On the nilstufe of homogeneous groups

By SHALOM FEIGELSTOCK in Ramat-Gan (Israel)

1. All groups in this paper are abelian, with addition the group operation. A homogeneous group is a group all of whose elements are of the same type (see [1, p. 147] for a definition of type). We define the type of a homogeneous group to be the type of any of its non-zero elements. For G a group, and $g \in G$, the type of g will be denoted by T(g), and if G is homogeneous, the type of G will be denoted by T(G).

SZELE [3] defined the nilstufe of a group G to be n, n a positive integer, if there exists an associative ring R with additive group G such that $R^n \neq 0$, but for every associative ring R with additive group G holds $R^{n+1}=0$. If no such positive integer n exists, we will say that G has nilstufe ∞ . By considering not necessarily associative rings with additive group G, we may similarly define the strong nilstufe of G. The nilstufe of G will be denoted by v(G) and the strong nilstufe by N(G). A multiplication on a group G is meant to be the multiplication of a ring R with additive group G.

RÉDEI and SZELE [2] have shown that if G is a rank one, torsion-free group, and if the components of T(G) are not all 0 and ∞ , then $\nu(G)=1$. We will show more generally (corollary to theorem 1) that if G is a homogeneous group, and if the components of T(G) are not all 0 and ∞ , then N(G)=1. Under certain restrictions, the nilstufe of a direct sum of homogeneous groups will be computed.

2. Lemma. Let G, H, and K be homogeneous groups. If $T(K) \ge T(G) + T(H)$ then Hom $(G \otimes H, K) = 0$.

Proof. Let $0 \neq g \in G$, $0 \neq h \in H$, and let $\varphi \in \text{Hom}(G \otimes H, K)$. If $\varphi(g \otimes h) \neq 0$, then $T(K) = T[\varphi(g \otimes h)] \ge T(g \otimes h) \ge T(g) + T(h) = T(G) + T(H)$, a contradiction. Therefore $\varphi = 0$, and Hom $(G \otimes H, K) = 0$.

Theorem 1. Let $\{G_i, i \in I\}$ be a set of homogeneous groups and let $G = \sum_{i \in I}^n \bigoplus G_i$. If for all $i, j, k \in I$, $T(G_k) \not\equiv T(G_i) + T(G_i)$, then N(G) = 1.

Proof. Let Mult G be the group of multiplications on G. Then, by the lemma,

Mult
$$G \simeq \operatorname{Hom} (G \otimes G, G) = \operatorname{Hom} \left(\sum_{i, j \in I} \oplus G_i \otimes G_j, \sum_{k \in I} \oplus G_k \right) \subseteq$$
$$\subseteq \sum_{i, j, k \in I} \oplus \operatorname{Hom} (G_i \otimes G_j, G_k) = 0.$$

Corollary. Let G be a homogeneous group. If the components of T(G) are not all 0 and ∞ , then N(G)=1.

Theorem 2. Let G_i be a homogeneous group, with the components of $T(G_i)$ not all 0 and ∞ , $1 \le i \le n$. Let $G = \sum_{i=1}^{n} \bigoplus G_i$. If for $i \ne j$, $T(G_i) \ne T(G_j)$, $1 \le i, j \le n$, then $v(G) \le 2^n - 1$.

Proof. For n=1 the theorem is true by theorem 1. Let n>1 and suppose the theorem is true for the direct sum of n-1 homogeneous groups. It may be assumed that G_n is such that $T(G_i) \triangleq T(G_n)$ for $1 \le i \le n-1$. Let $g \in G_n$, and let $h \in G$. For any multiplication on G, $T(gh) \ge T(g) \ge T(G_n)$. However $gh = \sum_{i=1}^n g_i$, $g_i \in G_i$, $1 \le i \le n$. For $1 \le i \le n-1$ if $g_i \ne 0$, then $T(G_i) = T(g_i) \ge T(gh) \ge T(G_n)$, a contradiction. Therefore: (1) $G_n G \subseteq G_n$,

and similarly

(2)

 $GG_n \subseteq G_n$.

Let $g, g' \in G_n$. For any multiplication on $G, T(gg') > T(G_n)$. However, $gg' = \sum_{i=1}^n g_i$. If $g_i \neq 0, \ 1 \leq i \leq n$, then $T(G_i) = T(g_i) \geq T(gg') > T(G_n)$, a contradiction. Therefore (3) $G_n^2 = 0$.

(1) and (2) imply that G_n is an ideal in every ring on G. Therefore, every multiplication on G induces a multiplication on G/G_n . By the induction hypothesis $(G/G_n)^{2^{n-1}} = 0$. Hence:

$$(4) G^{2^{n-1}} \subseteq G_n.$$

(3) and (4) yield that $G^{2^n} = (G^{2^{n-1}})^2 \subseteq G_n^2 = 0$, and hence $v(G) \leq 2^n - 1$.

References

- [1] L. FUCHS, Abelian Groups, Akadémiai Kiadó (Budapest, 1966).
- [2] L. RÉDEI-T. SZELE, Die Ringe ersten Ranges, Acta Sci. Math., 12A (1950), 18-29.
- [3] T. SZELE, Gruppentheoretische Beziehungen bei gewissen Ringkonstruktionen, Math. Z., 54 (1951), 168–180.

(Received March 21, 1973)