| On fractional powers of operators in Hilbert space

By W. M. GREENLEE in Tucson (Arizona, USA)*

0. The primary concern of this note is to give conditions (Theorem 1) such
that if 4 and B are each self adjoint operators with positive lower bounds and 4+ B
is self adjoint, then for 0=t=1, the domain D((4+B)") equals D(4A%)ND(BY).
A theorem of Lions and MAGENES [19] on interpolation of intersections is then ob-
tained as a corollary. It is then verified that for a large class of Schrddinger operators
—A+g(x) on R", A=Laplacian, g real valued, the conditions are satisfied so that
Theorem 1 is applicable if D(—A4+¢(x))=D(—4)ND(g(x)) in the operator theo-
retic sense. °

In addition a new sufficient condition (Theorem 2) for the equality of D(C'?)
and D(C**?), where C is a regularly accretive operator, is given. This condition is
shown to be applicable if C arises as an elliptic partial differential operator with.
homogeneous Dirichlet boundary conditions over certain (possibly unbounded) do-
mains admitting corners, the Lipschitzian graph domains: ‘

1. Let H be a complex Hilbert space with norm |u| and inner product (u, v).
Further let ¥, (resp: ¥V}) be a complex Hilbert space with V,C H (resp. V,C H),
i.e. ¥, is a vector subspace of H and the injection’ of ¥, into H is continuous. Also
assume that V,, V, and V,NV, are dense in H and denote the inner product in V,
(resp. V,,) by a(u, v) (resp. b(u, v)). To the inner product a(y, v) there corresponds
a linear operator 4 in H, the operator in H associated with a(u, v), defined on

D(A) = {u€V, v —a(u,v) is continuous on V, in the topology induced by H}
by ' |
(Au,v) = a(u,v) for all veV,.

! . .
A is a positive definite self adjoint operator in H and D(4) is dense in V,. For 7
positive, denote by A° the positive tth power of A as defined by use of the spectral
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theorem; A" is a positive definite, self adjoint operator in H. Furthermore, .D(A'/?)
is ¥, and a(u, v)=(AY2u, AY?v) for all u, veV,.

For 0=1=1, the tth interpolation space by quadi atic interpolation between V
and H, [V,, H],, is defined as the Hilbert space

Ver H), = D(A7)

with inner product (4%%u, A**v). Further for t€[0, ) let [V,, H], be the Hilbert
space D (4% with inner product (472, A"2v).
Let B be the operator in H assomated with b(u, v) i.e.

(Bu,v) = b(u v), uED(B), BucH, veV,,

and for 7€[0, =) denote by [V,,, H], the Hilbert space D(B"?) with inner product .
(B"*u, B**v). Now V,NV,, provided with the inner product a(u, v)+b(u, v), is a
Hilbert space and, éince V,NV, is dense in H, we may let 2 be the operator in H
associated with a(u, v)+b(u, v), ie.

- Cu,v) = a(,v)+b,v), ueD(D),
. ZucH, veV,NV,.
Then for 7€[0, <) let [v.Nv,, H], be the Hilbert space D(Z"2) with inner product
(Z*%u, Z*?v). We wish to obtain relationships between the Hilbert spaces

(V.N\ Vs, H). and [V,, Hl.N[V,, H], (with the inner product (A"%u, A"*v)+
+(B"*u, B**v)), without assuming that 4Y2 and BY? commute as in [19], p. 95.

Proposition 1. For each t€[0, 1], ‘

W.N¥, H]. < Vo, HL.N W, H],,
and, if a,f =0 and a+p =1, : ' ‘
alA™?u| + B|B2u| = |Z%u] for all uc[V,N\V,, H)..

Proof. Obviously the identity mapping is continuous from ¥,NV,.into V,
with bound =1, continuous from V,NV, into V, with bound =1, and continuous
from H into H with bound 1. The proposition is thus a trivial consequence of the .
quadratic interpolation theorem of Lions [16], pp. 431—432 (cf. also ADAMS, ARON-
szAIN and HANNA [1], App. I). '

- Observe that 4 4 Bis essentially self adjoint if and only if D (4 + B)=D(4)N\D(B)
is dense in D(2), i.e. if and only if [V,, H,(\[V}, H], is dense in v,N\v,, Hl,.

Further if A+ B is essentially self adj%int, then the closure of 4+ B is 2.

Proposition 2. If A+ B is essentially self adjoint, then for each t€[1, 2] such
that D(A)ﬂD(B) is dense in-[V,, H,N\[V,, H].,

[Vas H]tﬂ[Vb, H]. ¢ V.V, H]r,
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and _ : :
4)) |5 = |A?u+ B2y for all uclV,, H],ﬂ[l)b,'H],.
Proof. Let u¢ D(A)ND(B). Then since D(2) is dense in D(2% for all f<1,
|Z2u| = sup {|(Z%u, Z'-C/Dv)|:v€ D(A)N D(B) and |[Z1-Dy| = 1} =
= sup {|(4"2u, A*~ D)+ (B/2u, B*~Py|:ve D(4)N D(B) and |Z1-CPy| = 1} =,
= sup {4724, A-v)|: pe D(4)ND(B) and [T~ y| = 1} +
+sup {{(B"2u, B\-¢/2)|: v D(A) N D(B) and |51~ C/Dy| = 1}.
Since 2—1€[0, 1] it now follows from Proposition 1 that
|Z*/2y| = sup {|(A‘/2u, A-CD )| :ve D(A) and |4~ Dy| = 1} +
-+ sup {|{(B*?u, Bl»"(’/z).v)l :v€ED(B) and |B'-Dy| = 1} = [A‘/Zu]+|B‘/2u|:
Thus (1) holds for all  in the closure of D(4)ND(B) in [V,, H].(\[V}, H],. The
proposition follows. ,
_ Observe that 4+ B is self adjoint if and only if Z=4+ B and when this is the'
~ case the norms |Zu|=|(A4 +B)u| and (|4u[2+|Bu|?)'/2 are equivalent on D(4)ND(B)

(by the closed graph theorem). In this case A+ B is also a topological isomorphism
of D(A)ND(B) onto H.

Theorem 1. IfA+B is self adjoint, then for each t€|0, 2],
VNV, HI, € Ve, HL.OW,, H].
Moreover, for each 1€[0, 2] such that D(A)‘ﬂD(B) is dense in [V,, H).N[V,, H],,

. [Vaan’ ij = [K’H]tm[%’H]f’
with equivalent norms. :

Proof. The first assertion is obtained by the method of proof of Proposition 1,
and the second assertion via the proof of Proposmon 2,

Corollary 1. ([19), p. 95) If H is separable and Al/‘2 and B2 commute, thenfor
each 1€[0, 2],
V.V, H], = [V, H1.O\[V;, H].
w:th equivalent norms. '

Proof. By simultaneous dlagonallzatnon of 4 and B (cf DIXMIER [6], p. 217) it
follows in much the same fashion as in the proof of Théoréme 13.1, p. 95, [19], that
""the hypotheses of Theorem 1 are satisfied.

2. In this section we wish to illustrate how the previous results apply to charac-
terization of the domains of fractional powers of Schrédinger operators — Au+q(x)u,
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X€R", A=Laplacian, ¢ real and =26>0. We shall use the theory of Bessel poten-
tials (cf. ARONSZAJIN [3], ARONSZAIN and SMITH [5], ADAMS, ARONSZAIN and SMITH [2]).
" The Bessel kernel of order >0 on R" is the function given by

1
2(u+a—2)/2 7["/2 F(O(/Z)

where K, is the modified Bessel function of the 3" kind. For O<a<1, let

Ga(x)‘ = Ga(zn) (X) = K(n—a)/2(|x|) |x|(a—n)/2

2—20!_+1n(n+2)/2

I‘(& + 1) (o + (n/2)) sin mar ~

C (n; o) =

Further let D be a domain in R" and let u be a complex valued function in C* (D).
The standard a-norm over D, [ul, p, is defined as follows,

jufs,p = [lu@)Pdx,

and for 0<a<l,

: 1 G x—y) '
2 _ 2 i 2n + 2a L 2
R oo o K e R

For arbitrary a=0, let m=[x] be the greatest integer =« and let f=a—m. Then

[’,’3] > |biu|%,p.

lil=k

m

=2

. k=0

The space P*(D) is the perfect functional completion in the sense of ARONSZAIN

and SMITH [4] of the functions in C= (D) for which |u|, , is finite. For D= R", P*(D)

is denoted simply by P* and |u|,, g« by ||ull,. P*(D) is defined as the space of all re-
strictions to D of functions in P*'with the norm ° '

”u”a,D = ll'lf ”ﬁ”z

with the infimum taken over all #¢P* such that #=u except on a subset of D of
2a-capdcity zero. For all domains D to bé considered in the present work, P“(_D): '
= P*(D) with equivalent norms (cf. [2] or [3]). It should be noted that for such do-
mains D, P*(D) is the class of corrections (cf. [2], § 0) of functions in the class W **(D)
{(cf. Lions and MAGENEs [18], § 2). Finally recall that Cy°(R") is dense in P

Now for u, véPY, let

lii=1gh

a(u,vy= 2 fDiuD_iudx+5 fuz';dx_
. R»

where §=0, and define ¥, as the space P! with a(u, v) as inner product. Letting .
H=L%(R")=P° with the usual inner product, it follows by use of Fourier transforms
that the operator A, defined by a(u, v)=(4uy, v) is given by — du+-6u for uc D(4)=P*
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with an equivalent norm, and that_for 0=r=2, D(A"*)=P* with an equivalent -
norm. ' : : .
Let g€ L: _(R") be a real valued function with g(x)=28 a.e. For u€ L2(R"), let

loc
b,u)y= [q@)ufdx—5 [lufdx.

and define ¥} as the spéce of all u¢ L2(R") such that & (i, u)< o, with the correspond-
ing inner product b(u, v). Then the operator B, defined by b(u, v)=(Bu, v) is given
by qu—éu for ‘ '

u€D(B) = {u€L2(R"): fq2|u|2dx < oo}-
R" : .
and, for 0 =7 =2,
' DB = {uc L} (R"): [g*|ul*dx < =},
. ° Rn

°

Now if g also satisfies the condition that

Mp(x)= [ |x—yP " elg()Pdy
_ lx—yl=1

is locally bounded for some constant ¢ =0, it follows as in KaTo [15], pp. 349—351,
that each u€D(4)ND(B) can be “mollified”’, producing a sequence {u,}cCy (R")
. converging to' u in the intersection norm. Then, since the mollifying operation is
linear, it follows by interpolation between D (4) and H and between D (B)-and H sepa-
rately, that for each t€[0, 2] and u€[V,, H],N[V,, H], the mollifiers {u,}cC5 (R")
converge to uin [V,, H],N[V,, H],. Thus D(4)ND(B)isdensein [V,, H].N[V,, H];
for all 7¢[0, 2]. : ‘

Hence for g€ L] (R") such that M (x) is locally bounded, the technical con-
dition, “D(4)YND(B) is dense in [V,, H].N\[V,, H],”, is always satisfied. To apply
Proposition 2 one may then use criteria for essential self adjointness of A+B to
be found e.g. in HeLLwiG [9], IkeBe and Kato [10], or JORGENS [11]. Conditions
on ¢ yielding self adjointness of A+ B have been given by TRIEBEL [23], § 6.

3. Let V,, H be as in Section 1 and let u, v—~c (%, v) be a continuous sesquilinear -
form on V,. Further assume that there is a y=0 such that

Re c(v, v) = ya(v, v) for all vEVa_‘.

As previously, let C be the operator in H associated with ¢(u, v), i.e. (Cu, v)=c(u, v)
for all veV, with D(C)={ucV,: v—~c(u, v) is continuous on V, in the topology
induced by H}. Then C is a closed densely defined operator whose domain is also
dense in V,.. The adjoint form c*(u, v), is defined by

c;*(u, v) = cv,u), u,vevl,,
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and if C* is the operator in H associated with c*(u v)~ie., (C*u v)=c*(u,v),
u€ D(C*), C*u€ H, veV,, then C* is the adjoint of C. C and C* are regularly accre-
tive operators in the terminology of Kato [12]. (Kato assumes only that Re ¢(v, v) +
42 Jv]*=ya(v, v) but replacing C by C+ 4 yields the same results.) Fractional powers
of -these operators have been studied by various authors, a particularly useful
reference being Chapter IV of Sz.-NaGy and Foias [21] (c¢f. also Sz.-NAGy and
Foiag [20] and [22]). In [17] LioNs has proven (cf. also KaTto [13], KAaTO [14] and
Folas and Lions [7]) that for 0=t =1, D(C")=D(|C[) and likewise D(C*%)= D(|C*| ).
It is known, [12] and [21], Theorem 5.1, that D(C%)=D(C*%) for 0<r<— In
" Théoréme 6.1 of [17], Lions has given conditions implying that D(CY2)= D(C*l/z)
and then shown that these conditions are satisfied for a large class of elliptic boundary
value problems under sufficient regularity conditions.

In this section another sufficient condition for the equality D(CY?)=D(C*'?)
will be proven. It will then be shown that the condition is satisfied in the case of
the Dirichlet problem with homogeneous boundary data on Lipschitzian graph .
_domains (cf. [2], § 11).

Theorem 2. If there exists a Hilbert space W such that
) Wc D), W D(CY, and i) V.CIW,Hlyp,
then D(CY?) = D(C*'?) =V,

Proof. Byi) the identity mapping is continuous from W into D(C), continuous
from W into D(C*), and continuous from H into H. Therefore the quadratic inter-
‘polation theorem of [16], pp. 431—432, yields [/, H]1/2gD(lC|1/2) and [W, H],;sC
< D(|C*V?). Thus iiy-and the preceding remarks yield ¥,c D(CY?) and V,c D(C*?),
The theorem now follows from Corollaire 5.1 of [17] or the Corollary of page 243, [14].

Now let DC R" be a Lipschitzian graph domain and let m be a positive integer.
Denote the closure of C(D) in P"(D) by Pr(D). For u, v PT(D) let

cu,v)= > 'fc,.j(x)DjuD—ivdx
HLIT=m
with ¢;;€ C'l(D) where C"'(D) here means the class of functions with all partial
derivatives of order =|i| continuous and bounded on D. Further assume that there
is a y=0 such that

Rec(v,v) = y|vls, p for all vePY b (D).

Now let H=L*(D), V,=P"(D), and W=P¥(D). 1t is easily verified (as e.g.
in GREENLEE {8], § 6) that Wc D(C) and Wc D(C*). Moreover, by Theorem 5.2 of
[8], [P2™(D), L*(D)),p=[W, H},;» and Pr(D)=V, c01nc1de with equivalent norms.
Thus by Theorem 2, D(Cl/z) D(C*V%=Ppr (D). .
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