
On models for noncontractions 

By D O U G L A S N. CLARK in Los Angeles (California, U.S.A.)*) 

1. Introduction 

1.1. Characteristic functions. The characteristic operator function 0T of a 
bounded linear operator T on a Hilbert space § is by definition the operator-valued, 
analytic function 

(1) GT{z) = TJT-zQ,{I-zT*)-iQ 

where Jr = sgn (I-T* T), Q=\I-T*T\i and Q* = \I-TT*\i,. in the sense of the 
self-adjoint operator calculus (here sgnO=l ) , and where 0T acts from R(Q), the 
closure of the range of Q, to R(QJ-

If T is a contraction, so that the operator JT (and the absolute value signs) 
disappear from (1), 0T has been studied quite a bit and is fairly well understood. 
SZ.-NAGY and FOIA§, for example, in their book [6], study the relationship of T 
and 0T. Basic to their theory is the construction of a "canonical model" — a con-
traction operator T of a canonical type — such that 0 = 0T, for a given analytic 
operator function 0 with | |<9(z)| |^l for | z | < l . 

Several recent papers have concerned more general 0(z); see, for example, 
KUZCL' [4] and DAVIS and FOIA§ [3]. BRODSKII, GoHBERGand KREIN [2], working with a 
characteristic operator function somewhat different f rom (1), have given necessary 
and sufficient conditions that an analytic operator-valued function 0 should have 
the form 0 = 0T, for some bounded (invertible) operator T. Their condition trans-
lates into Theorem 1 below. Their proof uses Neumark's Theorem and does not 
appear to provide a clear analogue of the Sz.-Nagy—Foia§ model theory. 

In this paper we give a construction (Theorem 2 below) which, although less 
geometrical than that of Sz.-Nagy and Foia?, does yield a model analogous to 
theirs and also contains the theorem of Brodskii, Gohberg and Krein (Theorem 1) as 
a corollary. 

*) Partially supported by NSF Grant GP 29011. 
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1.2. Statement of results. More precisely, let and § 2 be Hilbert spaces of 
the same dimension, let B{z) be a function whose values are bounded operators 
from to § 2 , and let / = s g n (l-B(0)*B(0j) and /*=sgn (f-B(0)B(0)*). The con-
ditions of Brodskii, Gohberg and Krein, applied to our characteristic operátor func-
tion become 

T h e o r e m 1 • ([2], Theorem 6.1.) Suppose B(z) is analytic in some neighborhood 
D of 0. Then B is. the characteristic operator function of some invertible operator if 
and only if B satisfies 

(i) B(0) is invertible, 
(ii) the operator valued function 

G(z) = [lí*+B{z)]-í[U*-B{z)]J, 

where It: §i is a unitary operator satisfying X I J e x t e n d s to be analytic in 
| z | < l with positive real part there: 

Re(G(z)x, x) s 0 if |z| < 1 and 

The existence of the unitary operator U in (ii) comes from the polar representa-
tion of the (invertible) operator B{0). 

Theorem 1 will be seen to follow from 

T h e o r e m 2. Let B(z) be analytic and invertible in an open set D, with 0€Z>c 
c. {|z| < 1}. Extend B(z) to the reflection D of D by defining 

B{z) = J*B{z-r-1J-

Then B(z) is a characteristic operator function if and only if 

b{w,z) = {\-wz)-x[J^-B{z)JB{wf] 

is a positive definite operator function on §2. 

The condition on b(z, w) means that for z1 ; ..., z„£D\JD and fo r ;q , . . . ,x„£§2 , 
not all 0, we have 

(2) J (b(zi, zj)x, , Xj) > 0. 

1.3. Remarks on the theorems. The proofs of (the sufficiency parts of) the theo-
rems will be given in Section 2 (Theorem 1) and Sections 3—5 (Theorem 2). The 
necessity parts are less difficult and will.be proved in the next section. 

We shall continually use the following fact about the Q's and J's. Since 
(1-T*T)T* = T*{I-TT*) it follows that f(I-T*T)T* = T*f(I-TT*) for any 
(bounded, Borel) function f From this there follow relations of the form /8(0)* = 
= 5(0)%, Q,B(0) = B(0)Q, etc. 
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As we have pointed out, a different characteristic function is used in [2]. 
Let K=(0T(O)*0T(O))i, so that 0T(O)=U*K. Then 

0T(z) = 0(z) = 0(O)*-lJ[J0(O)*0(z)] • = .U ,"JS:-1/[0(O)V+0(z)], 

and from a relation of K U Z E L ' [4], this is 
'=U*K-iJ[J-.Q(I-zT^-1Q] = U*e„(z) 

where 0N is the characteristic function of the „node" ( § , § ! ; T, Q,J); [2]. 
As with contractions, if 01—U0V, where U and V are constant isometries, 

then 01 and 0 2 are considered the same, as characteristic functions. Thus, given 
B(z), one need only prove the existence of a T such that B— U0T V. In an appendix 
(Section 6) we have included our own proof that if S and T are (invertible) bounded 
operators a n d ' 0 s — U 0 T V , then S and T are unitarily equivalent. 

1.4. Proofs of necessity. The proof of necessity in Theorem 2 follows easily from 
a relation of K U Z E L ' [ 4 ] 

(3) Jj, — 0T(z)J0T(w)* = (1 — zw)Q^{I zT*)~x{I— wT)~1Q:t. 
so that 

and this implies that ¿(w, z) is a positive definite operator function. 
To prove necessity in Theorem 1, we refer to the corresponding proof in [2]. 

Actually (i) is evident from (1); only (ii) needs attention. We have that 0T(z) = 
= U*0N(z), as in Section 1.3 above. Now, in the notation of [2, Section 6], it is easily 
seen that 0 ^ ( 0 ) = ^ and so H0=K, U0=I. Thus 

G(z) = [U* + 0T(z)]-1[U*-0T(z)]J = [ /+ U 0 j- (z)]"1 [/— U 0 x (z)] / = 

= [I+U^0N(z)]-i[I-U^0N(z)}J = JQ{z)J 

arid the necessity part of Theorem 1 follows from that of [2, Theorem 6.1]. 

Finally, it is a pleasure to thank Chandler Davis, T. L. Kriete and Nhan Levan 
for discussions of various parts of this paper. I am also grateful to the referee for 
pointing out the paper [2] which I had overlooked. 

2. Proof of Theorem 1, assuming Theorem 2 

2.1. Integral representation. The function G(z) is analytic for |z| < 1 and 
Re G(z)^0 in jz|< I. Thus it follows from the operator-valued Riesz—Herglotz 
Theorem [1, p. 84] that there is a positive, operator valued measure dF such 
that 

2n 
(4) G{z) - f [eie + z]/[ew-z]dF(6). 

o 
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Using this, we obtain 
2* 

G(z) + G(wf = f {[<?"> + z]/[ew-z] + [e~i0 + vv]/[e-,fl - w]} dF(6) = 
0 

• 2 n 

= J [1 - zw] [(1 - e~ioz) (1 - we'^dFiO). 
o 

Computing G(z) + G(w)* another way, using the definition of G(z), we get 

[ U * + 5 ( Z ) ] [ G ( Z ) + 0 ( H O * ] [ I I + 5 ( W ) * ] = 

- [U * - B (z)] J [U + 5 (u0 +] + [U+ + B(z)} J [ H - B(w)= 

•= 2[ll*JVL-B;(z)JB(w)*] = 2[J^B(z)JB(w)*]. . 

Combining this with the first expression for G(z) + G(w)* gives 

b(w,z) = -[\i*+B{z)]{f [(1 -e"i0(1 -we'a)]^1 [U + fi(w)*]. 
1 0 

2.2. Operator integrals. We have thus far integrated only scalars against operator 
measures; we need now some notation for the integration of operator valued func-
tions against them. Let E(t) and H(t) be operator-valued functions and dF(t) 
a positive operator-valued, measure on [0, 2n], Suppose that E(t) and H(i) are the 
boundary values of operator-valued functions, holomorphic in | z | ^ l or, more 
generally, that H(t) is holomorphic and E(t) is equal to a continuous (scalar-valued) 
function times an analytic function. Then, according to LANGER [5, Lemma V], the 
integral 

2lt 
(5) f E{t){dF(t))H{t), 

o 
defined in terms, of the convergence of Riemann sums of the form 

exists. We shall use the integral (5) in case E(t) is a linear combination of continuous 
functions times constant operator functions. Clearly one has: 

i) For T a constant operator, , 

2 it 2ji 
T J E(t)dF(t)H(t) = f TE(t)dF{t)H{t), 

0 0 
2n 2 n 

[ / E(t)dF(t)H(tj\T = f E(t)dF(t)[H(t)T]. 
0 0 

2 n 

ii) f E(t)dF(t)E{tf s 0. 
o 
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It follows that we may rewrite the last integral in Section 2.1 as 

j 2it 
b(w,z) ^ - f [U* + B(z)][l-e-wz]-1i/F(0)[U + B(n')*][l-ewyv]-1, 

2 o 
for |z|, |w| -c 1. 

2.3. Positive definiteness of b(w, z) in |z|, |w|< 1. Let z1, ..., zn be complex num-
bers in D, j=l, . . . , n and let x1 ; L e t x f x denote the linear functional 
x—(x, x;) on We have 

2 {b(zi,Zj)xi,xJ) ^ '•J 
| 2 n 

= w 2 4 f + B(Z])) (1 - e-'eZj)-idF(0) (U + B(z^) (1 - e ' ^ x , = 
Z i.j o 

. 2k 
= / [(U + B (Zj)*) (1 — e'9Zj) ~1 *;]* dF(6) (11 + i? (z;)*) (1 — e , 9z ;)"1 x ; = 

J 0 , 2 n 
= f K(ey dF(0)K(d) m o, 

0 

where Ar(0) = ^ ,
i (H + 5(z i)*)(l — e i 0z i)_ 1x i . This proves b(w, z) is a positive definite 

operator function in D. 
Actually there is one difficulty here: the fact that the above sum has only been 

proved to be nonnegative. The reader will see, however, that he may easily divide 
out any elements of 0 norm in the proof of Theorem 2. 

2.4. Positive definiteness of b(w, z) in general. To complete the proof of the 
positive definiteness of b(w, z), we shall prove that the integral representation (4) 
persists in | z | > l ; Once this is done, the proof in Sections 2.2 and 2.3 will apply 
verbatim to the case where one or both of the variables z, w has modulus > 1. 

To extend (4) to | z | > l , we shall prove that G(z) satisfies 

(6) G(z~ir = -G(z). 

Since the right side of (4) obviously satisfies the analogous functional equation, the 
proof will be complete when (6) is verified. 

To prove (6), we substitute in the definition of G and use the extension of B(z} 
to | z | > l . 

G I Z - 1 ) * = { [ « ^ ( Z - ^ R W J - B C Z - 1 ) / ] } * = [ J U - J B I Z - Y U U + B I Z - 1 ) * J - 1 = 

= [JU-B(z)-iJJ[U + / B ( z ) - V J - 1 - [UB(z)-I]B(z)-l JJMB(z)[JUB(z) + J]-> = 

= [US(z)- / ] [US(z) + / ] - V = [VLB{z) + I]-\VLB(z)-I]J = 

= [B(z) + K*r1[B{z)-U*]J = -G{z) 

and this completes the proof. 
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3. The Hilbert space H and the operator S 

3.1. Definition of H. We now suppose only that B(z) is analytic in a neigh-
borhood D of 0, and that b(w,z) is a positive definite operator function. Let D 
denote the reflection of D, i.e. D = {z~1\z£D}, and let H° be a set indexed by ( 5 U 5 ) X 
X § 2 ; elements of H° are written kzf where z^DijD a n d / £ $ 2 . H1 is defined to be 
the set of all finite linear combinations of elements of H°. 

We give H 1 the structure of a pre-Hilbert space by defining 

(*,/, Ks) = {b(z, w)f, g) = (1 - wz)~L([J^ — B(w)JB(z)*]f, g). 

The positive-definiteness of b(z, w) implies that this is a bona fide inner product on 
H1. The Hilbert space H is the completion of H1 in this norm. 

3.2. The subspace h0H. Let i?„ be a real number, so large that {.Y: lies in 
D. L e t / 6 . We claim that 

(7) h0f= lim RlcRJ*B(0)f 
R0 R-°o 

exists in H. 
To prove the claim, pick M, R^R0 and compute 

№RJ*B(0)f-MkMJ,Bi0)f\\* = 

= R*{b{R, R)J*B(Q)f, J * m f ) -2RMRe {b(R, M)J,B(Q)f, J,B(0)f) + 

+ M2(b(M,M)J:,B(0)f,J^B(0)f) = 

= [fl2(l — R2)'1 — 2RM{\ —RM)~1 + M2(l — M2)~1](j^B(0)f, 5 ( 0 ) / ) -

—-K2(l-R'T'iJBiRr^BiO)/, B(R)*J,B(0)f) + 

+ 2RM(\-RM)-1(JB(R)*J„B(0)f, B(MfJ„B(0)f)-

- M ^ i - M ^ m M T j ^ B W f B i M y j ^ B m ) . 

Elementary calculus shows that the first term tends to 0 as M, R-~ Since B(R) 
tends uniformly to B(^)=J>iiB(0)*~1J as 7?— «>, it is not hard to see that the sum 
of the last three terms tends to 0 and we have proved the existence, of the limit (7). 

Now we want to find (h0f, k.g) for z^DUD. All this takes is an application of 
(7). In fact 

(h0f, Kg) = lim A(kRJ,B(0)f, kzg) = 

= lim R { l - R z ) - \ [ J i , - B ( z ) J B { R y ] J * B m , g ) = 
R~ co 

. • = lim (R-i-x)-\[B(0)-B(z)JB(RTJ*B(0)]f,g) = 

= ( - z) - 1 ([5 (0) - B {z) JB(~yj,B (0)]/, g) 



On models for rioncontractions 11 

and we have 

(8) (hof,ktg) = z-1([B(z)-B(0)]f,g). 

3.3. The operator S. We define an operator S on the dense subset H1 of H by 

Skzf=zkzf-h,JB{zff 

for z£DUD and / £ § 2 - In part4 of this paper, we shall show that S extends (uniquely), 
to a bounded operator (also denoted S) on H and that the operator S* has B(z) 
as its characteristic operator function. 

4. Boundedness of S 

4.1. P r o p o s i t i o n . For z, w£DL)D, S satisfies 

(Skzf,Kg) = (kzf,^[K-k0]g). 

Thus, the domain of the adjoint S* of S contains H1 (and hence is dense in H) and 
satisfies 
(9) S*kJ=z~l[kz-k0]f. 
In particular, S has a closure. 

P r o o f . 
(Skzf,kwg) = (zkzf-h0JB(z)*f,kwg)= • 

= z(l - zw)~l{[J. - B(w)JB(zf]f g) - W-\[B(yv) - B(0)]JB(z)*f g) = 

= w-MO-zu')"1- 1] ([/, - B(w)JB(z)*]f, g) - w-^Bfw) - B(Q)] JB(zy f g) = 

= w~\kzf kwg) - - B(w)JB(£)*]f, g) -

-w-1([B(w)JB(z)*-B(0)JB(z)*]f,g)=. 
= w-\kzf, Kg) - — B(0)JB(z)*]f, g) = w-\kzf, Kg) ~w~1(kzf, k0g). 

This proves the first part of the proposition. All the other parts follow at once. 
Henceforth, S will denote the closure of the operator S in Section 3.3 above. 

4.2. P r o p o s i t i o n . For z£D{JD and / £ i j 2 , 

(I-SS*)kzf=z-1hoJ[B(z)*-B(0)*]f. 

Thus I—SS* = 0 on (h0tdi)~, so that ( / i 0 ) ^ is contained in the domain of S*. 

P r o o f . 

( / - SS*)kzf = k z f - Sz-\kz- k0}f = 

= kJ-z-1[zkzf-h0JB(z)*f+h0JB(Orf] = zh0J[B(zr-B(0)*]f 

Again, all the other claims are obvious. 
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4.3. P r o p o s i t i o n . /?(,§! is contained in the domain of S* and 

'S*h0f=-k0J*B(0)f. 

P r o o f . F i x / € § ! • We know /?0/'is the limit of RkRJ^B(0)f. Let us compute 

lim S*RkRJ^B(0)f = lim RR-*[kR-ka]J^B{(S)f = 
J ? — / ! — » 

= lim [kR - k0]J,B(0)f = - k0J,B(0)f, 

where kRJ^B(0)f converges to 0 since the limit in (7) exists. Now the proposition 
follows from the fact that S* is closed. 

4.4. Lemma. The following three operators are isometries: 

Ll '• §2 §2 > I^i '• S i "*• §1) ¿3 : 

where 
Ll{\^-B{0)JB{0n'*f) = h f , 

Lz(k<)f) = k<)Jjf 
P r o o f . For 

l l l ^ * - 5 ( 0 ) / 5 ( 0 ) T / 2 / l l 2 = { [ J * - B ( 0 ) J B { m f , f ) = ll^o/ll25 

so Lx is an isometry. 
For L2, we have to determine the norm of h0g, for We have 

l l ^ l l 2 = lim = 
«-CO 

= VirnR\l-R^([JJf-B(R)JB(Rr]J,B(0)g,J^B(0)g) = 

= ([J-B{0)*J,Bmg,g)' 

Now we can compute 

\\L,ff = ( [ . / - / i ( 0 ) % f l ( 0 ) ] [ . / - B ( V ) > J , B ( ^ n f ; \ J - B ( V f J , B m - W f ) = l l / f 

so L2 is an isometry. Finally, let / £ § 2 . We have 

\\hJJ\\2 = {[J*-B{0)jB{0f]jj,jj) = 

= ([J*-J*B(0)JB(0yjJf,f) = ([J,-B(0)JB(0y]f,f) = \\kj\\\ 
and this completes the proof. 

4.5. P r o p o s i t i o n . For Fdh^Sr)!, we have 

(10) LiL1B(G)L21F = S*F. 

In particular the domain of S* contains the closure of h0 §l5 so S* (and hence S) is 
bounded. 
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P r o o f . We have 

B{0)L^hJ = - 5 ( 0 ) [J-B(0TJ,Bm^f = -[J^-B(0)JB(0)*]l'*B(0)f 
and so 

L3LiB(0)Lï1 h0f =-L3k0B(0)f = — k0J^B(0)f. 

Thus (10) follows from Proposition 4.3. 
Now from Lemma 4.4, the operators Lx, Land L3 are bounded, and so the 

boundedness of 5* on the closure of h ^ follows from (10). This and Proposition 
4.2 show that the domain of 5* contains all of H, and the proposition follows from 
the Closed Graph Theorem. 

5. Characteristic operator function of S* 

5.1. P r o p o s i t i o n . For/£§>2, 

( 7 - 5* S)k0f = k0[I-5(0)5(0)*]/, I / - S*S\k0f = k0[j;~- 5(0)/5(0)*]/ , 

sgn (I— S* S)k0f = k0JJ, \I — S* S\1,2k0f = k0{J,-B{O)JB(mirif-

P r o o f . The first relation is immediate, since 

(I—S*S)k0f = k0f+ S*h0JB(0)*f = k 0 / ~ k0J^B (0)J5 (0)*/ = k0[[-B(0)B(0f]f, 

by Proposition 4.3. 

Lemma 4.4 shows L3 is isometric, and a slight modification of its proof 
shows L3 is self adjoint. The above computation shows L 3 ( / — 5 * 5 ) ^ 0 on 
/r0§2

 a n d this proves the second and third relations. The last relation follows from 
the fact that the operator on the right is positive and its square is | /—5*5 | . 

•5.2. P r o p o s i t i o n . For / € § 1 , 

(I-SS*)hof= M / - 5 ( 0 ) * 5 ( 0 ) ] / , \r-SS*\h0f= ho[J-B(0)*J±B(0)]f, 

sgn ( / - SS*)h0f = h0Jf, I / - SS*\i/2hof = A o [ / - 5 ( 0 ) * / , 5 ( 0 ) ] 1 / 2 / 

For 0 ^ zÇDUD and /€§2, 

|7— SS*\ll2k.f = z~1h„[J~B(0)* J^B (0)]~1/2 [5 (z)* — 5 (0)*]/. 

P r o o f . The first four relations follow from a computation similar to the proof 
of Proposition 5.1, which will be omitted. The last relation follows from Proposition 
4.2 and the fact that 

|/— SS*\ll2kzf = \I— S S * |1/2 [sgn (/— 5 5 *)] (/— 5 5 *)kzf. 

One more lemma, and we shall be able to compute the characteristic operator 
function of 5. 
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5.3. Lemma. For z£DUD, we have (I-zS*)~1k0f=kzf 

P r o o f . {I-zS*)kJ=kJ-zz-1{kE-knf\=k0f. 

5.4. T h e o r e m . Up to a constant, isometric multiple, we have 0s,(z)=B(z). 

P r o o f . We find 0 s ( z ) easier to compute. The theorem will follow from a 
result of K U Z E L ' [4] which states 0si(z) — 0s(z)*. 

We need to know what the range of I—S* S is, and a computation copied from 
Proposition 4.2 (using Proposition 4.3) shows that the closures of R(I— S* S) and 
k0 coincide. What we want is therefore 

0 s ( z ) k o f = S s g n ( I - S * S ) k 0 f - z \ I - S S * \ l l 2 ( I ~ z S * ) - 1 \ I - S * S \ l l 2 k 0 f . 

We first use Proposition 5.1 to get 

0s(z)kof = Sk0J^f— z\I— SS*\l,2(I—zS*) ~1k0[Jil. — B(0) JB(0)*]ll2f. 

Now Lemma 5.3 gives 

0s(z)kof = Sk0Jj.f—z\I—SS*\ll2ks[Jx — B(0)JB(0)*]1/2f = 

= S k 0 j j - h0\j-B(0yj,B(0Tll2[B(.ïT -B( 0 )1 [j*-B(0)jB(0)*r'2f 

by Proposition 5.2. Now we have 

ho\J-B(0TJ^B(0)}-^B(0r[J^-B{0)JB(0ff'2f= h0B(OTf= -Sk0JJ, 

and so our estimate of 6 S becomes 

= - h0\J^B(0yj^B(0)\-"2B(Zy [ / , -B{0)JB(mmf = L.BizfL.kJ 

and since L j and L2 are (constant) isometries, it follows that 0 s ( z ) and B(z)* are the 
same, considered as characteristic functions (see Section 6 below). 

6. Appendix 

6.1. Uniqueness of characteristic function. Let S and T be invertible operators 
on Hilbert spaces Hj and H2, and assume S and T have no reducing subspaces on 
which they are unitary. 

T h e o r e m . If there are constant unitaries U and V such that 0s=U0TV, then 
S and T are unitarily equivalent. 

P r o o f . By the computation of Kuzel', which we used in Section 1.4, we have 

(11) (\-z^-*[J<-eT{z)JQT(W)*\ = Q^I-zT*r\I-wT)-*0* 

for z and w in Di)D, for D some neighborhood of 0 (where ( /—zT) - 1 and ( I — z S ) _ 1 
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exist). Now let K, K^, P, P^ denote the analogues of the operators J, J^, Q, Q+ 
corresponding to S. We have K= V*JV, K* = UJ^ U*, and so 

K*-0s(z)KQs(wr = U[J* ~ &tJ&t]U*. 

Combining this with (11), we have 

P,{I~zS*)~\I-wSy1P, = UQi,{I-zT*)-\I~VVTy1Q^U\ 

For g, we therefore have 

• {(I-wS)-*P,g, ( I - z S y i p j t ) = ((/— wT)~1Q^U*g, {l-zTyiQ^h) 

whence it follows that the map 

(12 ) U : ( I — w S y - P ^ g I— ( I — w T y - Q ^ U ^ g , w ^ D l i D , 

is an isometry, from some subspace of H1 to some subspace of H2. If we can prove 
that the subspace M of Hj of elements of the form f{S)Pifg, where g£R(P*), and f 
is a rational function with poles in DUD, is dense in H,, then we will have that U 
has a dense domain. 

To prove M is dense in we shall prove that M reduces 5 and that S is 
unitary on Mx. M is certainly S invariant. To prove M is S* invariant, note 

s * f ( s ) p , g = s - ^ s s ^ - j j m p ^ + s - ^ m p . g . 

Let h = \I-SS*\ll2KJ(S)P,g, and we have 

S*f(S)P^g = -S-1P^h + S-1f(S)P1,geM. 

Now we want to show that M contains the range of I—S*S, i.e. (/— S* To 
do this, let f={I—S* S)g. We have 

/ = S'^I-SS^Sg = S^PJi where h = P*KSgZR(PJ. 

Now M reduces S and contains R(P) and R ( P s o S must be unitary on 
M x ; i.e. M x = {0}. A similar argument shows the range of H is dense in H2, so U 
is unitary. 

To complete the proof of the theorem, we must show S = U * Tit . To do this, 
just refer back to (12). It implies 

mS)P*g=f{T)Q*U*g. 

Replacing f ( t ) by t f ( t ) here, we get 

USf(S)P*g = Tf(T)QillU*g = TVlf(S)Ptg, 

so that USA-=TUx for x a n d this completes the proof. 
A corollary of the theorem is that any bounded, invertible operator-is unitarily 

equivalent to the operator S constructed in Section 3.3. 
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