On operator radii

By K. GUSTAFSON* and B. ZWAHLEN in Lausanne (Switzerland)

For a bounded linear operator T on a (real or complex) Banach space X, one has the relation

$$
|\sigma(T)| \leqq|W(T)| \leqq\|T\|
$$

between the spectral radius $|\sigma(T)|$, the numerical radius $|W(T)|$, and the operator radius $\|T\|$ (see definitions below). In a complex Banach space one has additionally that

$$
\|T\| \leqq c|W(T)|,
$$

where $c=2$ for a complex Hilbert space X (e.g., see [6]), whereas $c=e$ (see [1], [4], [9]) for a complex Banach space.

In this note we will examine the relations between these three radii $|\sigma(T)|$, $|W(T)|$, and $\|T\|$ for an arbitrary densely defined operator T in X.

We recall the definitions:

$$
\begin{gathered}
|\sigma(T)|=\sup |\lambda|, \quad \lambda \text { in the spectrum } \sigma(T), \\
|W(T)|=\sup |\lambda|, \quad \lambda \text { in the numerical range } W(T), \\
\|T\|=\sup \|T x\|, \quad x \text { in the domain } D(T) \text { of } T, \quad\|x\|=1,
\end{gathered}
$$

where $W(T)=\left\{x^{*} T x \mid x \in D(T),\|x\|=1, x^{*} \in J(x)\right\}$ and

$$
J(x)=\left\{x^{*} \in X^{*} \mid x^{*} x=\|x\|^{2}=\left\|x^{*}\right\|^{2}\right\} .
$$

$J(x)$ denotes the totality of the "Hahn-Banach" duality vectors $x^{*} \in X^{*}$ for a given x, whereas here the numerical range $W(T)$ is to be understood as defined in terms of a single x^{*} selected from $J(x)$ for each x. Sometimes (e.g., see [2]) the numerical range of T is defined by $V(T)=\left\{x^{*} T x \mid x \in D(T),\|x\|=1\right.$, all $\left.x^{*} \in J(x)\right\}$, i.e. $V(T)=$ $=\cup W_{\varphi}(T)$, for all functions $\varphi: D(T) \rightarrow J(D(T))$. Each such function $\varphi: X \rightarrow J(X)$ defines a semi-inner product $[y, x]=x^{*} y$ on X, and conversely each semi-inner product consistent with the norm $\|x\|$ is given exactly by a φ. For further information con-

[^0]cerning semi-inner products and numerical ranges for bounded operators and Ba -nach-algebras see the recent book by Bonsall-Duncan [2].

The general situation for the four cases 1) X a real Hilbert space, 2) X a complex Hilbert space, 3) X a real Banach space, 4) X a complex Banach space, is summarized by the following theorem.

Theorem. Let T be a densely defined linear operator in X; then in cases 1), 3), 4)
and in case 2)

$$
|\sigma(T)|=\infty \Rightarrow\|T\|=\infty \Leftarrow|W(T)|=\infty
$$

$$
|\sigma(T)|=\infty \Rightarrow\|T\|=\infty \Leftrightarrow|W(T)|=\infty
$$

In 1), 2), and 3) all other implications are false in general. In 4), for T closed, $\|T\|=\infty$ implies that $|W(T)|=\infty$ or $|\sigma(T)|=\infty$.

Proof. We will consider in turn the six possible implications between the three conditions

$$
|\sigma(T)|=\infty, \quad\|T\|=\infty, \quad|W(T)|=\infty
$$

In all cases $|\sigma(T)|=\infty \Rightarrow\|T\|=\infty$ follows from the defect index theory, and $|W(T)|=\infty \Rightarrow\|T\|=\infty$ follows from the Schwarz inequality.

The possible implication $\|T\|=\infty \Rightarrow|\sigma(T)|=\infty$ in case 1) (and hence case 3)) is ruled out by the example $T_{1}=\oplus\left(\begin{array}{rr}0 & n \\ -n & 0\end{array}\right)(n=1,2,3, \ldots)$, the direct sum operator in real $l_{R}^{2}=X$ with $D\left(T_{1}\right)=M$, the subspace of t^{2} consisting of all vectors which have only a finite number of nonzero components. T_{1} is unbounded, $\sigma\left(T_{1}\right)$ is empty and $W\left(T_{1}\right)=\{0\}$. To obtain a closed counterexample, one may observe that the closed operator $T_{2}=\hat{T}_{1}$, the closure of T_{1}, has the same properties. The derivative operator $T_{3} u=u^{\prime}, D\left(T_{3}\right)=\left\{u \mid u\right.$ absolutely continous, $\left.u^{\prime} \in L^{2}, u(0)=0\right\} \subset L_{C}^{2}(0,1)=X$ has empty spectrum and is closed and unbounded, and hence serves to negate this implications also in the cases 2) and 4).

The implication $|W(T)|=\infty \Rightarrow|\sigma(T)|=\infty$ is ruled out for the cases 1) and 3) by the example $T_{4}=\oplus\left(\begin{array}{rr}0 & n \\ -n^{2} & 0\end{array}\right)(n=1,2,3, \ldots)$ in l_{R}^{2} with $D\left(T_{4}\right)=M$, since $W\left(T_{4}\right)$ is unbounded but $\sigma\left(T_{4}\right)$ is empty. For a closed counterexample with the same properties as T_{4}, take $T_{5}=\hat{T}_{4}$. The counterexample T_{3} given above negates the complex cases 2) and 4), since $\left|W\left(T_{3}\right)\right|=\infty$.

The remaining two possible implications are

$$
\|T\|=\infty \Rightarrow|W(T)|=\infty \quad \text { and } \quad|\sigma(T)|=\infty \Rightarrow|W(T)|=\infty
$$

The example T_{2} rules out the first implication in the cases 1) and 3), since $W\left(T_{2}\right)=\{0\}$, and the following example T_{6} negates both implications in the cases 1) and 3). Let $T_{6} u=u^{\prime}$ with $D\left(T_{6}\right)=\left\{u \mid u\right.$ absolutely continuous, $u^{\prime} \in L^{2}, u(0)=$
$=u(1)=0\} \subset L_{R}^{2}(0,1)=X$. Then T_{6} is unbounded, but $W\left(T_{6}\right)=\{0\}$ because for $u \in D\left(T_{6}\right)$ one has $\left(T_{6} u, u\right)=\frac{1}{2} \int_{0}^{1}\left[u^{2}(x)\right]^{\prime} d x=0$; moreover $\left|\sigma\left(T_{6}\right)\right|=\infty$ because the residual spectrum $\sigma_{r}\left(T_{6}\right)$ is the whole real line (since $R\left(\lambda-T_{6}\right) \perp e^{\lambda x}$. for each real λ).

In the case 2) of X a complex Hilbert space both of the above mentioned remaining two implications are true. It suffices of course to demonstrate the first (perhaps known). Let T be unbounded and densely defined and suppose that $|W(T)|<\infty$. Then by polarization and the parallelogram law, one has for $x, y \in D(T)$, that

$$
\begin{gathered}
|(T x, y)| \leqq|W(T)| \cdot 4^{-1}\left[\|x+y\|^{2}+\|x+i y\|^{2}+\|x-y\|^{2}+\|x-i y\|^{2}\right]= \\
=|W(T)| \cdot\left[\|x\|^{2}+\|y\|^{2}\right]
\end{gathered}
$$

so that $|(T x, y)|=\|x\| \cdot\|y\| \cdot\left|\left(\|x\|^{-1} T x,\|y\|^{-1} y\right)\right| \leqq 2|W(T)| \cdot\|x\| \cdot\|y\|$. Since $D(T)$ is dense, $\|T x\| \cdot\|x\|^{-1} \leqq 2|W(T)|<\infty$, and T is bounded. Finally, in case 4) of X a complex Banach space and T a closed operator, it is known (Kato [7, p. 176]) that if $|\sigma(T)|<\infty$ then $\|T\|=\infty$ if and only if the resolvent operator $(\lambda-T)^{-1}$ has an essential singularity at infinity. Hence if both $|\sigma(T)|<\infty$ and $|W(T)|<\infty$, by noting that the latter implies that $\left\|(\lambda-T)^{-1}\right\| \rightarrow 0$ as $|\lambda| \rightarrow 0$, one has $\|T\|<\infty$. This concludes the proof of the theorem.

Remarks. We conclude with the following remarks.

1. The implications $|\sigma(T)|=\infty \Rightarrow\|T\|=\infty \Leftarrow|W(T)|=\infty$ clearly hold in a normed linear space also.
2. A special situation arises when T is everywhere defined on a Banach space X, i.e. when $D(T)=X$. By a well-known "metatheorem", then almost any additional condition will make T bounded.*)

In this situation, when $\mid(W(T) \mid<\infty$, by the closeability of T (see remark 3 below) one knows that T is closed and hence bounded (by the closed graph theorem).

Moreover, by the following arguments (perhaps known) it follows that $|\sigma(T)|<\infty$. and $D(T)=X$ imply that T is bounded.
a) Let $D(T)=X$; then T^{*} is bounded. This can be seen by letting $z_{n}^{*}=T^{*} y_{n}^{*}$ for any sequence $\left\{y_{n}^{*}\right\}$ in $D\left(T^{*}\right),\left\|y_{n}^{*}\right\|=1$; fixing x, one has $z_{n}^{*}(x)=T^{*} y_{n}^{*}(x)=$ $=y_{n}^{*} T x \leqq\|T x\|$ so that (by the uniform boundedness principle) $\left\{\left\|T^{*} y_{n}^{*}\right\|\right\}$ is a bounded set.
b) Let $|\sigma(T)|<\infty, D(T)=X$; then by a) T^{*} is bounded. For $|\lambda|>\left\|T^{*}\right\|$ one has $0=\operatorname{codim} \overline{R(\lambda-T)^{*}}=\operatorname{codim} \overline{R\left(\lambda I \mid D\left(T^{*}\right)\right)}=\operatorname{codim} \overline{D\left(T^{*}\right)}$, so that $D\left(T^{*}\right)$ is dense, and hence $D\left(T^{*}\right)=X^{*}$, which holds if and only if T is bounded.

[^1]In summary, when $D(T)=X$ a real or complex Banach space, one has

$$
|\sigma(T)|=\infty \Leftrightarrow\|T\|=\infty \Leftrightarrow|W(T)|=\infty .
$$

3. It is known (see Kato [7, p. 268]) for a Hilbert space that if $W(T)$ is not the whole plane, then T is closeable. This generalizes (e.g., see [10], [11]) to a Banach space when $W(T)$ is in a half plane (or half line in the real case.) Let us observe here that one can say roughly that some $W_{\varphi}(T)$ "not the whole complex plane" implies that T is closeable in the Banach space also. In particular, this will be the case when $W(T)$ misses an external sector somewhere in the plane; other geometrical situations that are included will be evident from the proof.

More precisely, let there exist a sequence of scalars $\left\{\lambda_{k}\right\},\left|\lambda_{k}\right| \rightarrow \infty$, such that $d\left(\lambda_{k}, W(T)\right) /\left|\lambda_{k}\right|+0$, and let T be densely defined in a normed linear space $X(X$ either real or complex); then T is closeable.

Suppose, to the contrary, that there exists a sequence $x_{n} \in D(T), x_{n} \rightarrow 0, T x_{n} \rightarrow y$, $\|y\|=1$. By hypothesis we may assume $d\left(\lambda_{k}, W(T)\right) /\left|\lambda_{k}\right| \geqq \varepsilon>0$, for some fixed ε. By $D(T)$ dense, there exists $z_{\varepsilon} \in D(T),\left\|z_{\varepsilon}\right\|=1,\left\|z_{\varepsilon}-y\right\|<\varepsilon / 2$. Let

$$
g(n, k)=\left\|\lambda_{k} x_{n}+z_{\varepsilon}-y-\lambda_{k}^{-1} T z_{\varepsilon}\right\| ;
$$

then

$$
\lim _{n \rightarrow \infty} g(n, k)=\left\|z_{\varepsilon}-y-\lambda_{k}^{-1} T z_{\varepsilon}\right\|<\varepsilon / 2+\left|\lambda_{k}\right|^{-1}\left\|T z_{\varepsilon}\right\|
$$

for fixed k. On the other hand, letting .

$$
u_{n k}=\left(x_{n}+\lambda_{k}^{-1} z_{\varepsilon}\right)\left\|x_{n}+\lambda_{k}^{-1} z_{\varepsilon}\right\|^{-1}
$$

one has by Schwarz's inequality that

$$
\begin{aligned}
& g(n, k)=\left\|\left(\lambda_{k}-T\right)\left(x_{n}+\lambda_{k}^{-1} z_{\varepsilon}\right)+\left(T x_{n}-y\right)\right\| \geqq\left\|\left(\lambda_{k}-T\right)\left(x_{n}+\lambda_{k}^{-1} z_{\varepsilon}\right)\right\|-\left\|T x_{n}-y\right\| \geqq \\
& \geqq \mid \lambda_{k}-\left[T u_{n k}, u_{n k}\right]\| \| x_{n}+\lambda_{k}^{-1} z_{\varepsilon}\|-\| T x_{n}-y\left\|\geqq d\left(\lambda_{k}, W(T)\right)\right\| x_{n}+\lambda_{k}^{-1} z_{\varepsilon}\|-\| T x_{n}-y \| .
\end{aligned}
$$

Hence

$$
\lim _{n \rightarrow \infty} g(n, k) \geqq d\left(\lambda_{k}, W(T)\right) /\left|\lambda_{k}\right| \geqq \varepsilon
$$

But from the first estimate above, noting that $\left\|T z_{\varepsilon}\right\|$ does not depend on k, one has $\varepsilon>\lim g(n, k)$ for k sufficiently large, contradicting the second estimate.

We mention that for X such that J is single valued and continuous. (e.g., see [1], [3], [8]), one has additionally for closeable T that $\overline{W(\hat{T})}=\overline{W(T)}$ as in the Hilbert space case, since $x_{n} \rightarrow x, T x_{n} \rightarrow \hat{T} x$ imply that $x_{n}{ }^{*} T x_{n} \rightarrow x^{*} \hat{T} x$.
4. Although we have not done so here, one can make $\left|\sigma_{\text {ext }}(T)\right|=\infty \Leftrightarrow\|T\|=\infty$ by using the notion of extended spectrum (e.g., see [7]).
5. Of course, not all of the considered implications are independent. In particular, one has $\{\|T\|=\infty \Rightarrow|W(T)|=\infty\} \Leftrightarrow\{|\sigma(T)|=\infty \Rightarrow|W(T)|=\infty\}$ in case 4): to the right, by the previously noted general implications; and to the left, by the following argument. Given $\|T\|=\infty$, if $|W(T)|<\infty$, then by the right hand implication we would have $|\sigma(T)|<\infty$, and then, using the result [7, p. 176] already used above, one has $\|T\|<\infty$, a contradiction.
6. To recapitulate, exactly the following situations occur:
a) $\|T\| \cdot<\infty, \quad|\sigma(T)|<\infty, \quad|W(T)|<\infty \quad$ cases 1)-4)
b) $\|T\|=\infty, \quad|\sigma(T)|=\infty, \quad|W(T)|=\infty \quad$ cases 1$)-4)$
c) $\|T\|=\infty, \quad|\sigma(T)|<\infty, \quad|W(T)|=\infty \quad$ cases 1$)-4)$
d) $\|T\|=\infty, \quad|\sigma(T)|=\infty, \quad|W(T)|<\infty \quad$ cases 1), 3), not 2)
e) $\|T\|=\infty, \quad|\sigma(T)|<\infty, \quad|W(T)|<\infty \quad$ cases 1), 3), not 2), not 4) for T closed.
7. There remains the question of whether $\|T\|=\infty \Rightarrow|W(T)|=\infty$ in the case 4). An exception to this clearly cannot occur, for example, when any of the following conditions prevails: a) $|\sigma(T)|<\infty$; b) $\exists \lambda \in \varrho(T),|\lambda|>|W(T)|$; c) $\left|W\left(T^{*}\right)\right|<\infty$; d) $J(D(T))$ contains an eigenvector of $\left(\bar{\lambda}-T^{*}\right),|\lambda|>W(T)$.
8. Finally we mention that one can construct a proof in the case 2) different from that given above; this proof completely avoids both polarization and the parallelogram law but still requires a bilinear form. The argument is similar to that used in [5] to show that the cosine of an unbounded operator is always zero, and we omit the details.

References

[1] H. F. Bohnenblust and S. Karlin, Geometrical properties of Banach algebras, Annals of Math., 62 (1955), 217-229.
[2] F. F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and of elements of normed algebras, Cambridge University Press (1971).
[3]. J. R. Giles, Classes of semi-inner product spaces, Trans. Amer. Math. Soc., 129 (1967), 436446.
[4] B. W. Glickfeld, On an inequality of Banach algebra geometry and semi-inner-product space theory, Ill. J. Math., 14 (1970), 76-81.
[5] K. Gustafson and B. Zwahlen, On the cosine of unbounded operators, Acta Sci. Math., 30 (1969), 33-34.
[6] P. Halmos, A Hilbert space problem book, Van Nostrand (1967).
[7] T. Kato, Perturbation theory for linear operators, Springer-Verlag (1966).
[8] T. Кato, Some mapping theorems for the numerical range, Proc. Jap. Acad., 41 (1965), 652-655.
[9] G. Lumer, Semi-inner-product spaces, Trans. Amer. Math. Soc;, 100 (t961), 29-43.
[10] G. Lumer and R. S. Phillips, Dissipative operators in a Banach space, Pac. J. Math., 11 (1961), 679-698.
[11] Ken-iti Sato, On dispersive operators in Bạnach lattices, Pac. J.'Math., 33 (1970), 429-443.

UNIVERSITY OF COLORADO AND
ECOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
(Received December 15, 1972, revised October 15, 1973)

[^0]: * Partially supported by NSF GP 15239 A-1.

[^1]: *) For example, this has been recently put on a logical basis by M. Autai, On the boundedness of definable linear operators, Periodica Math. Hungarica (to appear).

