On fractional powers of operators in Hilbert space

By W. M. GREENLEE in Tucson (Arizona, USA)*

0. The primary concern of this note is to give conditions (Theorem 1) such that if A and B are each self adjoint operators with positive lower bounds and $A+B$ is self adjoint, then for $0 \leqq \tau \leqq 1$, the domain $D\left((A+B)^{\tau}\right)$ equals $D\left(A^{\tau}\right) \cap D\left(B^{\tau}\right)$. A theorem of Lions and Magenes [19] on interpolation of intersections is then obtained as a corollary. It is then verified that for a large class of Schrödinger operators $-\Delta+q(x)$ on $R^{n}, \Delta=$ Laplacian, q real valued, the conditions are satisfied so that Theorem 1 is applicable if $D(-\Delta+q(x))=D(-\Delta) \cap D(q(x))$ in the operator theoretic sense.

In addition a new sufficient condition (Theorem 2) for the equality of $D\left(C^{1 / 2}\right)$ and $D\left(C^{* 1 / 2}\right)$, where C is a regularly accretive operator, is given. This condition is shown to be applicable if C arises as an elliptic partial differential operator with homogeneous Dirichlet boundary conditions over certain (possibly unbounded) domains admitting corners, the Lipschitzian graph domains:

1. Let H be a complex Hilbert space with norm $|u|$ and inner product (u, v). Further let $V_{a}\left(\right.$ resp. V_{b}) be a complex Hilbert space with $V_{a} \subset H$ (resp. $V_{b} \subset H$), i.e. V_{a} is a vector subspace of H and the injection of V_{a} into H is continuous. Also assume that V_{a}, V_{b}, and $V_{a} \cap V_{b}$ are dense in H and denote the inner product in V_{a} (resp. V_{b}) by $a(u, v)$ (resp. $b(u, v)$). To the inner product $a(u, v)$ there corresponds a linear operator A in H, the operator in H associated with $a(u, v)$, defined on
$D(A)=\left\{u \in V_{a}: v \rightarrow a(u, v)\right.$ is continuous on V_{a} in the topology induced by $\left.H\right\}$ by

$$
(A u, v)=a(u, v) \text { for all } v \in V_{a} .
$$

A is a positive definite self adjoint operator in H and $D(A)$ is dense in V_{a}. For τ positive, denote by A^{τ} the positive τ th power of A as defined by use of the spectral

[^0]theorem; $A^{\mathfrak{\top}}$ is a positive definite, self adjoint operator in H. Furthermore, $D\left(A^{1 / 2}\right)$ is V_{a} and $a(u, v)=\left(A^{1 / 2} u, A^{1 / 2} v\right)$ for all $u, v \in V_{a}$.

For $0 \leqq \tau \leqq 1$, the τ th interpolation space by quadratic interpolation between V_{a} and $H,\left[V_{a}, H\right]_{r}$, is defined as the Hilbert space

$$
\left[V_{a}, H\right]_{\tau}=D\left(A^{\tau / 2}\right)
$$

with inner product ($A^{\tau / 2} u, A^{\tau / 2} v$). Further for $\tau \in[0, \infty)$ let $\left[V_{a}, H\right]_{\tau}$ be the Hilbert space $D\left(A^{\tau / 2}\right)$ with inner product $\left(A^{\tau / 2} u, A^{\tau / 2} v\right)$.

Let B be the operator in H associated with $b(u, v)$, i.e.

$$
(B u, v)=b(u, v), \quad u \in D(B), \quad B u \in H, \quad v \in V_{b}
$$

and for $\tau \in[0, \infty)$ denote by $\left[V_{b}, H\right]_{\tau}$ the Hilbert space $D\left(B^{\tau / 2}\right)$ with inner product $\left(B^{\tau / 2} u, B^{t / 2} v\right)$. Now $V_{a} \cap V_{b}$, provided with the inner product $a(u, v)+b(u, v)$, is a Hilbert space and, since $V_{a} \cap V_{b}$ is dense in H, we may let Σ be the operator in H associated with $a(u, v)+b(u, v)$, i.e.

$$
\begin{gathered}
(\Sigma u, v)=a(u, v)+b(u, v), \quad u \in D(\Sigma), \\
\Sigma u \in H, \quad v \in V_{a} \cap V_{b} .
\end{gathered}
$$

Then for $\tau \in[0, \infty)$ liet $\left[V_{a} \cap V_{b}, H\right]_{\tau}$ be the Hilbert space $D\left(\Sigma^{\tau / 2}\right)$ with inner product $\left(\Sigma^{\tau / 2} u, \Sigma^{\tau / 2} v\right)$. We wish to obtain relationships between the Hilbert spaces $\left[V_{a} \cap V_{b}, H\right]_{\tau}$ and $\left[V_{a}, H\right]_{\tau} \cap\left[V_{b}, H\right]_{\tau}$ (with the inner product $\left(A^{\tau / 2} u, A^{\tau / 2} v\right)+$ $+\left(B^{\tau / 2} u, B^{\mathrm{r} / 2} v\right)$), without assuming that $A^{1 / 2}$ and $B^{1 / 2}$ commute as in [19], p. 95.

Proposition 1. For each $\tau \in[0,1]$,

$$
\left[V_{a} \cap V_{b}, H\right]_{\tau} \subset\left[V_{a}, H\right]_{\tau} \cap\left[V_{b}, H\right]_{\tau}
$$

and, if $\alpha, \beta \geqq 0$ and $\alpha+\beta=1$,

$$
\left.\alpha\left|A^{\tau / 2} u\right|+\beta\left|B^{\tau / 2} u\right| \leqq \mid \Sigma^{\tau / 2} u\right] \quad \text { for all } \quad u \in\left[V_{a} \cap V_{b}, H\right]_{\tau} .
$$

Proof. Obviously the identity mapping is continuous from $V_{a} \cap V_{b}$ into V_{a} with bound $\leqq 1$, continuous from $V_{a} \cap V_{b}$ into V_{b} with b,ound $\leqq 1$, and continuous from H into H with bound 1. The proposition is thus a trivial consequence of the quadratic interpolation theorem of Lions [16], pp. 431-432 (cf. also Adams, Aronszajn and Hanna [1], App. I).

Observe that $A+B$ is essentially self adjoint if and only if $D(A+B)=D(A) \cap D(B)$ is dense in $D(\Sigma)$, i.e. if and only if $\left[V_{a}, H\right]_{2} \cap\left[V_{b}, H\right]_{2}$ is dense in $\left[V_{a} \cap V_{b}, H\right]_{2}$.
Further if $A+B$ is essentially self adjoint, then the closure of $A+B$ is Σ.
Proposition 2. If $A+B$ is essentially self adjoint, then for each $\tau \in[1, .2]$ such that $D(A) \cap D(B)$ is dense in $\left[V_{a}, H\right]_{\tau} \cap\left[V_{b}, H\right]_{\tau}$,

$$
\left[V_{a}, H\right]_{\tau} \cap\left[V_{b}, H\right]_{\tau} \subset_{c}\left[V_{a} \cap V_{b}, H\right]_{\tau}
$$

and

$$
\begin{equation*}
\left|\Sigma^{\tau / 2} u\right| \leqq\left|A^{\tau / 2} u\right|+\left|B^{\tau / 2} u\right| \quad \text { for all } \quad u \in\left[V_{a}, H\right]_{\tau} \cap\left[V_{b}, H\right]_{\tau} . \tag{1}
\end{equation*}
$$

Proof. Let $u \in D(A) \cap D(B)$. Then since $D(\Sigma)$ is dense in $D\left(\Sigma^{\theta}\right)$ for all $\theta<1$,

$$
\begin{gathered}
\left|\Sigma^{\tau / 2} u\right|=\sup \left\{\left|\left(\Sigma^{\tau / 2} u, \Sigma^{1-(\tau / 2)} v\right)\right|: v \in D(A) \cap D(B) \text { and }\left|\Sigma^{1-(\tau / 2)} v\right|=1\right\}= \\
=\sup \left\{\mid\left(A^{\tau / 2} u, A^{1-(\tau / 2)} v\right)+\left(B^{\tau / 2} u, B^{1-(\tau / 2)} v \mid: v \in D(A) \cap D(B) \text { and }\left|\Sigma^{1-(\tau / 2)} v\right|=1\right\} \leqq\right. \\
\leqq \sup \left\{\left|\left(A^{\tau / 2} u, A^{1 \cdots(\tau / 2)} v\right)\right|: v \in D(A) \cap D(B) \text { and }\left|\Sigma^{1-(\tau / 2)} v\right|=1\right\}+ \\
+\sup \left\{\left|\left(B^{\tau / 2} u, B^{1-(\tau / 2)} v\right)\right|: v \in D(A) \cap D(B) \text { and }\left|\Sigma^{1-(\tau / 2)} v\right|=1\right\} .
\end{gathered}
$$

Since $2-\tau \in[0,1]$ it now follows from Proposition 1 that

$$
\begin{gathered}
\quad\left|\Sigma^{\tau / 2} u\right| \leqq \sup \left\{\left|\left(A^{\tau / 2} u, A^{1-(\tau / 2)} v\right)\right|: v \in D(A) \text { and }\left|A^{1-(\tau / 2)} v\right|=1\right\}+ \\
+\sup \left\{\left|\left(B^{\tau / 2} u, B^{1-(\tau / 2)} v\right)\right|: v \in D(B) \text { and }\left|B^{1-(\tau / 2)} v\right|=1\right\}=\left|A^{\tau / 2} u\right|+\left|B^{\tau / 2} u\right| .
\end{gathered}
$$

Thus (1) holds for all u in the closure of $D(A) \cap D(B)$ in $\left[V_{a}, H\right]_{\tau} \cap\left[V_{b}, H\right]_{\tau}$. The proposition follows.

Observe that $A+B$ is self adjoint if and only if $\Sigma=A+B$ and when this is the case the norms $|\Sigma u|=|(A+B) u|$ and $\left(|A u|^{2}+|B u|^{2}\right)^{1 / 2}$ are equivalent on $D(A) \cap D(B)$ (by the closed graph theorem). In this case $A+B$ is also a topological isomorphism of $D(A) \cap D(B)$ onto H.

Theorem 1. If $A+B$ is self adjoint, then for each $\tau \in[0,2]$,

$$
\left[V_{a} \cap V_{b}, H\right]_{\tau} \subset\left[V_{a}, H\right]_{\tau} \cap\left[V_{b}, H\right]_{\tau}
$$

Moreover, for each $\tau \in[0,2]$ such that $D(A) \cap D(B)$ is dense in $\left[V_{a}, H\right]_{\tau} \cap\left[V_{b}, H\right]_{\tau}$,

$$
\left[V_{a} \cap V_{b}, H\right]_{\tau}=\left[V_{a}, H\right]_{\tau} \cap\left[V_{b}, H\right]_{\tau}
$$

with equivalent norms.
Proof. The first assertion is obtained by the method of proof of Proposition 1, and the second assertion via the proof of Proposition 2.

Corollary 1. ([19], p. 95) If H is separable and $A^{1 / 2}$ and $B^{1 / 2}$ commute, then for each $\tau \in[0,2]$,

$$
\left[V_{a} \cap V_{b}, H\right]_{\tau}=\left[V_{a}, H\right]_{\tau} \cap\left[V_{b}, H\right]_{\tau}
$$

with equivalent norms.
Proof. By simultaneous diagonalization of A and B (cf. Dixmier [6], p. 217) it follows in much the same fashion as in the proof of Théorème 13.1, p. 95, [19], that the hypotheses of Theorem 1 are satisfied.
2. In this section we wish to illustrate how the previous results apply to characterization of the domains of fractional powers of Schrödinger operators $-\Delta u+q(x) u$,
$x \in R^{n}, \Delta=$ Laplacian, q real and $\geqq 2 \delta>0$. We shall use the theory of Bessel potentials (cf. Aronszajn [3], Aronszajn and Smith [5], Adams, Aronszajn and Smith [2]).

The Bessel kernel of order $\alpha>0$ on R^{n} is the function given by

$$
G_{\alpha}(x)=G_{\alpha}^{(n)}(x)=\frac{1}{2^{(n+\alpha-2) / 2} \pi^{n / 2} \Gamma(\alpha / 2)} K_{(n-\alpha) / 2}(|x|)|x|^{(\alpha-n) / 2}
$$

where K_{v} is the modified Bessel function of the $3^{\text {rd }}$. kind. For $0<\alpha<1$, let

$$
C(n, \alpha)=\frac{2^{-2 \alpha+1} \pi^{(n+2) / 2}}{\Gamma(\alpha+1) \Gamma(\alpha+(n / 2)) \sin \pi \alpha}
$$

Further let D be a domain in R^{n} and let u be a complex valued function in $C^{\infty}(D)$. The standard α-norm over $D,|u|_{\alpha, D}$, is defined as follows,

$$
|u|_{0, D}^{2}=\int_{D}|u(x)|^{2} d x
$$

and for $0<\alpha<1$,

$$
|u|_{\alpha, D}^{2}=|u|_{0, D}^{2}+\frac{1}{C(n, \alpha) G_{2 n+2 \alpha}(0)} \iint_{D D} \frac{G_{2 n+2 \alpha}(x-y)}{|x-y|^{n+2 \alpha}}|u(x)-u(y)|^{2} d x d y
$$

For arbitrary $\alpha \geqq 0$, let $m=[\alpha]$ be the greatest integer $\leqq \alpha$ and let $\beta=\alpha-m$. Then

$$
|u|_{\alpha, D}^{2}=\sum_{k=0}^{m}\binom{m}{k} \sum_{|i| \leq k}\left|D_{i} u\right|_{\beta, D}^{2}
$$

The space $\check{P}^{\alpha}(D)$ is the perfect functional completion in the sense of Aronszajn and Smith [4] of the functions in $C^{\infty}(D)$ for which $|u|_{\alpha, D}$ is finite. For $D=R^{n}, \breve{P}^{\alpha}(D)$ is denoted simply by P^{α} and $|u|_{\alpha, R^{n}}$ by $\|u\|_{\alpha} . P^{\alpha}(D)$ is defined as the space of all restrictions to D of functions in P^{α} with the norm ${ }^{\circ}$

$$
\|u\|_{\alpha, D}=\inf \|\tilde{u}\|_{\alpha}
$$

with the infimum taken over all $\tilde{u} \in P^{\alpha}$ such that $\tilde{u}=\dot{u}$ except on a subset of D of 2α-capäcity zero. For all domains D to be considered in the present work, $\check{P}^{\alpha}(D)=$ $=P^{\alpha}(D)$ with equivalent norms (cf. [2] or [3]). It should be noted that for such domains $D, \breve{P}^{\alpha}(D)$ is the class of corrections (cf. [2], § 0) of functions in the class $W^{\alpha, 2}(D)$ (cf. Lions and Magenes [18], § 2). Finally recall that $C_{0}^{\infty}\left(R^{n}\right)$ is dense in P^{α}.

Now for $u, v \in P^{1}$, let

$$
a(u, v)=\sum_{|i|=1} \int_{R^{n}} D_{i} u \overline{D_{i} v} d x+\delta \int_{R^{n}} u \bar{v} d x .
$$

where $\delta>0$, and define V_{a} as the space P^{1} with $a(u, v)$ as inner product. Letting $H=L^{2}\left(R^{n}\right)=P^{0}$ with the usual inner product, it follows by use of Fourier transforms that the operator A, defined by $a(u, v)=(A u, v)$ is given by $-\Delta u+\delta u$ for $u \in D(A)=P^{2}$
with an equivalent norm, and that for $0 \leqq \tau \leqq 2, D\left(A^{\tau / 2}\right)=P^{\tau}$ with an equivalent norm.

Let $q \in L_{\text {loc }}^{1}\left(R^{n}\right)$ be a real valued function with $q(x) \geqq 2 \delta$ a.e. For $u \in L^{2}\left(R^{\prime \prime}\right)$, let

$$
b(u, u)=\int_{R^{n}} q(x)|u|^{2} d x-\delta \int_{R^{n}}|u|^{2} d x .
$$

and define V_{b} as the space of all $u \in L^{2}\left(R^{n}\right)$ such that $b(u, u)<\infty$, with the corresponding inner product $b(u, v)$. Then the operator B, defined by $b(u, v)=(B u, v)$ is given by $q u-\delta u$ for

$$
u \in D(B)=\left\{u \in L^{2}\left(R^{n}\right): \int_{R^{n}} q^{2}|u|^{2} d x<\infty\right\}
$$

and, for $0 \leqq \tau \leqq 2$,

$$
D\left(B^{\tau / 2}\right)=\left\{u \in L^{2}\left(R^{n}\right): \int_{R^{n}} q^{\tau}|u|^{2} d x<\infty\right\}
$$

Now if q also satisfies the condition that

$$
M_{q^{2}}(x)=\int_{|x-y| \leqq 1}|x-y|^{2-n-Q}|q(y)|^{2} d y
$$

is locally bounded for some constant $\varrho>0$, it follows as in Kato [15], pp. 349-351, that each $u \in D(A) \cap D(B)$ can be "mollified", producing a sequence $\left\{u_{n}\right\} \subset C_{0}^{\infty}\left(R^{n}\right)$ converging to u in the intersection norm. Then, since the mollifying operation is linear, it follows by interpolation between $D(A)$ and H and between $D(B)$ and H separately, that for each $\tau \in[0,2]$ and $u \in\left[V_{a}, H\right]_{\tau} \cap\left[V_{b}, H\right]_{\tau}$ the mollifiers $\left\{u_{n}\right\} \subset C_{0}^{\infty}\left(R^{n}\right)$ converge to u in $\left[V_{a}, H\right]_{\tau} \cap\left[V_{b}, H\right]_{\tau}$. Thus $D(A) \cap D(B)$ is dense in $\left[V_{a}, H\right]_{\tau} \cap\left[V_{b}, H\right]_{i}$ for all $\tau \in[0,2]$.

Hence for $q \in L_{\text {loc }}^{1}\left(R^{n}\right)$ such that $M_{q^{2}}(x)$ is locally bounded, the technical condition, " $D(A) \cap D(B)$ is dense in $\left[V_{a}, H\right]_{\tau} \cap\left[V_{b}, H\right]_{\tau}$ ", is always satisfied. To apply Proposition 2 one may then use criteria for essential self adjointness of $A+B$ to be found e.g. in Hellwig [9], Ikebe and Kato [10], or Jörgens [11]. Conditions on q yielding self adjointness of $A+B$ have been given by Triebel [23], § 6.
3. Let V_{a}, H be as in Section 1 and let $u, v \rightarrow c(u, v)$ be a continuous sesquilinear form on V_{a}. Further assume that there is a $\gamma>0$ such that

$$
\operatorname{Re} c(v, v) \geqq \gamma a(v, v) \quad \text { for all } \quad v \in V_{a} .
$$

As previously, let C be the operator in H associated with $c(u, v)$, i.e. $(C u, v)=c(u, v)$ for all $v \in V_{a}$ with $D(C)=\left\{u \in V_{a}: v \rightarrow c(u, v)\right.$ is continuous on V_{a} in the topology induced by H \}. Then C is a closed densely defined operator whose domain is also dense in V_{a}. The adjoint form $c^{*}(u, v)$, is defined by

$$
c^{*}(u, v)=\overline{c(v, u)}, \quad u, v \in V_{a}
$$

and if C^{*} is the operator in H associated with $c^{*}(u, v)$, i.e., $\left(C^{*} u, v\right)=c^{*}(u, v)$, $u \in D .\left(C^{*}\right), C^{*} u \in H, v \in V_{a}$, then C^{*} is the adjoint of $C . C$ and C^{*} are regularly accretive operators in the terminology of Kato [12]. (Kato assumes only that $\operatorname{Re} c(v, v)+$ $+\lambda|v|^{2} \geqq \gamma a(v, v)$ but replacing C by $C+\lambda$ yields the same results.) Fractional powers of these operators have been studied by various authors, a particularly useful reference being Chapter IV of Sz.-NaGY and Foias [21] (cf. also Sz.-NaGy and Foiaş [20] and [22]). In [17] Lions has proven (cf. also Kato [13], Kato [14] and Foias and Lions [7]) that for $0 \leqq \tau \leqq 1, D\left(C^{\tau}\right)=D\left(|C|^{\tau}\right)$ and likewise $D\left(C^{* \tau}\right)=D\left(\left|C^{*}\right|^{\tau}\right)$. It is known, [12] and [21], Theorem 5.1, that $D\left(C^{\tau}\right)=D\left(C^{* \tau}\right)$ for $0 \leqq \tau<\frac{1}{2}$. In Théorème 6.1 of [17], LIONS has given conditions implying that $D\left(C^{1 / 2}\right)=D\left(C^{* 1 / 2}\right)$, and then shown that these conditions are satisfied for a large class of elliptic boundary value problems under sufficient regularity conditions.

In this section another sufficient condition for the equality $D\left(C^{1 / 2}\right)=D\left(C^{* 1 / 2}\right)$ will be proven. It will then be shown that the condition is satisfied in the case of the Dirichlet problem with homogeneous boundary data on Lipschitzian graph . domains (cf. [2], § 11).

Theorem 2. If there exists a Hilbert space W such that
i) $W \subset D(C), W \subset D\left(C^{*}\right)$, and
ii) $V_{a} \subset[W, H]_{1 / 2}$,
then $D\left(C^{1 / 2}\right)=D\left(C^{* 1 / 2}\right)=V_{a}$.
Proof. By i) the identity mapping is continuous from W into $D(C)$, continuous from W into $D\left(C^{*}\right)$, and continuous from H into H. Therefore the quadratic interpolation theorem of [16], pp. 431-432, yields [$W, H]_{1 / 2} \subset D\left(|C|^{1 / 2}\right)$ and $[W, H]_{1 / 2} \subsetneq$ $\subset_{c} D\left(\left|C^{*}\right|^{1 / 2}\right)$. Thus ii) and the preceding remarks yield $V_{a} \subset D\left(C^{1 / 2}\right)$ and $V_{a} \subset D\left(C^{* 1 / 2}\right)$. The theorem now follows from Corollaire 5.1 of [17] or the Corollary of page 243, [14].

Now let $D \subset R^{n}$ be a Lipschitzian graph domain and let m be a positive integer. Denote the closure of $C_{0}^{\infty}(D)$ in $\check{P}^{m}(D)$ by $\check{P}_{0}^{m}(D)$. For $u, v \in \breve{P}_{0}^{m}(D)$ let

$$
c(u, v)=\sum_{|i|,|j| \leqq m} \int_{D} c_{i j}(x) D_{j} u \overline{D_{i} v} d x
$$

with $c_{i j} \in C^{i i j}(\bar{D})$ where $C^{|i|}(\bar{D})$ here means the class of functions with all partial derivatives of order $\leqq|i|$ continuous and bounded on \bar{D}. Further assume that there is a $\gamma>0$ such that

$$
\operatorname{Re} c(v, v) \geqq \gamma|v|_{m, D}^{2} \quad \text { for all } \quad v \in \check{P}_{0}^{m}(D)
$$

Now let $H=L^{2}(D), V_{a}=\breve{P}_{0}^{m}(D)$; and $W=\breve{P}_{0}^{2 m}(D)$. It is easily verified (as e.g. in Greenlee [8], §6) that $W \subsetneq_{\subset} D(C)$ and $W \complement_{\subsetneq} D\left(C^{*}\right)$. Moreover, by Theorem 5.2 of $[8],\left[\check{P}_{0}^{2 m}(D), L^{2}(D)\right]_{1 / 2}=[W, H]_{1 / 2}$ and $\check{P}_{0}^{m}(D)=V_{a}$ coincide with equivalent norms. Thus by Theorem 2, $D\left(C^{1 / 2}\right)=D\left(C^{* 1 / 2}\right)=\breve{P}_{0}^{m}(D)$.

Bibliography

[1] R. D. Adams, N. Aronszajn and M. S. Hanna, Theory of Bessel potentials. III: Potentials on regular manifolds, Ann. Inst. Fourier (Grenoble), 19 (1969), no. 2, 279-338.
[2] R. D. Adams, N. Aronszajn and K. T. Smith, Theory of Bessel potentials. II, Ann. Inst. Fourier (Grenoble), 17 (1967), no. 2, 1-135.
[3] N. Aronszajn, Potentiels Besseliens, Ann. Inst. Fourier (Grenoble), 15 (1965), 43-58.
[4] N. Aronszajn and K. T. Smith, Functional spaces and functional completion, Ann. Inst. Fourier (Grenoble), 6 (1955-1956), 125-185.
[5] N. Aronszajn and K. T. Smith, Theory of Bessel potentials. I, Ann. Inst. Fourier (Grenoble), 11 (1961), 385-475.
[6] J. Dixmier, Les algèbres d'opérateurs dans l'espace hilbertien, Gauthier-Villars, Paris, 1957.
[7] C. Foiaş and J. L. Lions, Sur certains théorèmes d'interpolation, Acta Sci. Math., 22 (1961), 269-282.
[8] W. M. Greenlee, Rate of convergence in singular perturbations, Ann. Inst. Fourier (Grenoble), 18 (1968), 135-191.
[9] G. Hellwig, Differentialoperatoren der mathematischen Physik, Springer-Verlag, Berlin, 1964; Differential operators of mathematical physics, Addison-Wesley, Reading, Mass., 1967.
[10] T. Ikebe and T. Kato, Uniqueness of the self-adjoint extension of singular elliptic differential operators, Arch. Rational Mech. Anal., 9 (1962), 77--92.
[11] K. Jörgens, Wesentliche Selbstadjungiertheit singulärer elliptischer Differentialoperatoren zweiter Ordnung in $C_{0}^{\infty}(G)$, Math. Scand., 15 (1964), 5-17.
[12] T. Kato, Fractional powers of dissipative operators, J. Math. Soc. Japan, 13 (1961), 246-274.
[13] T. Kato, A generalization of the Heinz inequality, Proc. Japan Acad., 37 (1961), 305-308.
[14] T. Kato, Fractional powers of dissipative operators, II, J. Math. Soc. Japan, 14 (1962), 242-248.
[15] T. Kato, Perturbation theory for linear operators, Springer-Verlag (Berlin, 1966).
[16] J. L. Lions, Espaces intermédiaires entre espaces hilbertiens et applications, Bull. Math. Soc. Sci. Math. Phys. R. P. Roumaine (N. S.) 2 (50), (1958), 419-432.
[17] J. L. Lions, Espaces d'interpolation et domains de puissances fractionnaires d'opérateurs, J. Math. Soc. Japan., 14 (1962), 233-241.
[18] J. L. Lions and E. Magenes, Problemi ai limiti non homogenei. III, Amn. Scuola Norm. Sup. Pisa, 15 (1961), 41-103.
[19] J. L. Lions and E. Magenes, 'Problèmes aux limites non homogènes et applications, Vol. 1, Dunod (Paris, 1968).
[20] B. Sz.-Nagy and C. Foras, Sur les contractions de l'espace de Hilbert. VI. Calcul fonctionnel, Acta Sci. Math., 23 (1962), 130-167.
[21] B. Sz.-Nagy and C. Folaş, Analyse harmonique des opérateurs de l'espace de Hilbert, Akadẹmiai Kiadó and Masson (Budapest and Paris, 1967); Harmonic analysis of operators on Hilbert space, North-Holland (Amsterdam, 1970).
[22] B. Sz.-Nagy and C. Folas, Accretive operators: corrections, Acta Sci. Math. 33 (1972), 117-118.
[23] H. Triebel, Singuläre elliptische Differentialgleichungen und Interpolationssätze für Sobo-lev--Slobodeckij-Räume mit Gewichtsfunktionen, Arch. Rational Mech. Annal., 32 (1969), 113-134.

UNIVERSITY OF ARIZONA
TUCSON, ARIZONA

[^0]: * The research for this paper was supported in part by the National Science Foundation.

