On subdirect representations of finite commutative unoids

By F. GÉCSEG in Szeged

In this paper we give a representation of finite commutative unoids as homomorphic images of subdirect products of very simple finite commutative unoids. Furthermore, using this representation, we present a full characterization of those finite commutative unoids \mathfrak{A} which have the following property: if \mathfrak{A} can be given as a homomorphic image of a subdirect product of two finite commutative unoids \mathfrak{B} and \mathfrak{C} then there exists a subunoid of \mathfrak{B} or \mathfrak{C} which can be mapped homomorphically onto \mathfrak{A} .

Let $\mathfrak{A} = \langle A; F \rangle$ be a unoid. (For the terminology, see [1].) We say that \mathfrak{A} is commutative if $af_1f_2 = af_2f_1$ for any $a \in A$ and $f_1, f_2 \in F$. In this paper by a unoid we always mean a finite commutative unoid.

Take an arbitrary unoid $\mathfrak{A} = \langle A; F \rangle$, an element $a \in A$ and an operation $f \in F$. Then by the cycle generated by (a, f) in \mathfrak{A} we mean the set of elements af^0, af, \ldots ..., af^k, \ldots , where $af^0 = a$ and $af^k = (af^{k-1})f$ for any positive integer k. For this cycle we use the short notation (a, f). If af^0, \ldots, af^u are all different and u is the least exponent for which there exists a w > u such that $af^w = af^u$ then af^0, \ldots, af^{u-1} is the preperiod of this cycle and u is the length of this preperiod. (When the preperiod is empty its length equals 0.) Furthermore, if u + v is the minimal number for which $af^{u+v} = af^u$ holds then $af^u, af^{u+1}, \ldots, af^{u+v-1}$ is the period of the cycle under question and v is the length of this period. In this case we say that (a, f) is a cycle of type (u, v).

A unoid $\mathfrak{A} = \langle A; F \rangle$ is called *f-cyclic* $(f \in F)$ of type (k, l) if for some $a \in A$, the set A coincides with the cycle (a, f) in \mathfrak{A} and this cycle is of type (k, l), while the operations different from f are identical mappings of A.

 \mathfrak{A} is called *prime-power unoid* (with respect to $f \in F$) if it is *f*-cyclic of type $(0, r^n)$ where *r* is a prime number. \mathfrak{A} is an *elevator* (regarding $f \in F$) if it is *f*-cyclic of type (k, 1). We say that \mathfrak{A} is a prime-power unoid (resp. elevator) if it is prime-power unoid (resp. elevator) regarding one of its operations.

Now we are ready to state our

Theorem 1. Every commutative unoid can be given as a homomorphic image of a subdirect product of finitely many elevators and prime-power unoids.

3 A

F. Gécseg

Proof. Let $\mathfrak{A} = \langle A; F \rangle$ be an arbitrary commutative unoid. Denote by F^* the unoid of all polynomials over F of the form xp under a fixed variable x. We shall write $xp \equiv xq(\rho)$ if and only if xp = xq holds identically in \mathfrak{A} . It is obvious that the relation ρ is a congruence on F^* (we say that \mathfrak{A} induces ρ), and the factor unoid $F^*/\varrho = \mathfrak{B}(=\langle B; F \rangle)$ is commutative. For elements of \mathfrak{B} we shall apply the following notation: $C_{\varrho}(xp)$ means the class of the partition of F^* induced by ϱ containing xp.

Let us suppose that $F = \langle f_1, \dots, f_k \rangle$, and define the unoids $\mathfrak{B}_i = \langle B_i; F \rangle$ $(i=1,\ldots,k)$ as follows: B_i is the cycle $(C_{\rho}(x), f_i)$ in \mathfrak{B} and f_i is the restriction of f_i (on B) to B_i , while the operations f_i are identical mappings of B_i for $j \neq i$.

Now take the mapping φ of the direct product $\mathfrak{B}_1 \times \ldots \times \mathfrak{B}_k$ into \mathfrak{B} defined in the following way:

$$\varphi((C_{\varrho}(xf_{1}^{n_{1}}), \dots, C_{\varrho}(xf_{i}^{n_{i}}), \dots, C_{\varrho}(xf_{k}^{n_{k}}))) = C_{\varrho}(xf_{1}^{n_{1}} \dots f_{i}^{n_{i}} \dots f_{k}^{n_{k}})$$
$$(n_{1}, \dots, n_{i}, \dots, n_{k} = 0, 1, \dots).$$

Using commutativity of \mathfrak{B} it can immediately be verified that φ is a homomorphism onto B.

Let us denote by ϱ_1 the relation induced by $\mathfrak{B}_1 \times \ldots \times \mathfrak{B}_k$ on F^* . Then $\varrho_1 \leq \varrho$ because \mathfrak{B} is a homomorphic image of $\mathfrak{B}_1 \times \ldots \times \mathfrak{B}_k$. Observe that \mathfrak{B}_i is f_i -cyclic for every $i \ (1 \le i \le k)$. Let \mathfrak{B}_i be of type (u_i, v_i) . In the case $v_i = 1$ let \mathfrak{B}'_i be an f_i -cyclic unoid of type $(u_i, 2)$ and let $\mathfrak{B}'_i = \mathfrak{B}_i$ in the other case. It is obvious that \mathfrak{B}'_i can be mapped homomorphically onto \mathfrak{B}_i . Therefore, $\mathfrak{B}_1 \times \ldots \times \mathfrak{B}_k$ is a homomorphic image of $\mathfrak{B}'_1 \times \ldots \times \mathfrak{B}'_k$. Denote by ϱ_2 the relation of F^* induced by $\mathfrak{B}'_1 \times \ldots \times \mathfrak{B}'_k$. Then we get that $\varrho_2 \leq \varrho_1$.

As it can be seen in [2], every equation of an equational class of commutative unoids can have one of the following two forms:

(1)
$$xf_1^{m_1} \dots f_k^{m_k} = xf_1^{n_1}$$

(1)
$$xf_{1}^{m_{1}} \dots f_{k}^{m_{k}} = xf_{1}^{n_{1}} \dots f_{k}^{n_{k}}$$
(2)
$$xf_{1}^{m_{1}} \dots f_{k}^{m_{k}} = yf_{1}^{n_{1}} \dots f_{k}^{n_{k}}$$
(*m*₁, ..., *m*_k, *n*₁, ..., *n*_k \ge 0).

Equation (2) implies $xf_1^{m_1} \dots f_k^{m_k} = yf_1^{m_1} \dots f_k^{m_k}$. Choose an element b_i from every B'_i (i=1,...,k). Then $(b_1, b_2, ..., b_k) f_1^{m_1} \dots f_k^{m_k} \neq (b_1 f_1, b_2, \dots, b_k) f_1^{m_1} \dots f_k^{m_k}$ showing that (2) fails to hold on $\mathfrak{B}'_1 \times \ldots \times \mathfrak{B}'_k$.

Therefore, we have got that every equation which holds on $\mathfrak{B}'_1 \times \ldots \times \mathfrak{B}'_k$ is of the form (1). Since $\varrho_2 \leq \varrho$ thus all equations holding on $\mathfrak{B}'_1 \times \ldots \times \mathfrak{B}'_k$ hold on \mathfrak{A} , too, i.e., \mathfrak{A} is contained in the equational class generated by $\mathfrak{B}'_1 \times \ldots \times \mathfrak{B}'_k$. This means that A can be given as a homomorphic image of a subunoid of a finite direct power of $\mathfrak{B}'_1 \times \ldots \times \mathfrak{B}'_k$ (see, e.g., the proof of the Theorem in [1]).

In order to end the proof of Theorem 1, it is enough to show that every \mathfrak{B}'_i can be given as a subdirect product of finitely many elevators and prime-power

Subdirect representations

unoids. Let $B'_i = \langle b_0, ..., b_{u_i}, ..., b_{u_i+v_i-1} \rangle$ and $v_i = r_1^{w_1} ... r_t^{w_t}$ where r_i are different prime numbers. Define the relations $\sigma_0, \sigma_1, ..., \sigma_t$ on B'_i as follows: $b_j \equiv b_k(\sigma_0)$ if and only if j = k or $j, k \ge u_i$, and for every l $(l=1, ..., t), b_j \equiv b_k(\sigma_i)$ if and only if $j \equiv k \pmod{r_i^{w_i}}$. It is clear that $\sigma_0, ..., \sigma_t$ are congruences of \mathfrak{B}'_i ; moreover, their intersection is the identity relation. Indeed, from $b_j \equiv b_k(\sigma_0 \cap ... \cap \sigma_t)$ it follows that j = k or $j, k \ge u_i$ and (by the Chinese Remainder Theorem) $j \equiv k \pmod{v_i}$. In both cases we have $b_j = b_k$. Thus \mathfrak{B}'_i can be given as a subdirect product of $\mathfrak{B}'_i/\sigma_0, ..., \mathfrak{B}'_i/\sigma_t$. Moreover, $\mathfrak{B}'_{ij}/\sigma_0$ is an elevator and each of $\mathfrak{B}'_i/\sigma_1, ..., \mathfrak{B}'_i/\sigma_t$ is a prime-power unoid. This ends the proof of Theorem 1.

A unoid $\mathfrak{A} = \langle A; F \rangle$ is called *homomorphically prime* if |A| > 1 and the fact \mathfrak{A} is a homomorphic image of a subdirect product of two unoids \mathfrak{A}_1 and \mathfrak{A}_2 implies that there exists a subunoid in \mathfrak{A}_1 or \mathfrak{A}_2 which can be mapped homomorphically onto \mathfrak{A} .

First we state the following simple

Theorem 2. If |F|=1 then $\mathfrak{A}=\langle A; F \rangle$ is homomorphically prime if and only if \mathfrak{A} is an elevator or prime-power unoid.

Proof. The subunoids and homomorphic images of elevators are elevators, too. Similar statement is valid for prime-power unoids. Therefore, by Theorem 1, every homomorphically prime unoid should be either elevator or prime-power unoid. It can be shown, by an easy computation, that in the case |F|=1 all elevators and prime-power unoids are homomorphically prime.

This Theorem 2 and Theorem 1 of YOELI in [3] show that the class of all homomorphically prime unary algebras and that of all connected subdirectly irreducible unary algebras coincide.

We now prove

3*

Theorem 3. If $|F| \ge 2$ then a commutative unoid $\mathfrak{A} = \langle A; F \rangle$ is homomorphically prime if and only if \mathfrak{A} is an elevator.

Proof. The subunoids and homomorphic images of an elevator are elevators. Prime-power unoids have similar property. Thus, by Theorem 1, homomorphically prime unoids should be either elevators or prime-power unoids.

First we show that none of the prime-power unoids is homomorphically prime. Before proving this statement, let us introduce the notation $k \pmod{n}$ for the least non-negative residue of k modulo n.

For the sake of simplicity, let $\mathfrak{A} = \langle A; F \rangle$ be a prime-power unoid with respect to f_1 such that $A = \langle a_0, \dots, a_{m^n-1} \rangle$ and

$$a_i f_1 = a_{i+1 \pmod{m^n}}$$

where *m* is a prime number. Take two different prime numbers $m_1(\neq m)$, $m_2(\neq m)$ such that $m^2 \nmid (m_1 - m_2)$, and let *r* be an integer with r > n. Let us define the unoids $\mathfrak{U}_i = \langle A_i; F \rangle$ (i=1,2) in the following way:

$$A_{i} = \langle a_{i0}, ..., a_{im^{r}} \rangle, \quad a_{ij} f_{1} = a_{i(j+1) \pmod{m^{r}}},$$
$$a_{ij} f_{2} = a_{i(j+m_{i}) \pmod{m^{r}}}$$

and $a_{ij}f_i = a_{ij}$ if l > 2, where i = 1, 2 and j = 0, ..., m' - 1. It is obvious that \mathfrak{A}_1 and \mathfrak{A}_2 are commutative.

Consider the subdirect product $\mathfrak{A}_1 \times \mathfrak{A}_2$ of \mathfrak{A}_1 and \mathfrak{A}_2 consisting of all elements (a_{1j}, a_{2j}) and $(a_{1j}, a_{2j})f_2^k$ $(j=0, \ldots, m^r-1; k=1, 2, \ldots)$. We show that the mapping φ defined by

$$\varphi((a_{10}, a_{20})f_1^t) = a_0 f_1^t$$
 and $\varphi((a_{10}, a_{20})f_1^t f_2^k) = a_0 f_1^t$ $(t, k = 1, 2, ...)$

is a homomorphism of $\mathfrak{A}_1 \times \mathfrak{A}_2$ onto \mathfrak{A} .

It is enough to prove that φ is well defined. Let t_1 , k_1 and t_2 , k_2 be natural numbers such that

$$(3) (a_{10}, a_{20})f_1^{t_1}f_2^{k_1} = (a_{10}, a_{20})f_1^{t_2}f_2^{k_2}.$$

We show that this implies $a_0 f_1^{t_1} = a_0 f_1^{t_2}$, i.e., $t_1 \equiv t_2 \pmod{m^n}$. The equality (3) means that

(4)
$$t_1 + m_i k_1 \equiv t_2 + m_i k_2 \pmod{m^r}$$
 $(i = 1, 2),$

whence we get $m' | (m_1 - m_2)(k_1 - k_2)$. But $m^2 \nmid (m_1 - m_2)$, thus $m'' | (k_1 - k_2)$ because r > n. From this, using anyone of the congruences (4) we have $t_1 \equiv t_2 \pmod{m''}$. Thus we have shown that φ is well defined. Therefore, by definition, it is a homomorphism.

It remains to be shown that \mathfrak{A} cannot be given as a homomorphic image of a subunoid of \mathfrak{A}_1 or \mathfrak{A}_2 . Neither \mathfrak{A}_1 nor \mathfrak{A}_2 have any subunoid different from themself. Thus take a mapping φ_i of \mathfrak{A}_i onto \mathfrak{A} (i=1, 2) such that $\varphi_i(a_{ij}) = a_u$. If φ_i is a homomorphism then

$$\varphi_i(a_{ij}f_2) = \varphi(a_{ij}f_1^{m_i}) = a_{(u+m_i) \pmod{m^n}} = a_u.$$

But $a_{(u+m_i) \pmod{m^n}} \neq a_u$ because $m^n \nmid m_i$. Therefore, φ_i cannot be a homomorphism.

We now show that every elevator is homomorphically prime. Let $\mathfrak{A}_k = \langle A_k; F \rangle$ denote the elevator with

$$A_k = \langle a_0, ..., a_k \rangle$$
 $(k > 0), a_i f_j = a_i \ (a_i \in A_k, f_j \in F)$ if $j > 1$

and

$$a_i f_1 = \begin{cases} a_{i+1} & \text{if } i < k, \\ a_k & \text{if } i = k. \end{cases}$$

In the sequel by p and q with or without indices we denote polynomials in which f_1 does not occur.

Let us assume that \mathfrak{A}_k can be given as a homomorphic image of a subdirect product of two unoids \mathfrak{B}_1 and \mathfrak{B}_2 under a homomorphism φ for which $\varphi((b_1, b_2)) = a_0$ $((b_1, b_2) \in B_1 \times B_2)$ holds. First we show that at least one of the unoids \mathfrak{B}_i (i=1, 2)has the following property P: for every p, the elements $b_i p, b_i p f_1, \ldots, b_i p f_1^{k-1}$ are all different and there exists no $b_i p f_1^u$ with $u \ge k$ which is equal to one of them. Indeed, in the opposite case there exist polynomials p_1 and p_2 , non-negative integers u_1, t_1 and u_2, t_2 such that $b_1 p_1 f_1^{u_1} = b_1 p_1 f_1^{t_1}$, $b_2 p_2 f_1^{u_2} = b_2 p_2 f_1^{t_2}$; $u_1, u_2 < k$; $t_1 > u_1$ and $t_2 > u_2$. By the commutativity of \mathfrak{B}_1 and \mathfrak{B}_2 , $b_1 p_1 p_2 f_1^{u_1} = b_1 p_1 p_2 f_1^{t_1}$ and $b_2 p_1 p_2 f_1^{u_2} =$ $= b_2 p_1 p_2 f_1^{t_2}$. Now let us suppose that $u_2 \ge u_1$. Then

and

$$b_1 p_1 p_2 f_1^{u_2} = b_1 p_1 p_2 f_1^{u_2 + (t_1 - u_1)(t_2 - u_2)}$$

 $b_2 p_1 p_2 f_1^{u_2} = b_2 p_1 p_2 f_1^{u_2 + (t_1 - u_1)(t_2 - u_2)}.$

Therefore,

$$(b_1, b_2)p_1p_2f_1^{u_2} = (b_1, b_2)p_1p_2f_1^{u_2+(t_1-u_1)(t_2-u_2)}.$$

Since φ is a homomorphism thus we get

$$a_0 f_1^{u_2} = a_0 f_1^{u_2 + (t_1 - u_1)(t_2 - u_2)}$$

which is impossible.

In the sequel we write simply \mathfrak{B} instead of \mathfrak{B}_i having the above property and b instead of b_i . Consider the cycle (bp, f_1) in \mathfrak{B} with minimal preperiod d among all cycles generated by pairs of the form (bq, f_1) . Then property P implies $d \ge k$. Take the subunoid \mathfrak{B}' of \mathfrak{B} generated by bp. We show that \mathfrak{B}' can be mapped homomorphically onto \mathfrak{A}_k , namely, the mapping φ defined by $\varphi(bpqf_1^l) = a_0 f_1^l$ for all q and non-negative integer l will be such a homomorphism.

To prove that φ is well defined let us assume that $bpq_1f_1^{l_1}=bpq_2f_1^{l_2}$. We must have $a_0f_1^{l_1}=a_0f_1^{l_2}$, or, equivalently, $l_1=l_2$ provided l_1 , $l_2 \ge k$ does not hold. Suppose $l_1 < l_2$, k. Observe that, for any q, the preperiod of the cycle (bpq, f_1) cannot be longer than d and in fact, in view of the minimum property of bp, it coincides with d. Indeed, by the commutativity of \mathfrak{B} , $bpf_1^u=bpf_1^v$ implies $bpqf_1^u=bpqf_1^v$. Now we distinguish two cases:

1) $l_2 < d$. If c is the length of the period of the cycle (bpq_2, f_1) then $bpq_1 f_1^{l_1+d-l_2} = = bpq_1 f_1^{l_1+d-l_2+c}$. But this is incompatible with property P because $l_1+d-l_2 < d$.

0

2) $l_2 \ge d$. Then we get similarly $bpq_1 f_1^{l_1} = bpq_1 f_1^{l_1+c}$, which is again a contradiction.

Finally, a short computation shows that $\varphi(bpqf_1^l)f = \varphi(bpqf_1^lf)$ holds for any $f \in F$. This completes the proof of Theorem 3.

Acknowledgements. The author is grateful to B. CSÁKÁNY for his useful comments which helped to make the paper more concise.

References

F. GÉCSEG—S. SZÉKELY, On equational classes of unoids, Acta Sci. Math., 34 (1973), 99-101.
 А. И. Мальцев, Алгебраические системы (Москва, 1970).
 М. YOELI, Subdirectly irreducible unary algebras, Amer. Math. Monthly, 74 (1967), 957-960.

(Received May 30, 1973)

O