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0. The primary concern of this note is to give conditions (Theorem 1) such 
that if A and B are each self adjoint operators with positive lower bounds and A+B 
is self adjoint, then for OSSTSI, the domain D((A+B)Z) equals D(AZ)C\D(BX). 
A theorem of LIONS and MAGENES [19] on interpolation of intersections is then ob-
tained as a corollary. It is then verified that for a large class of Schrodinger operators 
— A+q(x) on R",. A =Laplacian, q real valued, the conditions are satisfied so that 
Theorem 1 is applicable if Z>(—A + q(x))=D( — A)OD{q{x)) in the operator theo-
retic sense. ° 

In addition a new sufficient condition (Theorem 2) for the equality of D{Cxt2) 
and D(C"m), where C is a regularly accretive operator, is given. This condition is 
shown to be applicable if C arises as an elliptic partial differential operator with 
homogeneous Dirichlet boundary conditions over certain (possibly unbounded) do-
mains admitting corners, the Lipschitzian graph domains. 

1. Let H be a complex Hilbert space with norm |w| and inner product («, v). 
Further let Va (resp; Vb) be a complex Hilbert space with Va<zH (resp. Vba.H), 
i.e. Va is a vector subspace of H and the injection' of Va into H is continuous. Also 
assume that Va, Vb, and Vaf]Vb are dense in H and denote the inner product in Va 

(resp. Vb) by a(u, v) (resp. b(u, vj). To the inner product a(u, v) there corresponds 
a linear operator A in H, the operator in H associated with a{u, v), defined, on 

D{A) — {u£Va: v — a(u, v) is continuous on Va in the topology induced by H} 

by 
(Au, v) = a(u, v) for all v£Va. « 

A is a positive definite self adjoint operator in H and D(A) is dense in Va. For x 
positive, denote by A1 the positive rth power of A as defined by use of the spectral 
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theorem; Az is a positive definite, self adjoint operator in H. Furthermore, D(Al/2) 
is Va and a(u,v) = (All2u,All2v) for all u, v£Va. 

For O s x S l , the rth interpolation space by quadratic interpolation between V„ 
and H, [Va,H]z, is defined as the Hilbert space 

[Vtt,Hl = D{A^2) 

with inner product (Az,iu, Az/2v). Further for T£[0, let [Va, H]z be the Hilbert 
space D(AZ'2) with inner product (A z , 2u, Az,2v). 

Let B be the operator in H associated with b(u, v), i.e. 

(Bu,v) = b(u,v), ufJ)(B), Bu £_ II, v£Vb, 

and for T£[0, » ) denote by [Vb, H]z the Hilbert space D(Bz/2) with inner product . 
(Bz/2u, Bz/2v). Now Vaf]Vb, provided with the inner product a(u, v)+b(u, v), is a 
Hilbert space and, since Va{~) Vb is dense in H, we may let I be the operator in H 
associated with a(u, v)+b(u, v), i.e. 

. (lu, v) = a(u, v) + b(u, v), tt6Z>(i), 

. • Zu£H, v£VaC)Vb. 

Then for T£[0, «,) let [VaC] Vb, H]z be the Hilbert space D(Z1'2) with inner product 
{Ezl2u, Ir/2v). We wish to obtain relationships between the Hilbert spaces 
[VaC\ Vb,H]z and [Va, H\,C\[Vb, H], (with the inner product (At/2u, Az'2v) + 
+ (Bz/2u, Bz/2v)), without assuming that A1/2 and B1'2 commute as in [19], p. 95. 

P r o p o s i t i o n 1. For each T£[0, 1], 

[VaOVb,H]^[Va,H]^[Vb,H]z, 

and, if a J s O and a + /? = 1, 

a\Az'2u\+P\Bzl2u\ ^ \Sz,2u\ for all u£[VaC\Vb, H]z. 

P r o o f . Obviously the identity mapping is continuous from F a OF b . i n to Va 

with bound continuous from Vaf]Vb into Vb with bound ^ 1 , and continuous 
from H into H with bound 1. The proposition is thus a trivial consequence of the . 
quadratic interpolation theorem of LIONS [16], pp. 4 3 1 — 4 3 2 (cf. also ADAMS, ARON-

SZAJN a n d HANNA [1], A p p . I ) . 

Observe that A + B is essentially self adjoi nt if and only if D (A + B) = D (A) f l D (B) 
is dense in D(I), i.e. if and only if [V a , H]2C\[Vb, H]2 is dense in [VaC]Vb, H]2. 

Further if A + B is essentially self adjoint, then the closure of A+B is I. 

P r o p o s i t i o n 2. If A+B is essentially self adjoint, then for each T£[1,.2] such 
that D(A)C\D(B) is dense in \Va, H]zC\[Vh, H]z, 

[K,H]Tn[vb;H]z(z[vanvb,H]z, 
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and 

(1 ) | r r / 2 w j ^ \Ax,2u\ + \Bxl2u\ for all u£[Va, H]zP\[Vb,H]z. 

P r o o f . Let u£D(A)Ç\D(B). Then since D(I) is dense in D{Ie) for all 0 < 1 , 

\Sx,2u\ = sup{|(I t /2M, Z 1 - ( , / 2 )u) | : v£D(A)f)D(B) and IZ1"«1'»»! = 1} = 

= s u p { p t / 2 u , A1-<x/2h) + (Bx/2u, BX-«2H\ :viD{A)iïD(B) and = .1} 

sup {|(Ax l2u, A^'^h01 :v£D(A)r)D(B) and l ^ ' ^ v ] = 1} + 

+ sup {](5I/2w, 2?1-(t /2)î;)| : v£D(A)r)D(B) and = 1}. 

Since 2^-tÇ[0, 1] it now follows from Proposition 1 that 

\ r l 2 u \ ^ sup {\{Axl2u, ^ 1 _ ( t / 2 ) y) | : v£D(A) and \A^x^v\ = 1} + 

+ sup {\(Bx/2u, B1~^x,2)v)\ : v£D(B) and |fl1"«'»»] = 1} = \Axl2u\ + \Bxl2u\. 

Thus (1) holds for all u in the closure of D(A)f!D(B) in [Va, H]z(~)[Vb, H]z. The 
proposition follows. 

Observe that A + B is self adjoint if and only if E = A+B and when this is the 
case the norms \Zu\ = \(A+B)u\ and (\Au\2+ \Bu\2)l/2 are equivalent on D(A)f]D(B) 
(by the closed graph theorem). In this case A + B is also a topological isomorphism 
of D(A)C\D(B) onto H. 

T h e o r e m 1. If A+B is self adjoint, then for each T£[0, 2], 

[Vaf\Vb,H]zcz[Va,H]z^[Vb,H]z. 

Moreover, for each T£[0, 2] such that D(A)C\D(B) is dense in [Va, H]zC\[Vb, H]z, 

[Var\ Vb, W\z = [Va, H]z^[Vb, H}z, 
with equivalent norms. 

P r o o f . The first assertion is obtained by the method of proof of Proposition 1, 
and the second assertion via the proof of Proposition 2. 

C o r o l l a r y 1. ([19], p. 95) If H is separable and A1'2 and Bl/2 commute, thenfor 
each T£[0, 2], 

[vanvb,H]z = [va,H]zr\[vb,H]z 
with equivalent norms. 

P r o o f . By simultaneous diagonalization of A and B (cf. DIXMIER [6], p. 2 1 7 ) it 
follows in much the same fashion as in the proof of Théorème 13.1, p. 95, [19], that 
the hypotheses of Theorem 1 are satisfied. 

2. In this section we wish to illustrate how the previous results apply to charac-
terization of the domains of fractional powers of Schrôdinger operators —Au + q(x)u, 
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x£Rn, A =Laplacian, q real and ^2<S>0. We shall use the theory of Bessel poten-
tials (cf. ARONSZAJN [3], ARONSZAJN and SMITH [5], ADAMS, ARONSZAJN and SMITH [2]). 

The Bessel kernel of order a > 0 on R" is the function given by 

Gx(x) = Gi-'W = lx|)lx|<-">/2 

where K, is the modified Bessel function of the 3rd kind. For 0 < a < l , let 

2-2<x + ln(,n + 2)/2 

C ( « , a ) = r ( a + l ) r ( a + ( « / 2 ) ) s in not " 

Further let D be a domain in R" and let u be a complex valued function in C°°(D). 
The standard a-norm over D, |w|a>D, is defined as follows, 

Mo ,D = f \u(x)\2 dx, 
D 

and for 0 < a < 1, . 

For arbitrary a^O, let m = [a] be the greatest integer ^ a and let /J=a—in. Then 

K . D = i f ™ ) 2IA«I|.D. 
k = 0 \ K ) lilsft 

The space PX(D) is the perfect functional completion in the sense of ARONSZAJN 

and SMITH [4] of the functions in C~(D) for which \u\XtD is finite. For D=R", PX(D) 
is denoted simply by P" and |w|a>R„ by ||w||a. P"(D) is defined as the space of all re-
strictions to D of functions in P" with the norm * 

M\«,D = inf ||«L 

with the infimum taken over all u£P* such that u = u except on a subset of D of 
2a-capacity zero. For all domains D to be considered in the present work, PX(D) = 
= P"(D) with equivalent norms (cf. [2] or [3]). It should be noted that for such do-
mains D, Pa(D) is the class of corrections (cf. [2], § 0) of functions in the class W"'2(D) 
(cf. LIONS and MAGENES [18], §2). Finally recall that C"(R") is dense in P*. 

Now for u, v£ P1, let 

a(u,v) = 2 fD^uDiVdx + 5 fuvdx 
1,1=1/, Ri 

where <5>0, and define Va as the space P1 with a(u, v) as inner product. Letting 
H=L2(Rn) = P° with the usual inner product, it follows by use of Fourier transforms 
that the operator A, defined by a(u, v) = (Au, v) is given by — Au+Su for u£D(A)=P2 
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with an equivalent norm, and that for D(AZ,2)=PZ with an equivalent 
norm. 

Let qeLf0C(Rn) be a real valued function with q(x)S2<5 a.e. For uf^L2(R"), let 

b(u,u)= Jq(x)\u\2dx — d J\u\2dx. 
R" Rn 

and define Vb as the space of all udL2(R") such that b(u, u)<°°, with the correspond-
ing inner product b(u, v). Then the operator B, defined by b(u, v) = (Bu, v) is given 
by qu—¿«for 

uZD(B) — {U£L2(R") : Jq2\u\2dx < 
R" . 

and, for 0 = T ^ 2, 
D(BZ'2) = {u£L2(Rn): jqz\u\2dx< oo}. 

R" 

Now if q also satisfies the condition that 

M+{x)= f \x-y\2-"-°\q{y)\2dy 
\x-y\Sl 

is locally bounded for some constant I?>0, it follows as in KATO [15], pp. 3 4 9 — 3 5 1 , 

that each u£D(A)P\D(B) can be "mollified", producing a sequence { M „ } C C ~ ( / T ) 

converging to u in the intersection norm. Then, since the mollifying operation is 
linear, it follows by interpolation between D (A) and H and between D (B) and H sepa-
rately, that for each r<E[0, 2] and' ud[Va, H]zC\[Vb, H]z the mollifiers {w„}cC~(/?n) 
converge to win [Va, H]zC\{Vb, H]z. Thus D(A) HD(B) is dense in [Va, H]zf) [Vb, H]z 

for all T 6 [0,2]. 
Hence for q^L\0C(Rn) such that Mqi(x) is locally bounded, the technical con-

dition, liD{A)^D{B) is dense in [Va, H]zC\[Vb, H]z", is always satisfied. To apply 
Proposition 2 one may then use criteria for essential self adjointness of A+B to 
be found e.g. in HELLWIG [9], IKEBE and KATO [10], or JORGENS [11]. Conditions 
on q yielding self adjointness of A+B have been given by TRIEBEL [23], § 6. 

3. Let Va, H be as in Section 1 and let u, v-*c(u, v) be a continuous sesquilinear 
form on Va. Further assume that there is a y > 0 such that 

R e c ( v , v) ^ ya(v, v) for all v£Va. 

As previously, let C be the operator in H associated with c(W, V), i.e. (CM, D)=C(W, V) 

for all v£Va with D{C)— {«£Va: c(u, v) is continuous on Va in the topology 
induced by H}. Then C is a closed densely defined operator whose domain is also 
dense in F0 . .The adjoint form c*(u, v), is defined by 

c*(m, y) = c(v, u), u, v£Va, 



60 W. M. Greenlee 

and if C* is the operator in H associated with c*(u,v)p-i.e., (C*w, v) = c*(u,v), 
u£D.(C*), C*u£H, v£ Va, then C* is the adjoint of C. C and C* are regularly accre-
tive operators in the terminology of KATO [12]. (Kato assumes only that Re c(v, + 
- M M 2 ^ y a ( v , v) but replacing C by C+A yields the same results.) Fractional powers 
of these operators have been studied by various authors, a particularly useful 
reference being Chapter IV of SZ . -NAGY and FOIA§ [21] (cf. also SZ . -NAGY and 
FOIA§ [20] and [22]). In [17] LIONS has proven (cf. also KATO [13], KATO [14] and 
FoiA§ and LIONS [7]) that for 0 S x S 1 , D ( C R ) = D ( | C \ ' ) and likewise D(C*c)=D (|C*|r). 
It is known, [12] and [21], Theorem 5.1, that D(CZ)=D(C*Z) for In 
Théorème 6 .1 of [17], LIONS has given conditions implying that D(Cl/2) = D(C*112), 
and then shown that these conditions are satisfied for a large class of elliptic boundary 
value problems under sufficient regularity conditions. 

In this section another sufficient condition for the equality D(C l / 2)=Z)(C*1 / 2) 
will be proven. It will then be shown that the condition is satisfied in the case^of 
the Dirichlet problem with homogeneous boundary data on Lipschitzian graph 
domains (cf. [2], § 11). 

T h e o r e m 2. If there exists a Hilbert space W such that 

i) WCZ D{C), WŒ D{C% and ii) VAA[W, H]1/2, 

then Z)(C1/2) = D(C*112) = Va. 

P r o o f . By i) the identity mapping is continuous from Winto D(C), continuous 
from W into D(C*), and continuous from H into H. Therefore the quadratic inter-
polation theorem of [16], pp. 4 3 1 — 4 3 2 , yields [W, H]1/2çD(\C\l/2) and [W, H]1/2cz 
' çZ)( |C*| l / 2 ) . Thus ii) and the preceding remarks yield F a c £ ) ( C l / 2 ) and VaczD(C*112). 
The theorem now follows from Corollaire 5.1 of [17] or the Corollary of page 243, [14]. 

Now let DczR" be a Lipschitzian graph domain and let m be a positive integer. 
Denote the closure of C"(Z>) in P'"(D) by (D). For u, let 

c(u,v)= 2 I cij(x)DjU Dtv dx 

with c l 76C'' '(D) where CM(D) here means the class of functions with all partial 
derivatives of order continuous and bounded on D. Further assume that there 
is a y > 0 such that 

Rec(u, v) 3? y\v\ltD for all v£FS(D). 

Now let H=L2(D), Va=P%(D), and W=î>lm(D). It is easily verified (as e.g. 
in GREENLEE [8], § 6) that WçD(C) and Wc.D(C*). Moreover, by Theorem 5 . 2 of 
[8], [P2

0
m(D), L2(D)]1/2 = [W, H]1/2 and P'0n(D)=Va coincide with equivalent norms. 

Thus by Theorem 2, D(Cll2)=D(C*1/2) =P"(D). 
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