unitarily equivalent. 

Note that the existence of a boundedly invertible X in , T2) means that 
F , and T2 are similar. Thus, also using Lemma 1. 2, we can summarize our results as 
follows: 

T h e o r e m 1.3. A necessary condition for the contractions 7 , and T2 to be 
similar is that the unitary parts R\, R2 of their minimal isometric dilations be unitarily 
equivalent. Necessary and sufficient is the existence of operators 

ip) 

{o 

(°2) 

AUS(S*2,S,t), A'eJr(S2,S1), 

i 5 
1 B' 
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satisfying the conditions 

(a) A^ât = ê2A, (P) Bêl+CA1 = Â2A, 
(a') A'*Ô2 = êlA', 03') B'ê2+C'Â2 = 2iA', 

W ^ + (<5) B'A, + C'B = -ÂlD, 
( r i ) A*A'* + Ô2D' = , (S') BA; +CB' = - Â2 D', 
(e) C ' ^ C - 1 . 

5. From conditions (a)—(e) we deduce some further ones. Namely we have 

Ô M ' A + D ê y - I e y ^ * A ' ^ A + V ^ - A ' + A J Ô t - ê , = A * ( Ô 2 A - A . Ô J ^ O , 

Â l ( A ' A + D ê l - I l 3 l ) ^ { B ' ê 2 + C ' Â 2 ) A - ( B ' A ! , + C'B)Ôl-Ôl = 

= B'(Ô2A-A:¥Ô1) + C'(Â2A-B01)-âl^C'C21-Âi = 0, 

and therefore 

Â2 {AD - D'AJ t ? (Bêt + + (A4 ; + C5 ' ) = 

and therefore 

' Conversely, if the operators occurring in (er) except B' satisfy conditions (a)—(7') 
except (/?'), (<5), (¿'). then the operator B' defined by 

.. B'= -C'(A2p' + BA'*) 

will obviously satisfy conditions B ' £ J ( S ) f 2 , R t ) and (<5'); let us show that it also 
satisfies (JI') and (<5). Indeed, we have 

B'ê2+c'Â2 = - . c ' a 2 d ' ô 2 - c ' b a * ô 2 + c ' Â 2 = 

A'A+Dê, = ISt. 

AA' + D'Ô2 = /< 

AD = D'A',. 

A ' D ' = D A 

- C ' Â 2 ( I S 2 - A A ' ) - C ' B 0 1 A ' + C ' Â 2 = 

= C ' ( Â 2 A - B Ô 1 ) A ' J L C ' C Â 1 A ' = A i A ' , 
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C'Z2D'AM-C'BA'*Ait + C,B = 

•C'A2 AD — C'B(IStl — 0iD) + C'B = 

C'(A2A-B@2)DJL -CdC'AjDA —AyD. 

T h e o r e m 1. 3'. The contractions 7 \ , T2 are similar if and only if there exist 
operators A'M, A, A', D, D', C, C' and B satisfying conditions (a) and (a), (a ') , 

.(/o, ( u •(?;), (y), (?'), to, (•?')• 
6. Consider the particular case that T2 is an isometry. Then S\2 = § 2 , S 2 = {0}; 

thus /4 and D (whose ranges are in S 2 ) as well as A', 02 and A2 (which are defined 
on S 2 ) are all zero operators. Hence conditions (a)—(rj') occurring in Theorem 1. 3' 
reduce to the following ones: 

(a)0 = 0, (P)0 B d t + C A ^ O , 

(?*)o A'*A* + dlD = I3tl, (e)o C : boundedly invertible, 

(y'*)o A ^ = ISt2, DAi = 0. 
(y)o Ddi^I*,, 

Thus in particular the existence of S¡) satisfying (y)0 is a necessary 
condition for 7 \ to be similar to some isometry. This condition turns out to be also 
sufficient. 

To this effect first observe that by account of relation D , , Sj) the null-
space ker D is invariant for S ^ , . As S¥, is a unilateral shift so is S^ y |£> (possibly 
of multiplicity 0). Consider now the isometry 

' T2 = ( S ^ I S ) ® / ? ! on ' § 2 = 15®«!.-
Then, clearly 

= = = and R2 = R,. 
Set A+ = / Q t i -<§!£>; by virtue of condition (y)0 we have DA^ = ( / S ) - D i i ^ D = 0, 
whence — © ^ i ^ ® ) - The intertwining properties of 0 t and D imply that 
A^ S^2). Furthermore, set 

B = -2lD, C=C'=IKl. 

It is easy to show that all the intertwining properties hold, and so do conditions 
(°0o—(>/')o; indeed, 1 

(«)<>: A*6l = (I9ti-61D)6i=$i-(81D)&1 = 0, by (y)0, 
(p): B&1+CA1=-A1D&1+Al = 0, by (y) 0 , 

(?*)o: + = ( 7 S i l - < M ) + < M = 
(yi)o'- A,Ai = (feti--01D)IX> = / e J X ) = f e t I , , 
0?')o '• DA'* = D |B = 0. 

B'A^ + C'B = -
y*,i _ 

Thus we have: 
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So we have proved: 

T h e o r e m 1. 4. The contraction T¡ is similar to some isometry if and only if Qy 
has a left-inverse D (¿J (S^ j , 5 , ) . The unitary part of this isometry must be equal to Rx 

(up to unitary equivalence). 

C o r o l l a r y . T-¡ is similar to some unilateral shift if and only if T*" 0 (/? — 
and 0] has a left inverse D (S^ , 

P r o o f . Necessity of r * " — 0 follows f rom the same property of unilateral 
shifts. On the other hand, this condition is equivalent to ^ ^ { O } ; cf. [5], Chapter 
II, Theorem 1 .2 and formulas (2. 1), (2.7). The isometry to which T{ is similar 
by virtue of Theorem 1 .4 must therefore have 9?2 = {0}, i.e. be a unilateral shift. 

7. If T2 is unitary, we not only have <32 = {0}, but SH<2= :{0} as well, so the 
operators A^, A* are also zero, and the set of conditions (a)0—(r\')0 reduces to the 
following: 

(£)oo B0l+CA1 = 0, (y,)oo = (y)oo DQ 1 = / s l , 
with C boundedly invertible. Thus a necessary condition for T t to be similar to 
some unitary operator is that be boundedly invertible. This condition is also 
sufficient. For, if we choose for T2 any unitary operator U unitarily equivalent 
to R¡ a.nd for C any unitary operator satisfying UC=CRl, then the operators 

D = © r 1 and B = ~CAi@T1 

will obviously satisfy the conditions above as well as the intertwining conditions (a). 
So we have 

T h e o r e m 1. 5. The contraction Tl is similar to some unitary operator if and 
only if the operator é^ is boundedly invertible. This unitary operator must then be 
equal to Ri (up to unitary equivalence). 

See [5], Sec. IX. 1 for another proof. 

2. Completely non-unitary contractions 

1. For c.n.u. contractions we shall use their functional model. All Hilbert spaces 
to be considered are separable. 

For a Hilbert space C£, L2(f£) will denote the Hilbert space of ©-vector valued 
functions u=u(z) on the unit circle (z=e"), which are (strongly) measurable and 
norm-square integrable with respect to normed Lebesgue measure, i.e. with 

( 1 2 n V / 2 

' 1 M I = | > / ^ 2 d t \ ' 

where 1 denotes vector norm in (f. Then H2(<&) is the Hardy subspace of L2(f&). 
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We shall be also considering functions = whose values are operators 
f rom a Hilbert space (£ into a Hilbert space <y; we require that these operator-
valued functions be (strongly) measurable and essentially bounded, i.e. with 

ess sup |<P(z)|<oo; 

here |* | denotes the norm of operator f rom (£ into Multiplication on L2((£) by 
such a bounded measurable function <P is an operator f rom L2(<&) into L2(%), which 
we denote by the same letter thus 

( $ M ) ( Z ) = $ ( Z ) W ( Z ) (u £ L2 ((£)). 

Note that the norm ||<£|| of this operator equals the essential supremum of |<£(z)|. 
In particular, the operator is a contraction if and only if the function <£ is "con-
tractive", i.e. if its values are contractions #>(z): (f — $ a . e . on the unit circle. 

A bounded measurable function is analytic if the corresponding operator 
<P maps the subspace //2(<S) of L2(<£) into the subspace i / 2 ( g ) of L 2 (g ) , or equiva-
len t^ , if its values $ (z ) are the radial (strong) limits, a.e. on the unit circle, of a 
bounded holomorphic function <P(A) in the open unit disc, |A|<1. 

Let 0 be a contractive analytic function with values operators 0(z):(£— (£+, 
and which is, moreover, "pure" in the sense that it also satisfies 

|0 (O)a |< |a [ for all a£<£, a ^ O . 

We associate with 0 the function 

A(z) = [ / f f i - 0 ( z ) * 0 ( z ) ] 1 / 2 , 

which is also measurable and whose values are selfadjoint operators on (£, bounded 
by 0 and 1. We form the Hilbert space 

ft = /72(G+)@zlL2((£) 

(where the closure is in the metric ef L2(*&)) and its subspace 

§= [ 77 2 ( (£* )®AL 2 ( (£ ) ]©{0w®Au: u£H2{fS)}, 

and define on § the operator 5 ( 0 ) by 

S ( 0 ) ( U © O ) = P B {XU®XV) , 

where x(z) = z and denotes orthogonal projection of ft onto its subspace 
This operator 5 ( 0 ) is a c.n.u. contraction, and moreover, one obtains in this 

way all c.n.u. contractions T, up to unitary equivalence. For T given, one has indeed 
to choose for 0(A) the "characteristic" function of T. See [5], Chapter VI. 

The operator V defined on the space ft by 

V(u®v) = xu@xv 
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turns out to be the minimal isometric dilation of T=S(0), and in the Wold de-
composition of ft for V we have 

S * = / / 2 ( C y and. 9i = J£ 2 ( (£ ) 

(with the natural embeddings in ft as H2 ((E^) © {0} and {0}© AL2(<&)). The corre-
sponding parts S.M and R of V both are multiplication by On the other hand 
we have 

S = ft0§ = {0u®Au:u^H2 (<£)}. 

As u 0u®Au is a unitary map of H2((£) onto S , which commutes with multi-
plication by x, it is justified to identify S with H2{*£)\ Swill then be represented by 
multiplication by x on FT2((£). The projection operators and A, f rom <5 into 
and 9?, will be represented by the restrictions to H2(<&) of the operators 0 and A, 
respectively. 

We shall use the fundamental fact that if © and (£' are Hilbert spaces, and if Q 
and £2' are bounded measurable functions with values operators 

fl(z) :<£-<£, Q'(z) :(£'-(£', 
then those operators 

a) H2(f£)-*H2 Q&'), 

b) 0: H2(<&)~Q'L2((£'), 

c) <P : QL2(<&)*Q'L2(<&') 

which commute with multiplication by x c a n be represented as multiplication (on 
the left) by an operator valued, bounded function & ( • ) which is 

a) analytic, with values 0(z): (5 — C a.e., 
b) measurable, with values <P(z): (£ - Q'(z)(&' a.e., 
c) measurable, with values <£(z): i2(z)(£ — i3'(z)(£' a.e. 

Here, in case c), "measurability" means that there exists a measurable function f 
with values !F(z):®-•(£' such that 

<P(z) = !P(z)|fi(z)ffi a. e. 

For the case a) the above fact is proved e.g. in [5], Sec. V. 3; the cases b) and c) can 
be dealt with in an analogous manner. 

2. Consider now two c.n.u. contractions, or rather their functional models, say 

2^ = 5 ( 0 ! ) and T2 = S(02), 
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where 0k are purely contractive analytic functions with values operators 
0k(z):(&k^k (k = 1,2). Then 

K* = H2((&,K)®AKL2((&K) ( * = 1 , 2 ) • 

are the corresponding dilation spaces; the elements of Rk can also be thought of as 
\u 

column vectors . , 
v\ 

For these operators, Lemmas 1. 1 and 1. 2 appear in the following form: 

L e m m a 2. 1. The general form of an operator Y FJ !*(TI, T2) is multiplication 
(on ir\j) by a matrix function 

0 1 ; • 

B(=) C(z)J 
(2.1) 7(z) = 

where is a bounded analytic function and B, C are bounded measurable functions 
with values operators 

(2.2) _ B ( z y . ^ A 2 ( z ) ^ , C(z): Al(z)(£l-» A2(z)(£2, 

a.e. on the unit circle, satisfying the conditions 

(2.3) A^01 = 02A, B0i+CA1=A2A, 

where A is some bounded analytic function with values operators 

(2.4) A(z): (£, -(¿2 a.e. 

L e m m a 2. 2. The general form of an operator • Y£J+(TV, T2) satisfying 
7I, 2 (Y) = 0 is multiplication (on FTJ J by a matrix function 

02(z)D(z) 0 

A2(Z)D(Z) o j ' . . , 

where D is a bounded analytic function, with values operators 

(2.5) D(z): a.e. 

3. Let us consider besides the functions Ak(z) their duals 

4*t(z) = .[/««•- 00 &k ( z f ] 1 1 2 (k = 1,2). 

Then 0kAk=Aifk0k. Suppose A A , B, C are functions satisfying the conditions of 
Lemma 2. 1 and derive f rom them the function 

E(z). = [B(z)A^(z)-C(z)01(zf] A,,(z)(S,t. 
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Clearly, £ is a bounded measurable function such that 

(2 .6) £ ( z ) : A ¿ 7 ( 2 ^ 2 a. e. 

Then, using (2. 3) we get 

£•01^! = (BA^0i-C0*l0i)Ai = (B01A1-C + CA2
i)A1 = (A2AAl-C)A1 

and therefore 

(2 .7) C(z)=[-£(z)&l(z) + A2(z)A(z)A1(z)]jMzWi-

Furthermore , we have 

EA^ = BA2
1-C0*A^, .= B — B0l 0* — CA1 0*; 

and hence by (2. 3): 

(2 .8) B = EA!¥i+A2A0*. 

Conversely, for an arbitrary bounded measurable funct ion £ with values opera-
tors as in (2. 6), the funct ions B and C generated by (2. 7) and (2. 8) will satisfy con-
ditions (2. 2) and (2. 3). Indeed, we have in particular 

B0i+CAi = [EAifi + A2A0*i\@i+[-E©i + A2AAi\Ai = 

= E[A*101-0lAl]-<rA2A = A2A. 

Thus we can give Lemma 2. 1 the following alternative f o r m : 

L e m m a 2. 1'. The general form of an operator YcJ+(T1, T2) is multiplica-
tion by a matrix function (2. 1), where A^ is as in Lemma 2. I, while B and C derive 
by means of formulas (2. 7) and (2. 8) from some bounded measurable function E with 
values operators 

E(z): A ^ j ^ - A A z j ® 2 . 

4. T h e similarity theorems 1. 3 and 1. 3' can be formulated for operators 
Tk=S(0k) (k—\, 2) as follows: 

T h e o r e m 2. 3. The operators S(0k) (k = 1, 2) are similar if and only if there 
exist bounded analytic functions Ax, A*, A, A', D, D' and bounded measurable func-
tions B, B', C, C' with values operators 

U * ( z ) : A(z): D(z): <£^<£u 

I. e. bounded analytic with values operators (Ê  i -+<£t2 > satisfying the relation A*01 = 02A, 
where A is some bounded analytic function with values operators (Sl-»(£2. 
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2 I 5 ' ( z ) : ( ^ - ^ ( z ) ^ , C ' ( z ) : Ai(z)G1-*A2(z)<&2, 

satisfying a.e. the conditions 

( a ) A,(Z)01(Z) = 02(Z)A(Z), (/?) fl(z) 0 i ( z ) + C ( z ) J 1 ( z ) = A2 (z) A (z ) , 

( « 0 AUZ)02(Z) = 0 L ( Z ) A ' ( Z ) , (/? ') B ' ( Z ) 0 2 ( Z ) + C'(Z)A2(Z) = J 1 ( z ) ^ ' ( z ) , 

(y*) A'Jz)Ajz) + 0i(z)D{z) = 4 t l , («5) 5 ' ( z ) ^ ( z ) + C'(z) JS(z) = - ^ ( z ^ z ) , 

(YI) A, ( z ) ( z ) + 0 2 ( z ) D'(z) = 4 t 2 , ( ¿ ' ) B{Z)A: (Z) + C ( z ) ( z ) = - A2 ( z ) D ' (z ) , 

00 C ' (z) = C ( z ) - 1 . ' 
T h e o r e m 2 .3 ' . 772e operators S(0k) (k = 1,2) a re similar if and only if there 

exist bounded analytic functions A^, , A, A', D, D', and bounded measurable 
functions B, C and C' satisfying conditions (a), (a), (a'), ( f l ) , (y+), ( y ' J of Theorem 2. 3 
and conditions 

(y) A'(z)A{z) + D(z)0l{z) = I(IL, 0 0 A(z)D(z) = D'(z)A,(z), 

( / ) A(Z)A'(Z) + D'(Z)02(Z) = 4 , , fo') ¿ ' ( z ) Z ) ' ( z ) = Z > ( z ) / l * ( z ) . 

C o r o l l a r y 1. The equation 

(2.9) dimzliCz)©! = d i m J 2 ( z ) ( S 2 a . e . 

w <z necessary condition for 5 ( 0 1 ) and S(02) to be similar. 

P r o o f . Immediate f rom the invertibility of C(z) a.e. 

We shall return in Sec. 3 to the question how (2. 9) can replace in some cases 
the conditions on B, C, C' in Theorem 2. 3'. 

Consider now the case that 0k(z) (k = 1 , 2 ) are inner funct ions (i.e. with 
values isometries a.e. on the unit circle). Then Ak(z) = 0 (k= 1 ,2) a.e., and hence, 
by (<T2); the values of B, B', C, C' are operators with range {0} so that condit ions 
05), (/?'), (<5), (5'), (a) of Theorem 2. 3 become trivial. Thus we have: 

C o r o l l a r y 2 . If 0k(z) (k=l,2) are inner functions then conditions (o^), (a) 
(°0> (y*)> (y;) are necessary and sufficient for 5 ( 0 , ) and S(02) to be similar. 

Taking D = 0, D' = 0 we get a sufficient condi t ion: 

C o r o l l a r y 3 . If 0k(z) (k=\, 2) are inner functions then for the similarity of 
5 ( 0 1 ) and 5 ( 0 2 ) it is sufficient that there exist bounded analytic functions AJz), 
A(z) with bounded inverses A^(z)~\ A(z)~' such that 

AJZ)01(Z) = 02(Z)A(Z) a . e . 

This sufficiency condition was obtained in a direct manner in M O O R E — 

NORDGREN [4]. 



238 B. Sz.-Nagy—C. Foiaç: Structure of intertwining operators 

5. Theorems 1. 4 and 1. 5 can also be given a functional form, and here one 
need not restrict himself to c.n.u. operators. Indeed every contraction T is the direct 
sum of a unitary operator and of a c.n.u. contraction Tx. Clearly T is similar to an 
isometry or to a unitary operator if and only if so does 7 \ . As T and have the 
same characteristic function 0 we deduce f rom the theorems above: 

T h e o r e m 2. 4. A contraction T is similar to some isometry or to some unitary 
operator if and only if its characteristic function 0 has a bounded analytic left-inverse, 
or inverse, respectively. 

(For the unitary case see also [5], Sec. IX. 1.) 

1. The following theorem differs f rom Theorems 2. 3 and 2. 3' in that it only 
involves the analytic functions plus the equidimensionality condition 
(2. 9). More precisely, we prove 

T h e o r e m 3. 1. Suppose 0k(z) (A' = 1, 2) are purely contractive analytic func-
tions, with values operators and also suppose that the values of the function 
A | (z) are compact operators a.e. on the unit circle. Then S{& {) is similar to S(02) 
if and only if 

( * ) dim A} (z)(£, = dimzi2(z)(E2 a.e. 

and if there exist bounded analytic functions A^(z), ..., D'(z) satisfying conditions 
(<7,), (a), (a ') , (?*), fa), (7), ( / ) , (r,), fo') of Theorems 2. 3 and 2. 3'. 

Observe that these conditions can be expressed by the following properties of 
the diagram: 1) it is commutative along open two-step paths (e.g. AD=D'Aif); 
2) products corresponding to adjacent closed two-step paths add to identity (e.g. 
A'A+DQ^It). 

3. An equidimensionality criterion for similarity 

6} Cz • Dlz) Qjz) Drz) 
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P r o o f . Necessity follows f rom Theorem 2. 3' and its Corollary 1. So we have 
to prove sufficiency, that is, on account of Theorem 2. 3', the existence of func-
tions B(z), C(z), C'(z) satisfying conditions (o2), (/?), (e). This will be done as fol-
lows. 

a) First we introduce the spectral family { E x { z ) } 0 s x m i of the selfadjoint operator 
A1(z), normed by the conditions E0(z)=0, Ei ( z ) = / , and, say, continuity f rom 
the right for 0 < x < 1. As Ex(z) is the limit of a sequence of polynomials of 
A j (z), we conclude that Ex(z) is, for any fixed x, a measurable function of z=e" 
along with 0 ( z ) and A (z). 

Note that if a € [ / e | — E^z)]^^ for some x and z ( O ^ x S l , z = e " ) , then 

(3.1) M 1 ( z ) a | S x | a | , ^ | a | 2 - | J 1 ( z ) a | 2 . £ ( l - x 2 ) | a | 2 

(norms in and (S^). 
Denote by M the least common upper bound of the functions 

K 0 0 I , . . . , I-D'COI-

For vectors a of the type considered above we have then 

.\a-A'{z)A{z)a\i\D(z)Qi{z)a\ ^ M^^z)^ ^ M{\-x2)1/2\a\. 

As we also have 

\A'(z)A(z)a\^M\A(z)a\ 

we deduce: \a\ S M{\-x2)1'2 \a\ + M\A(z)a\, and hence 

(3.2) \ A ( z ) a \ ^ [ M ~ ' - { \ - x ^ y i 2 ] \ a \ ^ ~ \ a \ 

for x .close enough to 1. Moreover, we have 

\A2(z)A(z)a\2 =\A(z)a\2-\02(z)A(z)a\2 = 

=== M ( z ) a | 2 - M , ( z ) 0 1 ( z ) a | 2 S M ( z ) a | ? - M 2 | 0 1 ( z ) a | 2 ; 

using (3.. 1) and (3. 2) we get 

f 4MJ 

for x close enough to 1 ( 0 < x < l ) . Let us fix such a value of x, say and denote 

E f ( z ) = / e i - E ; ( z ) . 

On account of (3. 3) we have then for a ^ E f ( z ) ( S l . 

(3.4) M 2 ( z ) ^ ( z ) a | ^ ( 2 ^ ) - 1 | f l | ^ ( 2 M ) - 1 M 1 ( z ) a | . 

(3.3) \A2(z)A(z)a\ S [ [ ¿ I — M 2 ( l — x 2 ) 
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On the other hand, (3. 1) implies, for such a, 

(3 .5) \A2{z)A(z)a\^\A{z)a\^M\a\^{MIQ\Al{z)a\. 

b) N o w set 

( 3 . 6 ) F{z)= J \ d X E x { z ) a n d G(z) —A2(Z)A(Z) F(Z); 
{ x 

these are bounded, measurable functions, and as 

(3.7) F(z)a£E^(&1 and A1(z)F(z)a = a for 

we deduce f r o m (3. 4) and (3. 5) that 

(3 .8 ) ' = for- a ^ E - Q ^ 

Because A L(z) is a compact operator for a.e. z, its spectral projection E7(z) is 
of finite rank, a.e. By virtue of (3. 8), G(z) maps £ ^ ( z ) ( £ 1 ; for a.e. fixed value of z, 
bicontinuously onto the space 

G(z)Ei(z)(Sl ( c / l 2 (z )<S 2 ) , 

which is therefore of the same dimension as £ ' _ ( z ) Ê 1 . F rom the hypothesis ( * ) it 
then follows that the spaces 

M l (z) = Al(z)Œ1 QEf&i and 9J!2 (z) = A2(z)&2 Q G (z) (z) (£ : 

are also equidimensional. Thus 

dim 9JÎ! ( z ) = d i m 9Ji2 {z)=d(z) a.e., 

where d{z) is a measurable function with the possible values 0, 1, . . . , 
Note that 

A ( z ) ë r = ( i ^ - E + o i z ) ) ® , , and hence SOl^z) = ( £ i ( z ) - £ + 0 ( z ) ) ( £ 1 . 

By an appropriate orthogonalization procédure (commonly used in reduction 
theory) we construct sequences { < p k { i f r k } " of (Sx - and (£2-vector valued measurable 
functions such tha t if a„ denotes, for « = 0, 1, . . . , » , the set of points z on the unit 
circle where 

d(z) — n, 

then for every fixed z£(j„ the values 

<Pi(z), <p„(z) and iK(z), . . . , \l>„{z) 
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form orthonormal bases of (z) and 93J2 (z), respectively. Then it is easy to define a 
measurable function with values unitary operators 

U{z): S« 1 (z ) -9J l 2 (z ) , 
notably we set 

U(.z)(pk(z) = ij/k(z) for z6o-„ and k=\, ..., n, 

and extend linearly. (On a0 we can set e.g. U(z)=0.) 
Now consider the function 

(3.9) , C(x) = [ G ( z ) E f (z) + U(z) (E?(z)-E+0(z))]|Ax (z) C x ; 

this is also measurable and its values are operators 

(3.10) C(z): J 1 ( z ) C 7 - / l 1 ( z ) G ^ (onto) 

satisfying, by virtue of (3. 8), the inequalities 

(3.11) M1\a\^\C(z)a\sM2\a\ for a^A^z)^ 

with the constants 

M i = min {1, (2M)- 1 } , M2= max {1, M/%}. 

Hence the function 

C ( z ) = C ( z ) _ 1 

has sense, is measurable and bounded, 

. I CXz^l/M,. 

c) Consider now the function 

(3.12) H(z) = A2(Z)A(Z)-C(Z)A1(Z). 

As 
C(z)Al(z)E^(z) = C(z)E£ (z)A1(z) = G(z)E^(z)Al(z) = 

= A2(z) A(z)F(z)Ay ( z )El (z) = A2(z) A(z) Ef (z) 

by virtue (3. 9), (3. 6) and (3. 7), we have ff(z)Ef(z) = 0.. Therefore and f rom (3. 9) 
and (3. 6) we have 

H(z) = H(z)Ei(z) = A2(z)A (z) Ef (z) -U{z)Al (z) (Et(z) - E+ 0(z)). 
Hence, 

\H(z)a\s(M+l)\Ei(z)a\ for a ^ . 

16 A 
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On the other hand, 

\0^z)a\2 = |a|2-MiOO«|2 = f {\-x2)dx\Ex(z)a\2 S 
o 

s ( l - £ 2 ) | £ i ( z ) f l | : 2 for • f lgff i i j 

combination of the two results gives 

| / i ( z ) a |S JV- | 0 , ( z ) f l | for a i&L 

with the constant N = (M+1)(1-£2)-1/2. 
This shows that , for a.e. fixed z, the operator 2?0(z) defined on © ^ z ) ^ , by 

(3.13) B0 ( z )0 j (z)a = H(z)a ( a g e , ) 

is (linear and) bounded by N; its definition extends by continuity to the closure of 
©i iz)©! . Denote by P(z) the orthogonal projection of onto its subspace 0 1 ( z ) S 1 

and set 

(3. 14) B(z) = B0(z)P(z). 

On account of (3. 12) and (3. 10) the range of H(z) is contained in ¿l2(z)(£2. From 
these results we conclude: 

B{z)-. < & ^ A 2 № 2 , \B(Z)\^N, 
and 

(3.15) B(z)Ql (z) = B0 (z)P(z) 0 i(z) = B0 (z) 0 , (z) = H(z), 

i.e. the function B(z) is bounded and satisfies conditions (<r2) and (/3) of Theorem 2. 3. 
It remains to prove that it is also measurable. 

To this effect first note that, by its definition (3. 12), H(z) is measurable. From 
, (3. 15) it follows therefore that B(z)u(z) is measurable for every function 

w g © , ! 2 (<£,), and hence for every function u£0iL2{<&1) also. Next note that 
since 0 i ( z ) is a measurable function, so is P(z)\ and hence w(z)=P(z)v(z) is 
measurable for every (£j -vector valued measurable function v, in particular for 
every function v ^ L 2 ^ , ) . Now in this case it is obvious that w is the orthogonal 
projection of v onto the subspace 0 ] L 2 ( ( £ 1 ) of L2((£,). Since we have, moreover, 

B(z)v(z) = B(z)w(z) 

on account of (3. 14), we conclude that B(z)v(z) is measurable for every v£L2((&j), 
thus B(z) itself is measurable. 

This completes the proof of Theorem 3. 1. Observe that the compacity 
assumption on J 1 ( z ) can be weakened: all we have used is that , for a certain 
¿ < 1 , the spectral projection E~(z) is of finite rank, a.e. 
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2. If both 0 , (z) and 0 2 ( z ) are scalar valued then so are all functions occurring 
in Theorems 2. 3, 2. 3', and 3. 1, and therefore commute. From conditions (a), (7) 
it follows in this case 

A^.0, A' = 02AA' = 02A'A = 0 2 ( / - £ ) 0 1 ) , 02 = O M ' + O z ^ O i ; 

and from (a) and (y*) we get on a similar way 

0, = 
Thus both functions 

(3.16) 0 1 (z) /0 2 (z) and 0 2 ( z ) / 0 j ( z ) belong to . 

Conversely, if (3. 16) holds then conditions (a)—(»;') are fulfilled e.g. by the 
functions 

A^02I01, A=l, £> = 0; A* = 0J02, A'=l, D' = 0. 

Clearly, dim Ak(z)Gv is 0 or 1 according as |0*(z) | is < 1 or = 1 . Thus we 
obtain f rom Theorem 3. 1: 

C o r o l l a r y 1. Let 0 t (z), 0 2 ( z ) be scalar valued contractive analytic functions. 
Then the corresponding operators S(0,), S(02) are similar if and only if 

(i) 0 ! ( z ) / 0 2 ( z ) and 0 2 ( z ) / 0 , ( z ) belong to H°°, 

(ii) the sets : 1 ( z ) | = 1} (k = 1, 2) coincide up to subsets of zero measure. 

This result was obtained earlier by KRIETE [3]. 

3. We shall now consider an NXN matrix valued, purely contractive analytic 
function , 

0 ( z ) = [9,-*(z)] (i, k=\,2,..., N). 
Let 

' Q(z) = [coik(z)] (i,k=\,2,..., N) ' 

denote the algebraic adjoint matrix; then 

(3.17) Q(z)0(z) = &(z)Q(z)=d(z)/lV, where d(z) = det 0 (z ) . 

If 0 is inner, it is known that the operator S(0) is quasisimilar to an operator 
S($) generated by a scalar valued inner function 3(z) if and only if the functions 
coi4(z) have no non-constant inner common divisor, and in this case we necessa-
rily have £>=</. (See [3], Sec. IX. 2, and [6].) 

16» 
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Still in the case of inner 0 , a necessary condition fo r 5 ( 0 ) to be similar to 
S(d) was proved in [8], Sec. 8 (see in particular the last row on p. 17). In an equiv-
alent form, this condition reads as follows: 

(c) 
There exist functions «,-, t>,-, (I=\,..., N) such that 

N 

2 u^ijVj + dw = 1 . 
i , j=i 

Necessity of condition (c) easily follows, even for not necessarily inner 0 , f r o m 
Theorem 2. 3 when applied to 0 ! = 0 and 02=d. Indeed, conditions (a), (y'J 
and equation (3. 17) give: 

A^B^dA, A^A^ + dD = 1, £26 = 0Q = d-lN\ 
hence 

(dA)QA'* = {A^Q)QA* = A^dA* = d{ 1 -dD') 
and dividing by d, 
(3 .18) AÎ2A* = 1 — dD'. 

Since by condition (o^) the values of the funct ions A, D' have to be operators 
EL-~EN, EN—E1, EL -+E I, r e spec t ive ly , i .e. o f t h e " m a t r i x " f o r m 

(3 .19) i4 = [ i / i f . . . - ,«*] , Ai = 
% 

, £>' = [vv] with w;, D,-, w£H° 

(c) immediately follows f rom (3. 19). 
In [6] we did not ask whether for an inner 0 condition (c) is also sufficient for 

5 ( 0 ) to be similar to S(d) Now we shall show that it is sufficient, even for not inner 
0 , if we add the condition 

d i m A(Z)EN 1 

which in our case is equivalent to ( * ) . 
Thus suppose (c) holds and write it in the fo rm of a congruence modulo d in 

the algebra H°°: 
(3 .20) 2lli(auvj = I (modr f ) . 

•J 

By virtue of a well-known theorem in matrix theory we have 

(3. 21) = ' ± d - det [ 9 , J * ) 

F rom (3. 20) and (3. 21), 

(3. 22) (ok h= 2 ui<°ij<»khVj = 2 Ui(oiha>kJVj (mod d). 
i,j i-j 

*' See e. g. F. R. GANTM^CHER, Matrizenrechnung. I (Berlin, 1958), p. 20, formula (33). 
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Thus there exist functions tkh 6 H~ such that 

(3.23) o)kh = 2 °hj vj <»;,, + d'ki, 
J 

Let us set 

and 

(k, h=\,..., N). 

' Vi hi ••• 

js] 
II • > ify], A * — 

VN 

, D = 
---INN 

, D' = [w] 

A =AQ, A' = QA'j. 

On account of (3. 17) we have then 

A^0 = AQ0 = Ad=dA, 0A' = 0QA'^=dA'j,=A^d, 

i.e. conditions (a), (a ' ) of Theorem 3. 1. On the other hand, condition (c) implies 

A^A'^+dD') 
(3. 24) 

AA' + D'd J 
AQA^+dw = 1, 

i.e. conditions (yQ and (y') of Theorem 3. 1. 
Next observe that equation (3. 23) takes the forms 

(3. 25) Q = QA'AQ + dD = 
QA'^A^+dD, 

\A'AQ + dD-, 

riiultipling by 0 on the left or on the right and dividing by d we get 

IN=A'^AJf + 0D and IN=A'A + D0, 

i.e. conditions (y+) and (y) of Theorem 3 .1 . From (3.25) we also derive, mul-. 
tiplying by A on the left or by A'^ on the right: 

AQ •= AA'AQ + AdD and QA' = QA'A*A* + dDA'+, 
i.e. 

(I-AA')A^ = dAD and A'(I-A^A^) =dDA*. 

Recalling (3. 24) and dividing by d we deduce from these equations that 

D'A* = AD and A'D' = DA'*, 

i.e. conditions (rf) and (//') of Theorem 3. 1. 

Therefore Theorem 3. 1 has the following 

C o r o l l a r y 2. Let 0(z) bean NX N matrix valued, purely contractive analytic 
•function and suppose that det 0 (z) ^ 0 . Then condition (c) together with condition 
dim A(z)EN a.e., are necessary and. sufficient for 5 ( 0 ) to be similar to S(det 0 ) . 
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4. Theorems on commutants 
I 

1. As an instructive application of Lemma 2. V we are going to prove: 

T h e o r e m 4. 1. Let T be a c.n.u. contraction on a separable Hilbert space, 
whose commutant (T)' consists of operators <p(T), where cp is a meromorphic func-
tion in the unit circle, of class NT (c f [5], Chapter IV). Then the characteristic func-
tion of T has only values isometries and coisometries, a.e. on the unit circle. 

P r o o f . It suffices to consider an operator T=S(0) generated by a purely con-
tractive analytic function 6>(z), with values operators ( £ — S u p p o s e that the 
set of points on the unit circle,, where both A{z) and A^(z) are non-zero, is of posi-
tive measure. As Cc and are separable, this implies that there exist vectors e£(£ 
and e+ 6(5;^.such that both A(z)e and A^(z)ei. are non-zero on some set co of posi-
tive measure. Consider the function E0, with values operators (£^—6:, defined by 

E0(z)a=(a, AJz)ejA(z)e for a £ . 

It is bounded, measurable, and so is its restriction 

£ (z ) = £ 0 ( z ) | ^ ( z ) ( S , , 
which has values 

(4.1) E(z): 4*(r)G*-d(z)e. 

Note that ' 

(4.2) {A(z)E(z)A^z)e^,e) = \A,{z)e,\2\A(z)e\^0 on co. 

Split co into two disjoint sets of positive measure, say cot and a>2, and set 

(4 .3) Ek(z) = ik(z)E(z) (k = 1,2), 

where ik(z) designates the indicator function of the set a>k on the unit circle. The 
functions Ek(z) also satisfy (4. 1) so we can apply Lemma 2. V with 0,=02 = 0, 
Al=A2 = A, A^= 0, ,4=0 , and Ek (k — 1, 2). Thus we obtain that the 
operators Yk of multiplication by the functions 

TO 0 
Yk{z) = Ek(z)A,{z) —Ek (z) 0(z)\A (z)(£ 

( f c = l , 2) 

belong to J+{T, T). Let Xk denote the corresponding operators in J(T, T), i.e. in 
(T)'. We ciaim that A ^ O . For if, e.g., ^ , = 0 then there exists, bv Lemma 2. 2, a 
bounded analytic function D ^ z ) such that 

0 ( z ) D 1 ( z ) = 0 and A(z)Dl(z) = El(z)AJz) 
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Hence, Dl(z) = A{z)E1{z)A^(z) and, by (4.2), 

{^ 0 on co,, 

_ Q o n ^ 

But this is impossible on account of the analyticity of the function (D1(z)e^, e). 
By the hypothesis of the theorem there exist functions uk, vk£_H°° (Ar= 1,2) 

such that vk(T) is injective and 

(4 .4) vk(T)Xk-uk(T) = 0. 

As Xk9i0 we have uk(T)?±0. Thus both uk(T) and vk(T) are non-zero, and therefore 

Again using Lemma 2. 2 we infer f rom (4. 4) that there exist analytic functions 
Dk(z) not necessarily the same as in the above argument such that 

Uk(z) 
0 0 

Ek{z)A,(z) -Ek(z)0(z)\2 

lis 0 
-uk(z) 

o i^U. 
= 

0(z)Dk(z) 0 

A (z)Dk(z) 0. 

where denotes restriction to A(z)(&. Hence, 

(i) -uk(z)Içt = 0(z)Dk(z), 

(ii) vk(z)Ek(z)A^(z) = A(z)Dk(z), 

(iii) (vk(z)Ek(z)0(z) + uk{z)Ili)\z = 0. 

From (i) we infer that 0(z)Dk(z) commutes with every operator on (£+, in 
particular with AJs(z). As 0(z)A(z) = A_t: (z)G(z) we deduce using (ii) that 

0DkA,=A*0Dk = 0ADk = vk0EkA^, 

0Fk = 0 for Fk = DkA„-vkEkA^. 

and therefore 

(4. 5) 

On the other hand, (iii) and (4. 5) imply 

ukAFk = —vkEk0AFk =-vkEkA^0Fk = 0. 

Since u(z) ¿¿0 a.e., it follows 

(4.6) AFk=0, 

Now (4. 5) and (4. 6) imply F k = 0 , i.e. we have 

(4.7) DkA^=vkEkA^, 
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again using (ii) we get 

(4 .8 ) 

Setting 

(4 .9 ) 

DkA^=ADk ( & = ] , 2). 

G = ulD2—u2D 

we have f rom (i): 0 C = O while f r o m (4. 8): GA^AG. Hence, GA\=A2G, G 0 0 * = 
= 0 * 0 ( 7 = 0 , G00*G* =0, 0*G*=0, G 0 = ( 0 * ( 7 * ) * = O , G0Dk=0, and by (i), 

As E{z) is non-zero on a>, its factor must be zero there. But this fac tor equals 
M1(z)y2(z) on a>2, and we arrive at a contradiction to the fact that uiv2£H" and 
ULV29±0. 

This contradiction proves the theorem. 

C o r o l l a r y . Let T be as in Theorem 4. 1 and suppose, moreover, that its charac-
teristic function 0 ( z ) has a scalar multiple 5£H°°, 5^0. Then T belongs to the class 
C0; indeed, d(T) = 0. 

P r o o f . Since the funct ion 0 has a scalar multiple, its values 0 ( z ) are boundedly 
invertible a.e. As an isometry or a coisometry is not invertible unless it is unitary 
we infer that 0 ( z ) is unitary a.e., and as a consequence T£ C00 (i.e., T" —0, T*" —0). 
By [5], Theorem VI. 5. 1, we have then d(T) = 0. 

2. Consider the c.n.u. contraction T=S(0) associated with a scalar valued 
purely contractive analytic function 0 ( z ) (i.e., | 0 ( z ) | ^ l and 0 ( z ) is not a constant 
of modulus 1). We shall show that if 0 ( z ) ^ O then (T)' (i.e. J{T, T)) is commuta-
tive. We shall even show that any two operators Y^, Y2£J+ (T, T) commute . 

be the corresponding matrix functions. As the entries are scalar valued functions, 
commutativity of Yt and Y2 will be proved if we show that the function 

ukG = 0. Since i / ^ z ^ O a.e., we conclude: (7=0 . Then, using (4. 7) and (4. 9), 

Let 
A,k(z) 0 

Bk(z) Ck(zX 
( k = 1 ,2) 

F12(Z) = Bt (z)A¥2(z) + Cl (Z)B2(Z) 

is symmetric in the subscripts 1, 2. Since the values of Bk(z) outside the set 
<r= {z: /d(z)^0} vanish (c/. condition (2.2) in Lemma 2. l ) it suffices to consider 
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F12 (z) on the set a . Now by virtue of condition (2. 3) in Lemma 2 .1 , we have 

AJfk0 = 0Ak and Bk0 + CkA = AAk (A: = 1,2). 

Since 0 ( z ) cannot vanish on a set of positive measure we deduce f rom the first 
equation that A^k=Ak, and f rom the second, that 

F12(Z) = B! ( z ) [ B 2 ( z ) 0 ( z ) + Cz(z)A (Z)]/A(Z) + C , (z)B2(z) o n <r, 

i.e. 
F12(Z) = B\ (z)B2(z)0(z)/A(z)+Bl (z)C2(z) + C1 (z)B2(z) on a , 

and the symmetry in the subscripts 1, 2 is apparent . 
The case 0(z) = 0 is different. Consider in this case e.g. the matrices 

Yt(z) = 
1 0 

0 0 
and Y2 (z) = 

0 0 

B(z) 0 

where B(z) is any scalar valued, non-analytic bounded measurable function. Both 
matrices satisfy conditions of Lemma 2. 1 (for 0 X = 0 2 = 0 = O and ,4=0) , thus 
the corresponding operators YT, Y2 belong to J+(T,T). Then 'XY= N(Y1) and 
X2 = TZ(Y2) belong to (T)'. By virtue of the Multiplication Property of the m a p N 
given in Sec. 1, we have X1X2—X2XL = n(Y1Y2—Y2Y1). N o w the operator 
Q = Y2 — Y2 K, is multiplication by the matrix function 

0 0 
-B(z) 0 6 ( z ) = 

and this is certainly not of the form 

0(z)D(z) 0 

A{z).D{z) 0 
i. e. 

0 0 

D{z) 0. 

with analytic D(z), and therefore, on account of Lemma 2. 2, Thus Xx and 
X2 do not commute. 

Observe that the characteristic function 0 ( z ) = O corresponds to an operator 
of the form 

T= s@s*, 

where S is a simple unilateral shift. That for such a T the commutant is not commu-
tative can also be deduced f rom the fact proved in [7], Proposition 5, that there 
exists a non-zero operator X (indeed, a quasi-affinity) such that S*X=XS. 

So we have proved: 

T h e o r e m 4. 2. Every c.n.u. contraction T with defect indices 1, 1 has a com-
mutative commutant (T)', with the only exception of the operator T — S®S*, where 
S is a simple unilateral shift. 
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5. Inverse of a function of T 

1. Let T be a c.n.u. contraction on the space § and let V be its minimal iso-
metric dilation on ft (we use the notations of Sec. 1). By the functional calculus 
developed in [5], Chapter III, the operators u{T) and u(V) have sense for every func-
tion u£H°° and are connected by the relation 

If R is the unitary part of V then u(R). also has sense (it is the restriction of u(V) 

T h e o r e m 5. 1 . I f u{T) is boundedly invertible then so is u{R) and we have 

P r o o f . We use the fact, proved in the proof of Proposition II. 6. 2 in [5], 
that for every there exists a sequence of elements /*„£§ such that 

k=X\mV"hn. 

This implies: 

\\u(R)k\\ = |l"(*0*ll = l ™ \W(V)Vnhn\\ = l i m || V"u(V)hn\\ = 

= lim \\u{V)hn\\ s l i m inf MT)h„\\ ^c lim inf ||AJ = c ||fc||, 

where c = | | w ( r ) - 1 | | - 1 . As u(R) is normal we conclude that u(R) is boundedly in-
vertible and (5. 2) holds. 

2. Thus the existence of u(R)~1 is necessary for the existence of w ( r ) - 1 . 
Necessary and sufficient conditions follow from results of Sec. 1 when we observe 
that (1. 3) implies u{T)P P ̂ {V) so that on account of (1. 5) we have w(F)£ 

T) and 7i(u(V)) = u(T). Using matrices corresponding to the decomposi-
tion ft = ©9i we deduce from Lemmas 1 . 1 , 1 . 2 , and the Multiplication Property 
of the map %, that u(T) is boundedly invertible if and only if there exist operators 

A£J(S,S), B€J(S*,R), C£Jf(R,R), D£S(S„S), D'ZS(S„S) 

(5. 1) u(T) = P9«(r) 

t o SR). 

(5. 2) 

satisfying the equations 

(a) = (ß) B0 + C2 = 2A, 

f « ( S j 0 l p , 01 J0D' 0 
[ 0 w(Ä)J U C\ U£>' 0. ' 
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As a consequence of the intertwining properties of A^ , B and C we can take D' = D 
and condition (x) is equivalent to the following system of condit ions: 

(x , ) + = {x2) Bu(SJ + 2D = 0, . (x 3 ) C = u(R)~l. 

Taking into account that (1. 14) implies 

u(S^)§ = 0u{S) and u(R)A = Au(S) • 
we deduce: 

0{Au(S) + D@-\) = (A^u(S„) + 0 D - l ) 0 ^ 0, 

A (A u (S) + D@ - I ) A A u(S) - B u {SJ & - C u (R) A = (3A - B& - CA) u (S) JL 0, 

and hence 
(A) A u(S)+D@ = I. 

Conversely, (/?) and (x2) are implied by (A) and the rest of the condi t ions if 
we set 

B = — CAD. 

Indeed, the intertwining property for B follows immediately f r o m those for C, A, 
and D, while (x2) follows f rom the equations 

Bu(SJ = - CZD U(S) = - CA U(S)D = - C u(R) AD = —AD \ 

finally, (/?) follows f rom the equations 

u(R)(B@ + CA-AA) = -AD§ + A-Au(S)A = A(-D&+I-u{S)A)=Q 

when we multiply by C on the left. 
Thus the initial set of conditions can be replaced by the set (a), (x t ) , (x3), (A). 

Multiplying (xx) and (A) by & on the right and on the left, respectively, and using the 
intertwining properties and substracting we obtain that 

u(SJ(A,&-0A) = 0. 

As the unilateral shift SV is the restriction of a bilateral - shift U. and hence u , ) 
is a restriction of u(U), and as u(U) has zero null-space for u?±0 (because then 
u ( z ) ^ 0 a.e.), we conclude that (a) also holds, i.e. it is a consequence of (x^) and (A). 

So we have proved: 

T h e o r e m 5. 2. Let u 9^0. In order that u(T) be boundedly invertible it is 
necessary and sufficient that 

a) u{R) be boundedly invertible, 
b) there exist operators A^ , S j , A S), , S) such that 

Au(S) + D@=Is, A*u(SJ + 0D = I s , . 
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R e m a r k . Since u(R) is normal, condition a) is equivalent to the condition that 

\\u(R)f\\^m\\f\\' for some /w>0 and all / € 9 ? . 

3. If T=S(0), 0 being a purely contractive analytic function with values 
operators 0(z):(E— then the above conditions a), b) can be expressed in the 
following form: 

a) |M(Z)|SW>0 at a.e. point z where A(z)?iO, i;e. 0(z) is not an isometry, 
b) there exist bounded analytic functions , A, D with values operators 

AM- G*-®*. A{z): ffi-e, D(z): ( £ , - ( £ a.e. 
such that 

(5.3) u(z)A(z) + D(z)0(z) = /c, u(z)AJz) + 0(z)D(z) = a.e. 

Now u(T) is boundedly invertible if and only if so is u(T)*\ and u(T)* is unit-
arily equivalent to u~(T'), where T' = S(0 ). Here we u?e the notations u~ and 0~ 
for the functions defined by 

w'(z) = M(f), 0(z)=0(zf 

(cf. [5], Theorem III. 2. 1 and Chapter VI). 
Thus conditions a), b) imply that |u ( z ) [ g / n , > 0 at a.e. point z where 0 (z) 

is not an isometry, i.e. at a.e. point z where 0(z) is not a coisometry. 
Hence, a), b) imply that | i / (z) |£ /?(>0) at a.e. point z where 0(z) is not unitary. 

So we have: 

T h e o r e m 5. 3. Let T—S{0) and u£H°°, «=¿0. In order that u(T) be boundedly 
invertible it is necessary and sufficient that there exist bounded analytic functions 
y)+ , A, D satisfying conditions (5. 3), and a positive number p such that 

(5.4) \u(z)\^p at a.e. point z = e" where 0(z) is not unitary. 

4. Consider the particular case when 0(z) is an NXN matrix valued function, 
limit on the unit circle of a (purely contractive, analytic) function 0 ( 2 . ) on the open 
unit disc. Let d(X) = dzt 0(X). 

As a contraction on a finite dimensional euclidean space is unitary if and only 
if its determinant is of absolute value 1, condition (5. 4) can be expressed in the form 

(5.4 ' ) \u(z)\^p at a.e. point z where 

Next we notice that the equations (5. 3) hold in the unit disc as well. Thus at 
every point X where 0 (A) has a bounded inverse we have 

Q(Xy1 = u(X)A(X)0(X)~l+D(X), 



Structure of intertwining operators 253 

and hence 

(5.5) 10(A)"1 M M(\u(X)\ 10(A)-1! + 1), or |t/(A)| + | 0 ( A ) - 1 | - 1 «£• 1/M 

where M equals the larger one of the values ||y4||„ and ||Z)|L. As for every inver-
tible operator Z on EN we have |det Z \N s \ Z ~ 1 1 ~1 (cf. Lemma 2. 3 in [1]), inequality 
(5. 5) implies 

|w(A)[ + |c/(A)|1/iV £ 1/M, 
and hence . ' 

(5. 6) ' > ( A ) | + |rf(A)| £ < K > 0 ) . 

If d ( X ) ^ 0 then 0 ( A ) - 1 exists at every point A of the open unit disc, perhaps with 
the exception of countably many points, therefore (5. 6) holds then everywhere in 
the unit disc. By virtue of the "Corona Theorem" condition (5. 6) is equivalent to 
the existence of functions a, b £ H°° such that 

(5.7) u(X)a(X) + d{X)b{X) = 1. 

Conversely, (5.7) implies equations (5.3), with A (A) = A¥{/.) = a (X)IN, and D(X) = 
= b(X)Q(X), where Q(X) designates the algebraic adjoint of the matrix 0(A). 

We.state our result as follows: 

T h e o r e m 5. 4. Let 0(A) be a purely contractive analytic NX N matrix func-
tion with d{X) = d e t 0 ( A ) ^ O , and let T=S{0) and u£H°°. The operator u(T) is 
boundedly invertib/e if and only if there exist constants p, 0 such that 

a) |m(Z)|£/> at a.e. point z = en where |rf(z)|?fl, and 

P) |w(A)| + [i/(A)| £ q at every point X, |A|<1. 

The particular case of this theorem when 0(A) is an inner function, was con-
sidered in FUHRMANN [1]. Let us add that another generalization of Fuhrmann's 
result was given in HERRERO [2]. 
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