On fractional powers of operators in Hilbert space

By W. M. GREENLEE in Tucson (Arizona, USA)*

0. The primary concern of this note is to give conditions (Theorem 1) such that if A and B are each self adjoint operators with positive lower bounds and A+B is self adjoint, then for $0 \le \tau \le 1$, the domain $D((A+B)^r)$ equals $D(A^r) \cap D(B^r)$. A theorem of LIONS and MAGENES [19] on interpolation of intersections is then obtained as a corollary. It is then verified that for a large class of Schrödinger operators $-\Delta + q(x)$ on \mathbb{R}^n , $\Delta =$ Laplacian, q real valued, the conditions are satisfied so that Theorem 1 is applicable if $D(-\Delta + q(x)) = D(-\Delta) \cap D(q(x))$ in the operator theoretic sense.

In addition a new sufficient condition (Theorem 2) for the equality of $D(C^{1/2})$ and $D(C^{*1/2})$, where C is a regularly accretive operator, is given. This condition is shown to be applicable if C arises as an elliptic partial differential operator with homogeneous Dirichlet boundary conditions over certain (possibly unbounded) domains admitting corners, the Lipschitzian graph domains:

1. Let *H* be a complex Hilbert space with norm |u| and inner product (u, v). Further let V_a (resp. V_b) be a complex Hilbert space with $V_a \subset H$ (resp. $V_b \subset H$), i.e. V_a is a vector subspace of *H* and the injection of V_a into *H* is continuous. Also assume that V_a , V_b , and $V_a \cap V_b$ are dense in *H* and denote the inner product in V_a (resp. V_b) by a(u, v) (resp. b(u, v)). To the inner product a(u, v) there corresponds a linear operator *A* in *H*, *the operator in H associated with* a(u, v), defined on

 $D(A) = \{u \in V_a : v \to a(u, v) \text{ is continuous on } V_a \text{ in the topology induced by } H\}$ by

$$(Au, v) = a(u, v)$$
 for all $v \in V_a$.

A is a positive definite self adjoint operator in H and D(A) is dense in V_a . For τ positive, denote by A^{τ} the positive τ th power of A as defined by use of the spectral

* The research for this paper was supported in part by the National Science Foundation.

W. M. Greenlee

theorem; A^{τ} is a positive definite, self adjoint operator in H. Furthermore, $D(A^{1/2})$ is V_a and $a(u, v) = (A^{1/2}u, A^{1/2}v)$ for all $u, v \in V_a$.

For $0 \le \tau \le 1$, the τ th interpolation space by quadratic interpolation between V_a and H, $[V_a, H]_{\tau}$, is defined as the Hilbert space

$$[V_a, H]_r = D(A^{r/2})$$

with inner product $(A^{\tau/2}u, A^{\tau/2}v)$. Further for $\tau \in [0, \infty)$ let $[V_a, H]_{\tau}$ be the Hilbert space $D(A^{\tau/2})$ with inner product $(A^{\tau/2}u, A^{\tau/2}v)$.

Let B be the operator in H associated with b(u, v), i.e.

$$(Bu, v) = b(u, v), \quad u \in D(B), \quad Bu \in H, \quad v \in V_b,$$

and for $\tau \in [0, \infty)$ denote by $[V_b, H]_{\tau}$ the Hilbert space $D(B^{\tau/2})$ with inner product $(B^{\tau/2}u, B^{\tau/2}v)$. Now $V_a \cap V_b$, provided with the inner product a(u, v) + b(u, v), is a Hilbert space and, since $V_a \cap V_b$ is dense in H, we may let Σ be the operator in H associated with a(u, v) + b(u, v), i.e.

$$(\Sigma u, v) = a(u, v) + b(u, v), \quad u \in D(\Sigma),$$

$$\Sigma u \in H, \quad v \in V_a \cap V_b.$$

Then for $\tau \in [0, \infty)$ let $[V_a \cap V_b, H]_{\tau}$ be the Hilbert space $D(\Sigma^{\tau/2})$ with inner product $(\Sigma^{\tau/2}u, \Sigma^{\tau/2}v)$. We wish to obtain relationships between the Hilbert spaces $[V_a \cap V_b, H]_{\tau}$ and $[V_a, H]_{\tau} \cap [V_b, H]_{\tau}$ (with the inner product $(A^{\tau/2}u, A^{\tau/2}v) + (B^{\tau/2}u, B^{\tau/2}v)$), without assuming that $A^{1/2}$ and $B^{1/2}$ commute as in [19], p. 95.

Proposition 1. For each $\tau \in [0, 1]$,

$$[V_a \cap V_b, H]_{\mathfrak{r}} \subset [V_a, H]_{\mathfrak{r}} \cap [V_b, H]_{\mathfrak{r}},$$

and, if $\alpha, \beta \ge 0$ and $\alpha + \beta = 1$,

 $\alpha |A^{\tau/2}u| + \beta |B^{\tau/2}u| \leq |\Sigma^{\tau/2}u| \quad for \ all \quad u \in [V_a \cap V_b, H]_{\tau}.$

Proof. Obviously the identity mapping is continuous from $V_a \cap V_b$ into V_a with bound ≤ 1 , continuous from $V_a \cap V_b$ into V_b with bound ≤ 1 , and continuous from H into H with bound 1. The proposition is thus a trivial consequence of the quadratic interpolation theorem of LIONS [16], pp. 431-432 (cf. also ADAMS, ARON-SZAJN and HANNA [1], App. I).

Observe that A + B is essentially self adjoint if and only if $D(A + B) = D(A) \cap D(B)$ is dense in $D(\Sigma)$, i.e. if and only if $[V_a, H]_2 \cap [V_b, H]_2$ is dense in $[V_a \cap V_b, H]_2$. Further if A + B is essentially self adjoint, then the closure of A + B is Σ .

Proposition 2. If A+B is essentially self adjoint, then for each $\tau \in [1, 2]$ such that $D(A) \cap D(B)$ is dense in $[V_a, H]_{\tau} \cap [V_b, H]_{\tau}$,

$$[V_a, H]_{\mathfrak{r}} \cap [V_b, H]_{\mathfrak{r}} \subset [V_a \cap V_b, H]_{\mathfrak{r}},$$

Fractional powers of operators

and

(1)
$$|\Sigma^{\tau/2}u| \leq |A^{\tau/2}u| + |B^{\tau/2}u|$$
 for all $u \in [V_a, H]_{\tau} \cap [V_b, H]_{\tau}$.

Proof. Let $u \in D(A) \cap D(B)$. Then since $D(\Sigma)$ is dense in $D(\Sigma^{\theta})$ for all $\theta < 1$,

$$|\Sigma^{\tau/2} u| = \sup \{ |(\Sigma^{\tau/2} u, \Sigma^{1-(\tau/2)} v)| : v \in D(A) \cap D(B) \text{ and } |\Sigma^{1-(\tau/2)} v| = 1 \} =$$

$$\sup \{ |(A^{\tau/2}u, A^{1-(\tau/2)}v) + (B^{\tau/2}u, B^{1-(\tau/2)}v| : v \in D(A) \cap D(B) \text{ and } |\Sigma^{1-(\tau/2)}v| = 1 \} \leq .$$

$$\leq \sup \{ |(A^{\tau/2}u, A^{1-(\tau/2)}v)| : v \in D(A) \cap D(B) \text{ and } |\Sigma^{1-(\tau/2)}v| = 1 \} +$$

$$+ \sup \{ |(B^{\tau/2}u, B^{1-(\tau/2)}v)| : v \in D(A) \cap D(B) \text{ and } |\Sigma^{1-(\tau/2)}v| = 1 \}.$$

Since $2-\tau \in [0, 1]$ it now follows from Proposition 1 that

$$|\Sigma^{\tau/2}u| \leq \sup \{ |(A^{\tau/2}u, A^{1-(\tau/2)}v)| : v \in D(A) \text{ and } |A^{1-(\tau/2)}v| = 1 \} +$$

+ sup {
$$|(B^{\tau/2}u, B^{1-(\tau/2)}v)| : v \in D(B)$$
 and $|B^{1-(\tau/2)}v| = 1$ } = $|A^{\tau/2}u| + |B^{\tau/2}u|$.

Thus (1) holds for all u in the closure of $D(A) \cap D(B)$ in $[V_a, H]_{\tau} \cap [V_b, H]_{\tau}$. The proposition follows.

Observe that A+B is self adjoint if and only if $\Sigma = A+B$ and when this is the case the norms $|\Sigma u| = |(A+B)u|$ and $(|Au|^2 + |Bu|^2)^{1/2}$ are equivalent on $D(A) \cap D(B)$ (by the closed graph theorem). In this case A+B is also a topological isomorphism of $D(A) \cap D(B)$ onto H.

Theorem 1. If A+B is self adjoint, then for each $\tau \in [0, 2]$,

$$[V_a \cap V_b, H]_{\mathfrak{r}} \subset [V_a, H]_{\mathfrak{r}} \cap [V_b, H]_{\mathfrak{r}}.$$

Moreover, for each $\tau \in [0, 2]$ such that $D(A) \cap D(B)$ is dense in $[V_a, H]_t \cap [V_b, H]_t$,

$$[V_a \cap V_b, H]_{\tau} = [V_a, H]_{\tau} \cap [V_b, H]_{\tau},$$

with equivalent norms.

Proof. The first assertion is obtained by the method of proof of Proposition 1, and the second assertion via the proof of Proposition 2.

Corollary 1. ([19], p. 95) If H is separable and $A^{1/2}$ and $B^{1/2}$ commute, then for each $\tau \in [0, 2]$,

$$[V_a \cap V_b, H]_{\mathfrak{r}} = [V_a, H]_{\mathfrak{r}} \cap [V_b, H]_{\mathfrak{r}}$$

with equivalent norms.

Proof. By simultaneous diagonalization of A and B (cf. DIXMIER [6], p. 217) it follows in much the same fashion as in the proof of Théorème 13.1, p. 95, [19], that the hypotheses of Theorem 1 are satisfied.

2. In this section we wish to illustrate how the previous results apply to characterization of the domains of fractional powers of Schrödinger operators $-\Delta u + q(x)u$,

W. M. Greenlee

 $x \in \mathbb{R}^n$, $\Delta =$ Laplacian, q real and $\geq 2\delta > 0$. We shall use the theory of Bessel potentials (cf. ARONSZAJN [3], ARONSZAJN and SMITH [5], ADAMS, ARONSZAJN and SMITH [2]).

The Bessel kernel of order $\alpha > 0$ on \mathbb{R}^n is the function given by

$$G_{\alpha}(x) = G_{\alpha}^{(n)}(x) = \frac{1}{2^{(n+\alpha-2)/2} \pi^{n/2} \Gamma(\alpha/2)} K_{(n-\alpha)/2}(|x|) |x|^{(\alpha-n)/2}$$

where K_{v} is the modified Bessel function of the 3rd kind. For $0 < \alpha < 1$, let

$$C(n, \alpha) = \frac{2^{-2\alpha+1}\pi^{(n+2)/2}}{\Gamma(\alpha+1)\Gamma(\alpha+(n/2))\sin \pi\alpha}.$$

Further let D be a domain in \mathbb{R}^n and let u be a complex valued function in $C^{\infty}(D)$. The standard α -norm over D, $|u|_{\alpha,D}$, is defined as follows,

$$|u|_{0,D}^2 = \int_D |u(x)|^2 dx,$$

and for $0 < \alpha < 1$,

$$|u|_{\alpha, D}^{2} = |u|_{0, D}^{2} + \frac{1}{C(n, \alpha)G_{2n+2\alpha}(0)} \iint_{DD} \frac{G_{2n+2\alpha}(x-y)}{|x-y|^{n+2\alpha}} |u(x) - u(y)|^{2} dx dy.$$

For arbitrary $\alpha \ge 0$, let $m = [\alpha]$ be the greatest integer $\le \alpha$ and let $\beta = \alpha - m$. Then

$$|u|_{\alpha,D}^2 = \sum_{k=0}^m {m \choose k} \sum_{|i| \le k} |D_i u|_{\beta,D}^2.$$

The space $\check{P}^{\alpha}(D)$ is the perfect functional completion in the sense of ARONSZAJN and SMITH [4] of the functions in $C^{\infty}(D)$ for which $|u|_{\alpha, D}$ is finite. For $D = R^n$, $\check{P}^{\alpha}(D)$ is denoted simply by P^{α} and $|u|_{\alpha, R^n}$ by $||u||_{\alpha}$. $P^{\alpha}(D)$ is defined as the space of all restrictions to D of functions in P^{α} with the norm $\overset{\circ}{}$

$$\|u\|_{\alpha,D} = \inf \|\tilde{u}\|_{\alpha}$$

with the infimum taken over all $\tilde{u} \in P^{\alpha}$ such that $\tilde{u} = u$ except on a subset of D of 2α -capacity zero. For all domains D to be considered in the present work, $\check{P}^{\alpha}(D) = P^{\alpha}(D)$ with equivalent norms (cf. [2] or [3]). It should be noted that for such domains D, $\check{P}^{\alpha}(D)$ is the class of corrections (cf. [2], § 0) of functions in the class $W^{\alpha,2}(D)$ (cf. LIONS and MAGENES [18], § 2). Finally recall that $C_0^{\infty}(\mathbb{R}^n)$ is dense in \mathbb{P}^{α} .

Now for $u, v \in P^1$, let

$$a(u, v) = \sum_{|i|=1} \int_{R^n} D_i u \,\overline{D_i v} \, dx + \delta \int_{R^n} u \bar{v} \, dx$$

where $\delta > 0$, and define V_a as the space P^1 with a(u, v) as inner product. Letting $H = L^2(\mathbb{R}^n) = P^0$ with the usual inner product, it follows by use of Fourier transforms that the operator A, defined by a(u, v) = (Au, v) is given by $-\Delta u + \delta u$ for $u \in D(A) = P^2$

Fractional powers of operators

with an equivalent norm, and that for $0 \le \tau \le 2$, $D(A^{\tau/2}) = P^{\tau}$ with an equivalent norm.

Let $q \in L^1_{loc}(\mathbb{R}^n)$ be a real valued function with $q(x) \ge 2\delta$ a.e. For $u \in L^2(\mathbb{R}^n)$, let

$$b(u, u) = \int_{\mathbb{R}^n} q(x) |u|^2 dx - \delta \int_{\mathbb{R}^n} |u|^2 dx$$

and define V_b as the space of all $u \in L^2(\mathbb{R}^n)$ such that $b(u, u) < \infty$, with the corresponding inner product b(u, v). Then the operator *B*, defined by b(u, v) = (Bu, v) is given by $qu - \delta u$ for

$$u\in D(B)=\left\{u\in L^2(\mathbb{R}^n): \int_{\mathbb{R}^n}q^2|u|^2\,dx<\infty\right\}$$

and, for $0 \leq \tau \leq 2$,

$$D(B^{\tau/2}) = \{ u \in L^2(\mathbb{R}^n) : \int_{\mathbb{R}^n} q^{\tau} |u|^2 \, dx < \infty \}.$$

Now if q also satisfies the condition that

$$M_{q^{2}}(x) = \int_{|x-y| \leq 1} |x-y|^{2-n-\varrho} |q(y)|^{2} dy$$

is locally bounded for some constant $\varrho > 0$, it follows as in KATO [15], pp. 349—351, that each $u \in D(A) \cap D(B)$ can be "mollified", producing a sequence $\{u_n\} \subset C_0^{\infty}(\mathbb{R}^n)$ converging to u in the intersection norm. Then, since the mollifying operation is linear, it follows by interpolation between D(A) and H and between D(B) and H separately, that for each $\tau \in [0, 2]$ and $u \in [V_a, H]_{\tau} \cap [V_b, H]_{\tau}$ the mollifiers $\{u_n\} \subset C_0^{\infty}(\mathbb{R}^n)$ converge to u in $[V_a, H]_{\tau} \cap [V_b, H]_{\tau}$. Thus $D(A) \cap D(B)$ is dense in $[V_a, H]_{\tau} \cap [V_b, H]_{\tau}$ for all $\tau \in [0, 2]$.

Hence for $q \in L^1_{loc}(\mathbb{R}^n)$ such that $M_{q^2}(x)$ is locally bounded, the technical condition, " $D(A) \cap D(B)$ is dense in $[V_a, H]_r \cap [V_b, H]_r$ ", is always satisfied. To apply Proposition 2 one may then use criteria for essential self adjointness of A+B to be found e.g. in HELLWIG [9], IKEBE and KATO [10], or JÖRGENS [11]. Conditions on q yielding self adjointness of A+B have been given by TRIEBEL [23], § 6.

3. Let V_a , H be as in Section 1 and let $u, v \rightarrow c(u, v)$ be a continuous sesquilinear form on V_a . Further assume that there is a $\gamma > 0$ such that

$$\operatorname{Re} c(v, v) \geq \gamma a(v, v)$$
 for all $v \in V_a$.

As previously, let C be the operator in H associated with c(u, v), i.e. (Cu, v) = c(u, v)for all $v \in V_a$ with $D(C) = \{u \in V_a : v \to c(u, v) \text{ is continuous on } V_a \text{ in the topology}$ induced by H}. Then C is a closed densely defined operator whose domain is also dense in V_a . The adjoint form $c^*(u, v)$, is defined by

$$c^*(u,v) = \overline{c(v,u)}, \quad u,v \in V_a,$$

and if C^* is the operator in H associated with $c^*(u, v)$, i.e., $(C^*u, v) = c^*(u, v)$, $u \in D(C^*)$, $C^*u \in H$, $v \in V_a$, then C^* is the adjoint of C. C and C^* are regularly accretive operators in the terminology of KATO [12]. (Kato assumes only that Re $c(v, v) + +\lambda |v|^2 \ge \gamma a(v, v)$ but replacing C by $C+\lambda$ yields the same results.) Fractional powers of these operators have been studied by various authors, a particularly useful reference being Chapter IV of Sz.-NAGY and FOIAS [21] (cf. also Sz.-NAGY and FOIAS [20] and [22]). In [17] LIONS has proven (cf. also KATO [13], KATO [14] and FOIAS and LIONS [7]) that for $0 \le \tau \le 1$, $D(C^{\tau}) = D(|C|^{\tau})$ and likewise $D(C^{*\tau}) = D(|C^{*\tau})$. It is known, [12] and [21], Theorem 5.1, that $D(C^{\tau}) = D(C^{*\tau})$ for $0 \le \tau < \frac{1}{2}$. In Théorème 6.1 of [17], LIONS has given conditions implying that $D(C^{1/2}) = D(C^{*1/2})$, and then shown that these conditions are satisfied for a large class of elliptic boundary value problems under sufficient regularity conditions.

In this section another sufficient condition for the equality $D(C^{1/2}) = D(C^{*1/2})$ will be proven. It will then be shown that the condition is satisfied in the case of the Dirichlet problem with homogeneous boundary data on Lipschitzian graph , domains (cf. [2], § 11).

Theorem 2. If there exists a Hilbert space W such that

i) $W \subset D(C)$, $W \subset D(C^*)$, and ii) $V_a \subset [W, H]_{1/2}$, then $D(C^{1/2}) = D(C^{*1/2}) = V_a$.

Proof. By i) the identity mapping is continuous from W into D(C), continuous from W into $D(C^*)$, and continuous from H into H. Therefore the quadratic interpolation theorem of [16], pp. 431–432, yields $[W, H]_{1/2} \subset D(|C|^{1/2})$ and $[W, H]_{1/2} \subset D(|C^*|^{1/2})$. Thus ii) and the preceding remarks yield $V_a \subset D(C^{1/2})$ and $V_a \subset D(C^{*1/2})$. The theorem now follows from Corollaire 5.1 of [17] or the Corollary of page 243, [14].

Now let $D \subset \mathbb{R}^n$ be a Lipschitzian graph domain and let *m* be a positive integer. Denote the closure of $C_0^{\infty}(D)$ in $\check{P}^m(D)$ by $\check{P}_0^m(D)$. For $u, v \in \check{P}_0^m(D)$ let

$$c(u, v) = \sum_{|i|, |j| \le m} \int_{D} c_{ij}(x) D_j u \overline{D_i v} \, dx$$

with $c_{ij} \in C^{[i]}(\overline{D})$ where $C^{[i]}(\overline{D})$ here means the class of functions with all partial derivatives of order $\leq |i|$ continuous and bounded on \overline{D} . Further assume that there is a $\gamma > 0$ such that

$$\operatorname{Re} c(v, v) \geq \gamma |v|_{m,D}^2$$
 for all $v \in P_0^m(D)$.

Now let $H = L^2(D)$, $V_a = \check{P}_0^m(D)$, and $W = \check{P}_0^{2m}(D)$. It is easily verified (as e.g. in GREENLEE [8], § 6) that $W \subset D(C)$ and $W \subset D(C^*)$. Moreover, by Theorem 5.2 of [8], $[\check{P}_0^{2m}(D), L^2(D)]_{1/2} = [W, H]_{1/2}$ and $\check{P}_0^m(D) = V_a$ coincide with equivalent norms. Thus by Theorem 2, $D(C^{1/2}) = D(C^{*1/2}) = \check{P}_0^m(D)$.

Bibliography

- [1] R. D. ADAMS, N. ARONSZAJN and M. S. HANNA, Theory of Bessel potentials. III: Potentials on regular manifolds, Ann. Inst. Fourier (Grenoble), 19 (1969), no. 2, 279–338.
- [2] R. D. ADAMS, N. ARONSZAJN and K. T. SMITH, Theory of Bessel potentials. II, Ann. Inst. Fourier (Grenoble), 17 (1967), no. 2, 1–135.
- [3] N. ARONSZAJN, Potentiels Besseliens, Ann. Inst. Fourier (Grenoble), 15 (1965), 43-58.
- [4] N. ARONSZAJN and K. T. SMITH, Functional spaces and functional completion, Ann. Inst. Fourier (Grenoble), 6 (1955-1956), 125-185.
- [5] N. ARONSZAJN and K. T. SMITH, Theory of Bessel potentials. I, Ann. Inst. Fourier (Grenoble), 11 (1961), 385-475.
- [6] J. DIXMIER, Les algèbres d'opérateurs dans l'espace hilbertien, Gauthier-Villars, Paris, 1957.
- [7] C. FOIAS and J. L. LIONS, Sur certains théorèmes d'interpolation, Acta Sci. Math., 22 (1961), 269-282.
- [8] W. M. GREENLEE, Rate of convergence in singular perturbations, Ann. Inst. Fourier (Grenoble), 18 (1968), 135–191.
- [9] G. HELLWIG, Differential operatoren der mathematischen Physik, Springer-Verlag, Berlin, 1964; Differential operators of mathematical physics, Addison-Wesley, Reading, Mass., 1967.
- [10] T. IKEBE and T. KATO, Uniqueness of the self-adjoint extension of singular elliptic differential operators, Arch. Rational Mech. Anal., 9 (1962), 77–92.
- [11] K. JÖRGENS, Wesentliche Selbstadjungiertheit singulärer elliptischer Differentialoperatoren zweiter Ordnung in $C_0^{\infty}(G)$, Math. Scand., 15 (1964), 5–17.
- [12] T. KATO, Fractional powers of dissipative operators, J. Math. Soc. Japan, 13 (1961), 246-274.
- [13] T. KATO, A generalization of the Heinz inequality, Proc. Japan Acad., 37 (1961), 305-308.
- [14] T. KATO, Fractional powers of dissipative operators, II, J. Math. Soc. Japan, 14 (1962), 242-248.
- [15] T. KATO, Perturbation theory for linear operators, Springer-Verlag (Berlin, 1966).
- [16] J. L. LIONS, Espaces intermédiaires entre espaces hilbertiens et applications, Bull. Math. Soc. Sci. Math. Phys. R. P. Roumaine (N. S.) 2 (50), (1958), 419–432.
- [17] J. L. LIONS, Espaces d'interpolation et domains de puissances fractionnaires d'opérateurs, J. Math. Soc. Japan., 14 (1962), 233-241.
- [18] J. L. LIONS and E. MAGENES, Problemi ai limiti non homogenei. III, Ann. Scuola Norm. Sup. Pisa, 15 (1961), 41-103.
- [19] J. L. LIONS and E. MAGENES, Problèmes aux limites non homogènes et applications, Vol. 1, Dunod (Paris, 1968).
- [20] B. SZ.-NAGY and C. FOIAS, Sur les contractions de l'espace de Hilbert. VI. Calcul fonctionnel, Acta Sci. Math., 23 (1962), 130–167.
- [21] B. SZ.-NAGY and C. FOIAŞ, Analyse harmonique des opérateurs de l'espace de Hilbert, Akadémiai Kiadó and Masson (Budapest and Paris, 1967); Harmonic analysis of operators on Hilbert space, North-Holland (Amsterdam, 1970).
- [22] B. Sz.-NAGY and C. FOIAŞ, Accretive operators: corrections, Acta Sci. Math. 33 (1972), 117–118.
- [23] H. TRIEBEL, Singuläre elliptische Differentialgleichungen und Interpolationssätze f
 ür Sobolev—Slobodeckij-R
 äume mit Gewichtsfunktionen, Arch. Rational Mech. Annal., 32 (1969), 113—134.

UNIVERSITY OF ARIZONA TUCSON, ARIZONA

(Received May 12, 1972)