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Let G denote'a_n arbitrary- locally compact abelian group that is not discrete.
In [1], DIEUDONNE showed that if f€L'(G) then f* L*(G) must be a proper subset
of L1(G). His proof involves a rather complicated construction of some particular
functions on G. . .

In this note we prove a general result (Theorem B) about Banach algebras
with elements which are generalized divisors of zero, and deduce Dieudonné’s result
as-an easy corollary (Theorem D). An extension to Banach modules yields his result
hat [*LI(G)= LA(G) if fe L' (G), 1<g=<-oo. :

Definition A. Let B be a commutative normed algebra The element f¢B

is said to be a generalized divisor of zero (gdz) if there exists a sequence {g,} in B
such that _ '
lgd =1 (n=1,2,..), but fg, —0.

This is equivalent to the definition in [2, p. 69] which treats only algebras with unit.

Theorem B. Let B be a commutative, semi-simple Banach algebra. If fEB is a
gdz then fBs B.

Proof. We may assume that the Gelfand transform f of f never vamshes
For, if f(1)=0 for some 1, then §(2)=0 for every g€fB so that fB= B

Define T: B—~B by Tg = fg (g€B). Then T is 1—1. For if Tg=fg=
then fg=0. Since f never vanishes this implies §=0, and so g=0 since B is semi-
simple. T is clearly continuous. We wish to show that T is not onto.

Assume the contrary. Then T is 1 —1, continuous, and onto. The inverse func-
, tion theorem for Banach spaces then implies that 77 is continuous. Since f'is a- gdz
there exists {g,} with fg, 0 and

M ‘ legal=1 (=12 ..).

Since. T ™1 is continuous we have T~1(fg,)—0. But fg,= Tg,l so that T71(fg,)=g,.
Hence g,—0 which contradicts (1). The contradiction shows that T is not onto
which is what we wished to show. ’ :
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We next show that every element fin L*(R) is a gdz. Let
&) =€"0(t) (—e<t<eo; n=12,..)

where ¢ is any bounded L! function with [oll,=1. Then | g,|,=1. Now for each ¢ the
function f(u)6(t—u) is in L. Also

Sxg,(t) = e fe‘i"“f(u)é(t—u) du

which tends to zero for each # as # — oo by the Riemann—Lebesgue theorem. Moreover,
S *g, is dominated by

f If(u)é(t—u)ldu |

whlch 1s mtegrable since f, ¢ L. Hence

If*&alls~ 0

by the Lebesgue dominated convergence theorem. Thus || g,|l; =1 and f*g,—~0 which
shows that 1 is a gdz. (Note, too, that {g,} is independent of 1)

The above argument extends easily to any non-discrete G. Simply replace the
functions e™ by characters x,(t) on G where {y,} tends to infinity on G (which is not
compact). Thus.we have '

. Theorem C. If G is a locally compact abelian group that is not discrete, then
~ every element of L1(G)is a gdz.

Here is Dieudonné’s resu]t

Theorem D. If G is a locally compact abehan group that is not discrete, then
[*x LMG) = LN(G) for all feLM(G).

Proof. The space L!(G) is a commutative se'mi‘-simple Banach algebra. If
JEL'(G) then, by Theorem C, fis a gdz. Hence, by Theorem B, f# L*(G) = L'(G).

Dieudonné actually proved that f* L7 L% for every fell, I'=g<c. To in-
clude this result we generalize to modules. See [3, p. 263] for the definition of a.
Banach 4-module. The example that will interest us is L? which is a Banach L1-
module.

Def inition E. Let A be a commutative Banach algebra and let B be a Banach _
A-module. The element f€ A is said to be a generalized divisor of zero with respect
to B (abbreviate gdz-B) if there exists a sequence {g,} in B such that

lgalls =1 (n=1,2,..), but | fg,lz—~0

- Completeness is no'tv essential in the above definition but it is in what follows.
Because B in the following theorem need not be an algebra, we do not have -
the Gelfand transform available. We introduce a 1—1 hypothesis that was not
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necessary in Theorem. B, and we will handle the non 1—1 case specially .when we
come to L. . :

Theorem F. Let A be a commutative Banach algebra and let B be a Banach
A-module. If f€A is a gdz-B, and if T: B—~B defined by Tg = fg (g€B) is1—1,
then T is not onto. That is, fB= B.

Proof. Same as that of Theorem B.
Corresponding to Theorem C we have

Theorem G. If G is as in Theorem C then every fcL'(G) is a gdz-LI(G).

Proof. Again, the case G=R tells all. Take any f¢ L'(R). Let
g,(t) = €5(t) (~eo<t<oo; n=1,2,..)
where ¢ is a bounded L? function with ||5]|,1= 1. Then f, x g(¢+)—0 for all ¢, as before:
Moreover, | f*g,|? is dominated by (| f] *|6])%. But |f]*|6|€L? since feL, 6€L®
so that (| f| = |6|)? is integrable. Thus || f*g,|l,~0 by the dominated convergence

‘theorem. Since || g,ll,=1, the proof is complete.

Finally,

T'heo'r‘em H. If G is as in Theorem C, then
Sf*LI(G) = LYG) for all feILl(G).

Proof. For f€I1(G) let ECG be the set where f=0. We consider two cases.

a) If mE=0 then the map T:g—~fxg (g€L?) is 1—1. For if Tg=f*g=0
then f6=0 almost everywhere on G. Since mE=0 this implies §=0 a.e. and hence
g=0. The desired conclusion then follows from Theorems F.and G. _

b) If mE=0 then, since the transform of every function in f % LY(G) vanishes
a.e. on F, it is clear that f % L1(G)= L(G).

This argument is valid for 1<g=2. For ¢g>2 an easy adjoint argument
applies.
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