
On operator radii 

By K. GUSTAFSON* and B. ZWAHLEN in Lausanne (Switzerland) 

For a bounded linear operator T on a (real or complex) Banach space X, one 
has the relation 

K T ) | ^ \W(T)\ s urn 

between the spectral radius \G(T)\, the numerical radius \W(T)\, and the operator 
radius || TH (see definitions below). In a complex Banach space one has addi-
tionally that 

\\T\\^c\W{T)\, 

where c = 2 for a complex Hilbert space X (e.g., see [6]), whereas c = e (see [1], [4], [9]) 
for a complex Banach space. 

In this note we will examine the relations between these three radii |<r(r)|, 
\W(T)\, and | | r | | for an arbitrary densely defined operator Tin X. 

We recall the definitions: 

|ff(:T)| = sup |A|, X in the spectrum a(T), 

\W(T)\ = sup \X\, X in the numerical range W\T), 

l im = sup| |rx| | , x in the domain D(T) of T, ||x|| = 1, . 

where W(T) = {x*Tx\x£D(T), ||x|| = l, x*6./(*)} and 

' . J(x) = {x*£X*lx*x = ||x||2 = \\x*n 

J(x) denotes the totality of the "Hahn—Banach" duality vectors x*£X* for a given 
x, whereas here the numerical range W(T) is to be understood as defined in terms 
of a single x* selected from J(x) for each x. Sometimes (e.g., see [2]) the numerical 
range of T i s defined by V(T)={x*Tx\x£D(T), ||x|| = l, all x*<c/(x)}, i.e. V{T)= 
= UiF, , ( r ) , for all functions (p: D{T)^J(D{T)). Each such function cp:X^J(X) 
defines a semi-inner product [y, x]=x*y on X, and conversely each semi-inner product 
consistent with the norm ||x|| is given exactly by a (p. For further information con-
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cerning semi-inner products and numerical ranges for bounded operators and Ba-
nach-algebras see the recent book by BONSALL—DUNCAN [2]. 

The general situation for the four cases 1) X a real Hilbert space, 2) X a complex 
Hilbert space, 3) Xa real Banach space, 4) Xa complex Banach space, is summarized 
by the following theorem. 

T h e o r e m . Let Tbe a densely defined linear operator in X; then in cases 1), 3), 4) 

\o(T)\ =.« => ||m = =o <= \W(T)\ 
and in case 2) 

| f f ( r ) | =»'=> Hm = oo W \W(T)\ = oo. 
In 1), 2), and 3) all other implications are false in general. In 4), for T closed, || !T|| = 
implies that \ W{T)| = » or \a(T)\ = 

P r o o f . We will consider in turn the six possible implications between the three 
conditions 

K T ) | = oo, i m i . = = c , \iv(T)\ = ~. 

In all cases ^(T1)! = oo => ||T'|| = oo follows from the defect index theory, and 
\W{T)\ = <~ =• | | r | | = oo follows from the Schwarz inequality. 

The possible implication ||T|| = oo => |(r(r) | = «> in case 1) (and hence case 3)) 

is ruled out by the example 7 i = ' c ' ' r e c t s u m ° P e r a t o r 

in real l\=X with D(T1)=M, the subspace of /2 consisting of all vectors which 
have only a finite number of nonzero components. 7\ is unbounded, o(Tj) is empty 
and W(7\) = {0}. To obtain a closed counterexample, one may observe that the 
closed operator T2 = TX, the closure of has the same properties. The derivative 
operator T3u=u\ 3(T3) = {u\u absolutely continous, u'£Lz, K(0)=0}C:Z£(0, ])=X 
has empty spectrum and is closed and unbounded, and hence serves to negate this 
implications also in the cases 2) and 4). 

The implication \w(T)\ = o° => |ff(7^| = oo is ruled out for the cases 1) and 3) 

by the example ^ ( « = 1 , 2 , 3 , . . . ) in / 2 with D(Tt) = M, since W(T4) 

is unbounded but criT^ is empty. For a closed counterexample with the same proper-
ties as Tt, take T,

5 = T'4. The counterexample T3 given above negates the complex 
cases 2) and 4), since |(f( .r3) | = oo. 

The remaining two possible implications are 

II71 = oo \W{T)\ = oo and |<r(T)| = oo \W(T)\ = oo. 

The example T2 rules out the first implication in the cases 1) and 3), since 
H /(r2) = {0}, and the following example Te negates both implications in the cases 
1) and 3). Let T6u = u' with D(T6) = {u\u absolutely continuous, w'ÇL2, h(0) = 
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= w ( l ) = 0 } c 4 ( 0 , 1 ) = ^ . Then 76 is unbounded, but H^(76) = {0} because for 
i 

u£D(T6) one has (T6u,u)= Y J [w2(x)]'i/x = 0; moreover |<T(78)| = OO because the 
0 

residual spectrum ar(T(¡) is the whole real line (since R().— T6)±eXx for each real A). 
In the case 2) of X a complex Hilbert space both of the above mentioned re-

maining two implications are true. It suffices of course to demonstrate the first 
(perhaps known). Let 7 be unbounded and densely defined and suppose that 
|W(T)\-<°°. Then by polarization and the parallelogram law, one has for 
x,y£D(T), that 

= 1 ^ ( 7 0 1 - [ M l 2 + | | j | | 2 ] , 

so that \(Tx, JOI = M -lljll - K W " 1 ^ , H j i r V ) | s 2 | ^ ( r ) | . | k l l -IIJII- Since D(T) is 
dense, ||7x|| • | | x | r 1 s 2 | H ^ ( r ) | < o o , and 7 is bounded. Finally, in case 4) of X a 
complex Banach space and T a closed operator, it is known (KATO [7, p. 176]) that 
if |o-(7) |<°° then 1171=00 if and only if the resolvent operator (A — 7 ) - 1 has an 
essential singularity at infinity. Hence if both |cr(7)|<oo and \ W(T)\<°°, by noting 

' that the latter implies that || (A —7)_ 1 | | - 0 as |A| - 0 , one has || 7[| < This concludes 
the proof of the theorem. 

R e m a r k s . We conclude with the following remarks. 
1. The implications '¡<x(7)| = co => ||7|| =°o <= \W(T)\ = <*> clearly hold in a 

normed linear space also. 
2. A special situation arises when 7 is everywhere defined on a Banach space X, 

i.e. when D(T)=X. By a well-known "metatheorem", then almost any additional 
condition will make 7 bounded.*) 

In this situation, when \(W(T)\<-*>, by the closeability of 7 (see remark 3 
below) one knows that 7 is closed and hence bounded (by the closed graph theorem). 

Moreover, by the following arguments (perhaps known) it follows that |CT(7)|< oo 
and D (T) = d imply that 7 is bounded. 

a) Let D(T) = X; then T* is bounded. This can be seen by letting z* = T*y* 
for any sequence {y*} in D(T*), | |j*|| = l ; fixing x, one has z*(x) = T*y*(x) = 
=y*Tx^\\Tx\\ so that (by the uniform boundedness principle) {| |7*j*| |} is a 
bounded set. 

b) Let |<r(7)|<oo, D(T) = X; then by a) T* is bounded. For |A|>||7*|| one 
has 0 = codim R(A-T)* = codim i?(1/1Z>(7*)) = codim D(7*), so that D(T*) is 
dense, and hence D(T*) = X*, which holds if and only if 7 is bounded. 

*) For example, this has been recently put on a logical basis by M. AJTAI, On the boundedness 
of definable linear operators, Periodica Math. Himgarica (to appear). 
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In summary, when D{T)=X a real or complex Banach.space, one has 

|ff(T)| = ~ ||T|| = <*\W(T)\ = po. ' 

3. It is known (see KATO [7, p. 268]) for a Hilbert space that if W(T) is not 
the whole plane, then T is closeable. This generalizes (e.g., see [10], [11]) to a Banach 
space when W(T) is in a half plane (or half line in the real case.) Let us observe 
here that one can say roughly that some WV{T) "not the whole complex plane" implies 
that T is closeable in the Banach space also. In particular, this will be the case when 
W{T) misses an external sector somewhere in the plane; other geometrical situations 
that are included will be evident from the proof. 

More precisely, let there exist a sequence of scalars {4}, 1-̂ 1 — s u c h that 
d(Xk, W ( T ) ) / a n d let T be densely defined in a normed linear space X (X 
either real or complex); then T i s closeable. 

Suppose, to the contrary, that there exists a sequence xn£D(T), x„ — 0, Tx„-*y, 
||^|| = 1. By hypothesis we may assume d{Xk, W(T))/\Xk\^E>0, -for some fixed e. 
By D(T) dense, there exists zc£D(T), | | z j = l , \\ze-y\\<e/2. Let 

g{n,k) = \\?.kx„ + zE—y — lk
1Tzs\\-, 

then 
. . lim g(n,k) = Wz.-y-X^Tz.W < e ^ + IA^-^ITzJI, 

n-f OO 

for fixed k. On the other hand, letting . 

u„k = (xn + Ák
1ze)\\xn + Ák

1ze\\-1, . 

one has by Schwarz's inequality that 

,g(n,k) = \\(Xk-T)(xn + l k - 1 Z e ) + (Txn-y)\\ ^ ||(At —T)(x„ + A¿"1z£)|| — lTxn—y\\ S 

s |K-[Tunk, unk]\ Wxn + X^ZzW- \\Txn-y\\ S d(Xk, W(T)) IIx„ +Ar^ll - lir*.-^. 

Hence 

\im g(n,k) S d(Ak,W(T))/\Xk\ £ 8. 

But from the first estimate above, noting that ||7zJ| does not depend on k, one 
has E > l i m g { n , k ) for k sufficiently large, contradicting the second estimate. 

We mention that for X such that J is single valued and continuous (e.g., see 
PL [3], [8]), one has additionally for closeable T t h a t W(f )= W(T) as in the Hilbert 
space case, since x„ — x, Txn->-fx imply that x„*Tx„ — x*Tx. 
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4. Although we have not done so here,'one can make KextCOH0 0 ** II711 = — 
by using the notion of extended spectrum (e.g., see [7]). 

5. Of course, not all of the considered implications are independent. In particular, 
one has {| |r | | = «>=>. \ W(T)\ = °=}<* {|<r(D| = « = > |>*TO| = - } i n case 4): to the 
right, by the previously noted general implications; and to the left, by the follow-
ing argument. Given ||71| = —, if \W(T)\<°°, then by the right hand implication we 
would have |<r(r) |< —, and then, using the result [7, p. 176] already used above, one 
has [ |T| |<°o, a contradict ion. 

6. To recapitulate, exactly the following situations occur: 

a) l | 7 I ' < - , | a (7) | < - , \W(T)\ < - cases 1)—4) 

h) II711 = - , \a(T)\ = - , \W(T)\ = - cases 1)—4) 

c) 117-11 = - , k m i - \W(T)\ = - cases 1)—4) 

d) imi = - , l?(r)l = - , \W(T)\ • - cases 1), 3), not 2) 

e) \\T\\ = - , W(T)\ - - , \W-(T)\ < - cases 1), 3), not 2), not 4) for T 
closed. 

7. There remains the question of whether ||71| = — => | W(7,)| = °° in the case 4). 
An exception to this clearly cannot occur, for example, when any of the following 
conditions prevails: a) |<7(r)|<°°; b) 3A€eGO, \k\>\W(T)\\ c) | ^ ( r * ) | < - ; 
d) J(D(T)) contains an eigenvector of (1-7"*), \X\>W(T). 

8. Finally we mention that one can construct a proof in the case 2) different 
from that given above; this proof completely avoids both polarization and the 
parallelogram law but still requires a bilinear form. The argument is similar to 
that used in [5] to show that the cosine of an unbounded operator is always zero, 
and we omit the details. 

References 

[1] H. F. BOHNENBLUST and S. KARLIN, Geometrical properties of Banach algebras, Annals of 
Math., 62 (1955), 217—229. 

[2] F. F. BONSALL and J. DUNCAN, Numerical ranges of operators on normed spaces and of elements 
of nor mecl algebras, Cambridge University Press (197J). 

[3] J. R. GILES, Classes of semi-inner product spaces, Trans. Amer. Math. Soc., 129 (1967), 436— 
4 4 6 . 

[4] B. W. GLICKFELD, On an inequality of Banach algebra geometry and semi-inner-product 
space theory, III. J. Math., 14 (1970), 76—81. 

5« 



68 K. Gustafson—B. Zwahlen: On operator radii 

[5] K. GUSTAFSON and B. ZWAHLEN, On the cosine of unbounded operators, Acta Sci. Math., 
3 0 ( 1 9 6 9 ) , 3 3 — 3 4 . 

[6] P. HALMOS, A Hilbert space problem book, Van Nostrand (1967). 
[7] T. KATO, Perturbation theory for linear operators, Springer-Verlag (1966). 
[8] T. KATO, Some mapping theorems for the numerical range, Proc. Jap. Acad., 41 (1965), 

652—655. 
[9] G. LUMER, Semi-inner-product spaces, Trans. Amer. Math. Soc., 100 (1961), 29—43. 

[10] G. LUMER and R. S. PHILLIPS, Dissipative operators in a Banach space, Pac. J. Math., 11 
(1961), 679^698 . 

[11] KEN-ITI SATO, O n dispersive operators in B a n a c h lattices, Pac. J. Math., 3 3 (1970) , 429—443 . 

UNIVERSITY OF COLORADO AND 
ECOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE 

(Received December 15, 1972, revised October 15, 1973) 


