Bands of monoids

By B. M. SCHEIN in Saratov (USSR)

To my colleagues in the city of Szeged where this paper has been written

Let S be a semigroup which is the union of a family $\left(S_{i}\right)_{i \in I}$ of subsemigroups which are classes of a congruence relation on S. Then I may be endowed with a binary operation $i j=k \rightarrow S_{i} S_{j} \subset S_{k}$ for all $i, j, k \in I$. Under this operation I is a band (i.e. an idempotent semigroup) and S is called an I-band (or merely a band) of subsemigroups $\left(S_{i}\right)_{i \in I}$.

In this paper we present a new method of constructing bands of semigroups. This method permits to build up all bands of unipotent monoids (a monoid is a semigroup with identity, a monoid is called unipotent if it contains the only idempotent its identity). In particular, we obtain a simple construction for orthodox bands of arbitrary monoids. Our method is a generalization of Clifford's sums of direct systems of groups [1] (called also rigid or strong semilattices of groups).

In our paper [2] we introduced a class of semigroups with the weak involutory property (WIP-semigroups). A semigroup S is a WIP-semigroup if for any $s, t \in S$ and any $\bar{s}, \bar{t} \in S$ such that $s \bar{s} s=s, \bar{s} s \bar{s}=\bar{s}, t \bar{t} t=t, \bar{t} t \bar{t}=\bar{i}$ (i.e. \bar{s} and \bar{t} are inverses for s and t respectively), $\bar{t} \bar{s}$ is an inverse for $s t$. Among other properties it was proved that S is a WIP-semigroup if and only if the idempotents of S form a (possibly empty) subsemigroup [2]. Regular WIP-semigroups were considered also in [3] where they were called orthodox semigroups. So we call the WIP-semigroups orthodox (notice that an orthodox semigroup in our sense need not be regular).

Let $\left(S_{i}\right)_{i \in I}$ be a family of semigroups with pairwise disjoint sets of elements: Suppose \leqq is a quasiorder (i.e. reflexive and transitive) binary relation on I. A family $\Phi=\left(\varphi_{i j}\right)_{i \leq j} ; i, j \in I$ is called a direct system of homomorphisms over \leqq if for every $i, j \in I$ such that $i \leqq j \varphi_{i j}$ is a homomorphism of S_{j} into S_{i} and the following two properties holds:

1) for every $i \in l \varphi_{i i}$ is the identical automorphism of S_{i};
2) for every $i, j, k \in I$ if $i \leqq j \leqq k$ then $\varphi_{i j} \circ \varphi_{j k}=\varphi_{i k}$.

If S_{i} are monoids and e_{i} denotes the identity of S_{i} then we demand that $\varphi_{i j}\left(e_{j}\right)=e_{i}$, i.e. identities are preserved under homomorphisms of monoids.

Let I be endowed with an associative and idempotent binary operation \cdot, i.e. let (I, \cdot) be a band. Define the following binary relations \leqq_{1} and \leqq_{2} on I :
 Suppose $\Phi=\left(\varphi_{i j}\right)$ and $\Psi=\left(\psi_{i j}\right)$ are direct systems of homomorphisms over \leqq_{1} and \leqq_{2} respectively. Φ and Ψ are called commuting if for all $\ddot{\eta}, j, k \in I$ such that $j \leqq_{1} i, k \leqq_{2} i$ the following diagram is commutative:

$$
\begin{array}{ccc}
S_{i} & \rightarrow S_{j} \\
\downarrow & \downarrow \\
S_{k} & \rightarrow S_{k j}
\end{array}
$$

where the horizontal arrows represent homomorphisms from Φ and vertical arrows represent homomorphisms from Ψ (i.e. $\psi_{k j, j} \circ \varphi_{j i}=\varphi_{k j, k} \circ \psi_{k i}$). Clearly, $k j \leqq{ }_{1} k$ and $k j \leqq_{2} j$ so that all homomorphisms mentioned do exist.

If $a_{i} \in S_{i}$ then $\varrho_{a_{i}}$ and $\lambda_{a_{i}}$ denote the right and left translations of S_{i} corresponding to a_{i}, i.e. $\varrho_{a_{i}}(s)=s a_{i}$ and $\lambda_{a_{i}}(s)=a_{i} s$ for all $s \in S_{i}$.

Suppose there are given two direct systems of homomorphisms Φ and Ψ over \leqq_{1} and \leqq_{2} respectively and an $(I \times I)$-matrix $A=\left(a_{i j}\right)$ over $S=\cup_{i \in I} S_{i}$ such that $a_{i j} \in S_{i j}$ for all $i, j \in I$. We call the triple (Φ, Ψ, A) balanced if $a_{i i}=e_{i}$ for any $i \in I$ and

$$
\varrho_{a_{i j, k}} \circ \varphi_{i j k, i j} \circ \lambda_{a_{i j}} \circ \psi_{i j, j} \doteq \lambda_{a_{i, j k}} \circ \psi_{i j k, j k} \circ \varrho_{a_{j k}} \circ \varphi_{j k, j}
$$

for all $i, j, k \in I$.
If $a_{i j}=e_{i j}$ for all $i, j \in I$ then the triple (Φ, Ψ, A) is balanced precisely if the direct systems Φ and Ψ commute.

A band S of monoids $\left(S_{i}\right)_{i \in I}$ is called proper if the identities of the monoids form a subsemigroup of S.

Theorem 1. Let $\left(S_{i}\right)_{i \in I}$ be a family of pairwise disjoint unipotent monoids; (I, \cdot) be a band, $\Phi=\left(\varphi_{i j}\right)$ and $\Psi=\left(\psi_{i j}\right)$ be direct systems of homomorphisms over \leqq_{1} and \leqq_{2} respectively, A be an $(I \times I)$-matrix over $S=\bigcup_{i \in I} S_{i}$ and the triple (Φ, Ψ, A) be balanced.

Define a binary multiplication \square on S as follows: if $s_{i} \in S_{i}$ and $s_{j} \in S_{j}$ then $s_{i} \square s_{j}=\varphi_{i j, i}\left(s_{i}\right) a_{i j} \psi_{i j, j}\left(s_{j}\right)$ where the right-hand side product is taken in the monoid $S_{i j}$. Then (S, \square) is an I-band of monoids $\left(S_{i}\right)_{i \in I}$ and every I-band of monoids $\left(S_{i}\right)_{i \in I}$ can be constructed in this way. Moreover, the triple (Φ, Ψ, A) is defined uniquely for any I-band of $\left(S_{i}\right)_{i \in I}$.

Theorem 2. Let $\left(S_{i}\right)_{i \in I}$ be a family of pairwise disjoint semigroups, (I, \cdot) be a band, and Φ and Ψ be commuting direct systems of homomorphisms over \leqq_{1} and
\leq_{2}, respectively. Define a binary multiplication \square on $S=\cup_{i \in I} S_{i}$ as follows: if $s_{i} \in S_{i}$ and $s_{j} \in S_{j}$ then $s_{i} \square s_{j}=\varphi_{i j, i}\left(s_{i}\right) \psi_{i j, j}\left(s_{j}\right)$ where the right-hand side product is taken in the semigroup $S_{i j}$. Then (S, \square) is an I-band of semigroups $\left(S_{i}\right)_{i_{i}}$. Moreover, if S_{i} are monoids then (S, \square) is a proper I-band of the monoids $\left(S_{i}\right)_{i \in I}$ and every proper I-band of the monoids $\left(S_{i}\right)_{i \in I}$ can be constructed in the above fashion, the direct systems Φ and Ψ being determined in the unique way. (S, \square) is orthodox if and only if all the monoids S_{i} are orthodox.

Some corollaries will follow after the proofs.
Proof of Theorem 1. Suppose $s_{i} \in S_{i}, s_{j} \in S_{j}$ and $s_{k} \in S_{k}$. Then

$$
\begin{aligned}
\left(s_{i} \square s_{j}\right) \square s_{k} & =\left(\varphi_{i j, i}\left(s_{i}\right) a_{i j} \psi_{i j, j}\left(s_{j}\right)\right) \square s_{k}=\varphi_{i j k, i j}\left(\varphi_{i j, i}\left(s_{i}\right) a_{i j} \psi_{i j, j}\left(s_{j}\right)\right) a_{i j, k} \psi_{i j k, k}\left(s_{k}\right)= \\
& =\left[\varphi_{i j k, i j} \circ \varphi_{i j, i}\left(s_{i}\right)\right]\left[\varrho_{a_{i j, k}} \circ \varphi_{i j k, i j} \circ \lambda_{a_{i j}} \circ \psi_{i j, j}\left(s_{j}\right)\right] \psi_{i j k, k}\left(s_{k}\right)= \\
& =\varphi_{i j k, i}\left(s_{i}\right)\left[\lambda_{a_{i, j k}} \circ \psi_{i j k, j k} \circ \varrho_{a_{j k}} \circ \varphi_{j k, j}\left(s_{j}\right)\right]\left[\psi_{i j k, j k} \circ \psi_{j k, k}\left(s_{k}\right)\right]=
\end{aligned}
$$

$=\varphi_{i j k, i}\left(s_{i}\right) a_{i, j k}\left[\psi_{i j k, j k}\left(\varphi_{j k, j}\left(s_{j}\right) a_{j k} \psi_{j k, k}\left(s_{k}\right)\right)\right]=\varphi_{i j k, i}\left(s_{i}\right) a_{i, j k} \psi_{i j k, j k}\left(s_{j} \square s_{k}\right)=s_{i} \square\left(s_{j} \square s_{k}\right)$,
i.e. (S, \square) is a semigroup. If $i=j$ then $s_{i} \square s_{j}=\dot{\varphi_{i i}}\left(s_{i}\right) a_{i i} \psi_{i i}\left(s_{j}\right)=s_{i} e_{i} s_{j}=s_{i} s_{j}$. Thus, (S, \square) is an I-band of the family $\left(S_{i}\right)_{i \in I}$ of monoids.

Now $e_{i} \square e_{j}=\varphi_{i j, i}\left(e_{i}\right) a_{i j} \psi_{i j, j}\left(e_{j}\right)=e_{i j} a_{i j} e_{i j}=a_{i j}$ so that the matrix A is determined in the unique way $-A=\left(e_{i} \square e_{j}\right)$. Using this fact we obtain

$$
a_{i, i j}^{\prime}=e_{i} \square e_{i j}=e_{i} \square\left(e_{i} \square e_{i j}\right)=e_{i} \square\left(e_{i j} \square\left(e_{i} \square e_{i j}\right)\right)=\left(e_{i} \square e_{i j}\right)^{2},
$$

i.e. $a_{i, i j}$ is an idempotent from $S_{i j}$. Since $S_{i j}$ is unipotent, $a_{i, i j}=e_{i j}$. Thus,

$$
s_{i} \square e_{i j}=\varphi_{i j, i}\left(s_{i}\right) a_{i, i j} \psi_{i j, i j}\left(e_{i j}\right)=\varphi_{i j, i}\left(s_{i}\right) \cdot a_{i, i j} e_{i j}=\varphi_{i j, i}\left(s_{i}\right)
$$

i.e. the direct system Φ of homomorphisms is determined in the unique way. Analogously we may prove that. $\psi_{i j, j}\left(s_{j}\right)=e_{i j} \square s_{j}$ for any $s_{j} \in S_{j}$.

To prove the second part of Theorem 1 suppose (S, \cdot) is a band of a family $\left(S_{i}\right)_{i \in I}$ of unipotent monoids. Let $a_{i j}=e_{i} e_{j}$ for any $i, j \in I, \varphi_{i j, i}\left(s_{i}\right)=s_{i} e_{i j}$ and $\psi_{i j, j}\left(s_{j}\right)=e_{i j} s_{j}$ for all $i, j \in I$ and $s_{i} \in S_{i}, s_{j} \in S_{j}$. Then $a_{i j} \in S_{i j}$ and if $s_{i}, t_{i} \in S_{i}$ then

$$
\varphi_{i j, i}\left(s_{i} t_{i}\right)=s_{i} t_{i} e_{i j}=s_{i}\left(e_{i j}\left(t_{i} e_{i j}\right)\right)=\varphi_{i j, i}\left(s_{i}\right) \varphi_{i j, i}\left(t_{i}\right),
$$

i.e. $\varphi_{i j, i}$ is a homomorphism of S_{i} into $S_{i j}$. Since $S_{i j}$ is unipotent, $\varphi_{i j, i}\left(e_{i}\right)=e_{i j}$. Clearly $\varphi_{i i}\left(s_{i}\right)=s_{i} e_{i}=s_{i}$. Now .

$$
\varphi_{i j k, i j} \circ \varphi_{i j, i}\left(s_{i}\right)=\varphi_{i j k, i j}\left(s_{i} e_{i j}\right)=\left(s_{i} e_{i j}\right) e_{i j k}=s_{i}\left(e_{i j} e_{i j k}\right)=s_{i} e_{i j k}=\varphi_{i j k, i}\left(s_{i}\right)
$$

so that $\Phi=\left(\dot{\varphi}_{i j}\right)$ forms a direct system of homomorphisms over \leqq_{1}. In the same way we may prove that $\Psi=\left(\psi_{i j}\right)$ forms a direct system of homomorphisms over \leqq_{2}.

Now $a_{i i}=e_{i} e_{i}=e_{i}$ and

$$
\begin{aligned}
& \varrho_{a_{i j, k}} \circ \varphi_{i j k, i j} \circ \lambda_{a_{i j}} \circ \psi_{i j, j}\left(s_{j}\right)=\varrho_{a_{i j, k}} \circ \varphi_{i j k, i j} \circ \varrho_{a_{i j}}\left(e_{i j} s_{j}\right)=\varrho_{a_{i j, k}} \circ \varphi_{i j k, i j}\left(a_{i j} e_{i j} s_{j}\right)= \\
& \quad=\varrho_{a_{i j, k}}\left(a_{i j} e_{i j} s_{j} e_{i j k}\right)=a_{i j} e_{i j} s_{j} e_{i j k} a_{i j, k}=a_{i j} s_{j} e_{i j k} a_{i j, k}=a_{i j} s_{j} a_{i j, k}= \\
& =e_{i} e_{j} s_{j} a_{i j, k}=e_{i} s_{j} a_{i j, k}=e_{i} s_{j} e_{i j} e_{k}=e_{i} s_{j} e_{k}=e_{i} e_{j k} s_{j} e_{k}=a_{i, j k} s_{j} e_{k}= \\
& =a_{i, j k} s_{j} e_{j} e_{k}=a_{i, j k} s_{j} a_{j k}=a_{i, j k} e_{i j k} s_{j} a_{j k}=a_{i, j k} e_{i j k} s_{j} e_{j k} a_{j k}= \\
& =\lambda_{a_{i, j k}}\left(e_{i j k} s_{j} e_{j k} a_{j k}\right)=\lambda_{a_{i, j k}} \circ \psi_{i j k, j k}\left(s_{j} e_{j k} a_{j k}\right)= \\
& \quad=\lambda_{a_{i, j k}} \circ \psi_{i j k, j k} \circ \varrho_{a j k}\left(s_{j} e_{j k}\right)=\lambda_{a_{i, j k}} \circ \psi_{i j k, j k} \circ \varrho_{a j k} \circ \varphi_{j k, j}\left(s_{j}\right),
\end{aligned}
$$

i.e. the triple (Φ, Ψ, A) is balanced. Finally

$$
s_{i} \square s_{j}=\varphi_{i j, i}\left(s_{i}\right) a_{i j} \psi_{i j, j}\left(s_{j}\right)=s_{i} e_{i j} a_{i j} e_{i j} s_{j}=s_{i} a_{i j} s_{j}=s_{i} e_{i} e_{j} s_{j}=s_{i} s_{j}
$$

This fact completes the proof of Theorem 1.
Proof of Theorem 2. Suppose $s_{i} \in S_{i}, s_{j} \in S_{j}$ and $s_{k} \in S_{k}$. Then

$$
\begin{gathered}
\left(s_{1} \square s_{j}\right) \square s_{k}=\left(\varphi_{i j, i}\left(s_{i}\right) \psi_{i j, j}\left(s_{j}\right)\right) \square s_{k}=\varphi_{i j k, i j}\left(\varphi_{i j, i}\left(s_{i}\right) \psi_{i j, j}\left(s_{j}\right)\right) \psi_{i j k, k}\left(s_{k}\right)= \\
=\left[\varphi_{i j k, i j} \circ \varphi_{i j, i}\left(s_{i}\right)\right]\left[\varphi_{i j k, i j} \circ \psi_{i j, j}\left(s_{j}\right)\right] \psi_{i j k, k}\left(s_{k}\right)= \\
=\varphi_{i j k, i}\left(s_{i}\right)\left[\psi_{i j k, j k} \circ \varphi_{j k, j}\left(s_{j}\right)\right]\left[\psi_{i j k, j k} \circ \psi_{j k, k}\left(s_{k}\right)\right]=\varphi_{i j k, i}\left(s_{i}\right) \psi_{i j k, j k}\left(s_{j} \square \stackrel{S}{k}\right)=s_{i} \square\left(s_{j} \square s_{k}\right),
\end{gathered}
$$

i.e. (S, \square) is a semigroup.

If $i=j$ then $s_{i} \square s_{j}=\varphi_{i i}\left(s_{i}\right) \psi_{i i}\left(s_{j}\right)=s_{i} s_{j}$. Thus, (S, \square) is an I-band of the family $\left(S_{i}\right)_{i \in I}$ of semigroups. Unicity of Φ and Ψ in case S are monoids for all $i \in I$ is proved in the same way as in the proof of Theorem 1.

If (S, \cdot) is a proper I-band of monoids S_{i} then exactly in the same way as in the proof of Theorem 1 we may verify that $(S, \cdot)=(S, \square)$ where Φ and Ψ are defined in the same way as in the proof of Theorem 1. Commutativity of Φ and Ψ follows readily.

If S_{i} are monoids then $e_{i} \square e_{j}=\varphi_{i j, i}\left(e_{i}\right) \psi_{i j, j}\left(e_{j}\right)=e_{i j} e_{i j}=e_{i j}$. Therefore (S, \square) is a proper band of $\left(S_{i}\right)_{i \in I}$.

Clearly, if (S, \square) is orthodox then S_{i} are orthodox. for all $i \in I$. Conversely, suppose S_{i} are orthodox and $s_{i} \in S_{i}, s_{j} \in S_{j}$ are idempotents of (S, \square). Then $s_{i} \square s_{j}=$ $=\varphi_{i j, i}\left(s_{i}\right) \psi_{i j, j}\left(s_{j}\right)$ and the right-hand side of the equality is a product of two idempotents of $S_{i j}$ (since homomorphisms map idempotents onto idempotents). The orthodoxy of $S_{i j}$ implies $s_{i} \square s_{j}$ is an idempotent. Thus, (S, \square) is orthodox which completes the proof of Theorem 2.

Obviously, Theorem 2 in case of unipotent monoids is a particular case of Theorem 1.

Remark 1. Since every group is a unipotent and orthodox monoid, every band of groups may be constructed as in Theorem 1 and every orthodox band of
groups may be constructed as in Theorem 2. Another construction for orthodox bands of groups has been given in [4]. A survey of constructions for orthodox unions. of groups may be found in [5].

Remark 2. Suppose (Φ, Ψ, A) is a balanced triple and $k \leqq_{1} j ; i \leqq_{2} j$. This being the case, $a_{i j}=e_{i}$ (which fact has been proved above) and analogously $a_{j k}=e_{k}$. Thus, the condition of balancedness may be written for these particular i, j, k as follows:

$$
\begin{equation*}
\varrho_{a_{i k}} \circ \varphi_{i k, i} \circ \psi_{i j}=\lambda_{a_{i k}} \circ \psi_{i k, k} \circ \varphi_{k j} \tag{1}
\end{equation*}
$$

If $i=k$ then we obtain $\varrho_{a_{i t}} \circ \varphi_{i i} \circ \psi_{i j} \neq \lambda_{a_{i i}} \circ \psi_{i i} \circ \varphi_{i j}$ or, equivalently, $\psi_{i j}=\varphi_{i j}$. Thus, if $i \leqq_{1} j$ and $i \leqq_{2} j$ (i.e. if $i=i j=j i$) then $\psi_{i j}=\varphi_{i j}$. In particular, if (I, \cdot) is a semilattice then \leqq_{1} coincides with \leqq_{2} and Φ coincides with Ψ; in this case the construction of Theorem 2 turns out to be the well-known [1] construction for sums of direct systems of semigroups. Clearly, if $\Phi=\Psi$ then Φ and Ψ commute. Thus, every proper semilattice of monoids is a sum of their direct system.

Remark 3. Let the band (I, \cdot) satisfy the pseudoidentity $x y x=x y \vee x y x=y x$ where \vee is the disjunction sign. Let $x \leqq y$ mean that $x \leqq \leqq_{1} y$ or $x \leqq{ }_{2} y$. Then \leqq is a quasiorder relation on I. In effect, \leqq is obviously reflexive. To show transitivity of \leqq, suppose $i \leqq j$ and $j \leqq k$ for some $i, j, k \in I$. Suppose $i \leqq{ }_{1} j$. If $j \leqq{ }_{1} k$ then $i \leqq{ }_{1} k$ and $i \leqq{ }_{1} k$, so let $j \leqq{ }_{2} k$. Then $j i=i$ and $j k=j$. Then $i k i=k i$ or $i k i=i k$. If $i k i=k i$ then $i=j i=(j k) i=j(k i)=j(i k i)=(j i) k i=i k i=k i$ and $i \leqq{ }_{1} k$, whence $i \leqq k$. If $i k i=i k$ then $i=j i=(j k) i=j(k i)=j(k i k i)=(j k) i k i=(j k) i k=j i k=i k$ and $i \leqq{ }_{2} k$, whence $i \leqq k$. Analogously, $i \leqq_{2} j$ implies $i \leqq k$. Therefore, \leqq is a quasiorder relation.

Conversely, suppose \leqq is a quasiorder relation. Then the band (I, \cdot) satisfies the above pseudoidentity. In effect, for every two elements $x, y \in I$ the relations $x y x \leqq_{1} x y$ and $x y \leqq_{2} y$ hold in every band. Therefore, $x y x \leqq x y \leqq y$ and, since \leqq is transitive, $x y x \leqq y$, i.e. $x y x \leqq_{1} y$ or $x y x \leqq_{2} y$. The latter means that $x y x=y(x y x)=$ $=(y x)^{2}=y x$ or $x y x=(x y x) y=(x y)^{2}=x y$, i.e. $x y x=x y \vee x y x=y x$.

Two quasiorder relations on a same set are called compatible if their set-theoretical union is a quasiorder relation. We have proved the following

Lemma 1. A band satisfies the pseudoidentity $x y x=x y \vee x y x=y x$ if and only if its quasiorder relations \leqq_{1} and \leqq_{2} are compatible.

Now if $i \leqq j$ then either $i \leqq \leqq_{1} j$ or $i \leqq \leqq_{2} j$ or both. Suppose two direct systems of homomorphisms Φ and Ψ over \leqq_{1} and \leqq_{2} respectively are given. Then $\varphi_{i j}$ or $\psi_{i j}$ is defined. If both homomorphisms are defined then $i \leqq \leqq_{1} j$ and $i \leqq_{2} j$ which implies, as we have seen in Remark 2, $\varphi_{i j}=\psi_{i j}$. Therefore, one may consider the system $X=\left(\chi_{i j}\right)_{i \leq j ; i, j \in I}$ of homomorphisms: $\chi_{i j}$ coincides with that of homomorphisms $\varphi_{i j}$, $\psi_{i j}$ which is defined.

Let the above pseudoidentity be satisfied and (S, \cdot) be an I-band of the family $\left(S_{i}\right)_{i \in I}$ of monoids. If $i \leqq_{1} j$, i.e. if $j i=i$, then, as we have seen above, $e_{j} e_{i}=e_{j}\left(e_{j} e_{i}\right)=$ $=e_{j}\left(e_{i}\left(e_{j} e_{i}\right)\right)=\left(e_{j} e_{i}\right)^{2}$. Suppose now all S_{i} are unipotent. Then $e_{j} e_{i}=e_{i}$. Analogously $i \leqq_{2} j$ implies $e_{i} e_{j}=e_{i}$. Now let i and j be arbitrary elements of I. Then either $i j i=i j$ or $i j i=j i$. In the first case $e_{i} e_{j} \in S_{i j}$, therefore $e_{i j} e_{i} e_{j}=e_{i} e_{j}$. Now

$$
e_{i j} e_{i} \in S_{i j} S_{i} \subset S_{i j i}=S_{i j}
$$

therefore

$$
e_{i j} e_{i}=\left(e_{i j} e_{i}\right) e_{i j}=e_{i j}\left(e_{i} e_{i j}\right)=e_{i j} e_{i j}=e_{i j}
$$

since $i j \leqq_{1} i$. Hence

$$
e_{i} e_{j}=e_{i j} e_{i} e_{j}=e_{i j} e_{j}=e_{i j}
$$

since $i j \leqq \leqq_{2} j$.
Suppose now

$$
i j i=j i
$$

Then

$$
i j=(i j)^{2}=(i j i) j=(j i) j \quad \text { and } \quad e_{j} e_{i j} \in S_{j i j}=S_{i j}
$$

It follows that
and

$$
e_{j} e_{i j}=e_{i j}\left(e_{j} e_{i j}\right)=\left(e_{i j} e_{j}\right) e_{i j}=e_{i j} e_{i j}=e_{i j}
$$

Thus,

$$
e_{i} e_{j}=\left(e_{i} e_{j}\right) e_{i j}=e_{i}\left(e_{j} e_{i j}\right)=e_{i} e_{i j}=e_{i j}
$$

$$
a_{i j}=e_{i} e_{j}=e_{i j}
$$

for any $i, j \in I$, i.e. (S, \cdot) is a proper band of monoids. Then the direct systems Φ and Ψ commute.

Now let $i \leqq j \leqq k$. If $i \leqq \leqq_{1} j \leqq 1$ then $\chi_{i k}=\varphi_{i k}=\varphi_{i j} \circ \varphi_{j k}=\chi_{i j} \circ \chi_{j k}$. Analogously, $\chi_{i k}=\chi_{i j} \circ \chi_{j k}$ in case when $i \leqq_{2} j \leqq_{2} k$. Now let $i \leqq \leqq_{1} j \leqq_{2} k$. Then, as we have seen above, $i \leqq k$, i.e. $i \leqq_{1} k$ or $i \leqq_{2} k$. If $i \leqq \leqq_{1} k$ then $\chi_{i k}=\varphi_{i k}$ and for every $s_{k} \in S_{k}$

$$
\begin{gathered}
\chi_{i k}\left(s_{k}\right)=\varphi_{i k}\left(s_{k}\right)=s_{k} e_{i}=e_{i}\left(s_{k} e_{i}\right)=\left(e_{j} e_{i}\right)\left(s_{k} e_{i}\right)=e_{j}\left(e_{i}\left(s_{k} e_{i}\right)\right)=e_{j}\left(s_{k} e_{i}\right)= \\
=\left(e_{j} s_{k}\right) e_{i}=\varphi_{i j} \circ \psi_{j k}\left(s_{k}\right)=\chi_{i j} \circ \chi_{j k}\left(s_{k}\right)
\end{gathered}
$$

i.e. $\chi_{i k}=\chi_{i j} \circ \chi_{j k}$. The same equality can be proved analogously if $i \leqq_{2} j \leqq \leqq_{1} k$. Since $\chi_{i i}$ is obviously the identical automorphism of S_{i} and X preserves identities of our monoids, X is a direct system of homomorphisms over \leqq.

The above argument together with Theorems 1 and 2 yields the following
Proposition 1. Suppose (I, •) is a band satisfying the pseudoidentity $x y x=$ $=x y \vee x y x=y x$. Define $i \leqq j$ if and only if $i=i j i$. Then \leqq is a quasiorder relation, the set-theoretical union of the quasiorder relations \leqq_{1} and \leqq_{2} (i.e. $i \leqq j$ if and only if $i=i j$ or $i=j i)$. Suppose $\left(S_{i}\right)_{i \in I}$ is a family of pairwise disjoint monoids and X is a direct system of homomorphisms over \leqq. Define a binary multiplication \square on S as follows: if $s_{i} \in S_{i}$ and $s_{j} \in S_{j}$ then $s_{i} \square s_{j}=\chi_{i j, i}\left(s_{i}\right) \chi_{i j, j}\left(s_{j}\right)$ where the right-hand side product is taken inside the monoid $S_{i j}$. Then (S, \square) is a proper I-band of the family
$\left(S_{i}\right)_{i \in I}$ of monoids and conversely, every proper I-band of these monoids can be constructed in the above way, the direct system X being determined in the unique fashion for each proper I-band of $\left(S_{i}\right)_{i \in I}$. Moreover, every I-band of unipotent monoids is necessarily proper (and hence orthodox) and so it can be constructed in the above way.

In particular, Proposition 1 holds if (I, \cdot) satisfies one of the following identities: $x y x=x y, x y x=y x, x y z=y x z, x y z=x z y ; x y=x, x y=y, x y=y x$. In the latter case, i.e. for semilattices of unipotent monoids, this has been proved in [8].

It can be easily verified that (I, \cdot) satisfies the identity $x y x=x y$ [the identity $x y x=y x$] if and only if the quasiorder relation \leqq_{1} [the quasiorder relation \leqq_{2}] is included into \leqq_{2} [into \leqq_{1}]. Every band is a semilattice of rectangular bands. Right zero and left zero bands are called singular. It can be trivially verified that a band satisfies the pseudoidentity $x y x=x y \vee x y x=y x$ if and only if it is a semilatifice of singular bands.

Remark 4. Suppose (I, \cdot) is a rectangular band and $i, j \in I$. Then $i \leqq_{1} i j$ and $i j \leqq \leqq_{1} i$, whence $\varphi_{i, i j} \circ \varphi_{i j, i}=\varphi_{i i}$ and $\varphi_{i j, i} \circ \varphi_{i, i j}=\varphi_{i j, i j}$. Therefore, $\varphi_{i, i j}$ is an isomorphism. In the same way we may prove that $\psi_{j, i j}$ is an isomorphism. It follows that S_{i} and S_{j} are isomorphic. Thus, all the monoids S_{i} are pairwise isomorphic. This fact permits us to give an alternative construction for rectangular bands of unipotent monoids.

Fix some element $o \in I$ and for every $i \in I$ fix an isomorphism α_{i} of S_{i} onto S_{o}, say, $\alpha_{i}=\psi_{o, i o} \circ \varphi_{i o, i}$. If $s_{i} \in S_{i}$ let $f\left(s_{i}\right)=\left(\alpha_{i}\left(s_{i}\right), i\right)$. Then f is a bijective mapping of $S=\bigcup_{i \in I} S_{i}$ onto the Cartesian product of the sets S_{o} and I. It remains to define a suitable multiplication in $S_{o} \times I$ in order f to be an isomorphism. It is clear that

$$
\alpha_{i}\left(s_{i}\right)=\psi_{o, i o} \circ \varphi_{i o, i}\left(s_{i}\right)=\psi_{o, i o}\left(s_{i} e_{i o}\right)=e_{o}\left(s_{i} e_{i o}\right)
$$

so that $f\left(s_{i}\right)=\left(e_{o} s_{i} e_{i o}, i\right)$. Now suppose $(s, i) \in S_{o} \times I$. Then $f^{-1}((s, i))=e_{i o} s e_{i}$. In effect,

$$
e_{i o} s e_{i} \in S_{i o} S_{o} S_{i} \subset S_{i o o i}=S_{i} \text { and } f\left(e_{i o} s e_{i}\right)=\left(e_{o} e_{i o} s e_{i} e_{i o}, i\right)=(s, i)
$$

since

$$
e_{o} e_{i o}=e_{o(i o)} e_{i o}=e_{o(i o)}=e_{o} \quad \text { and } \quad s e_{i} e_{i o}=s e_{i o}=\left(s e_{o}\right) e_{i o}=s\left(e_{o} e_{i o}\right)=s e_{o}=s
$$

so that

$$
e_{o} e_{i o} s e_{i} e_{i o}=e_{o} s=s
$$

Thus, we should define such a multiplication \square on $S_{o} \times I$ that for any $s, t \in S_{o}$ and any $i, j \in I$

$$
(s, i)\left[\square(t, j)=f\left(\left(e_{i o} s e_{i}\right) \cdot\left(e_{j o} t e_{j}\right)\right)=\left(e_{o}\left(e_{i o} s e_{i}\right)\left(e_{j o} t e_{j}\right) e_{(i j) o}, i j\right)\right.
$$

Now

$$
e_{o} e_{i o} s=e_{o} s=s \quad \text { and } \quad(i j) o=i o
$$

so that

$$
e_{o}\left(e_{i o} s e_{i}\right)\left(e_{j o} t e_{j}\right) e_{(i j) o}=s e_{i} e_{j o} t e_{j} e_{i o}=\left[s\left(e_{o} e_{i} e_{j o}\right)\right]\left[t\left(e_{o} e_{j} e_{i o}\right)\right]=\left(s b_{i j}\right)\left(t b_{j i}\right)
$$

where

$$
b_{i j}=e_{o} e_{i} e_{j o} \in S_{o i j o}=S_{o}
$$

Now

$$
\begin{gathered}
b_{i j} b_{j i, k}=\left(e_{o} e_{i} e_{j o}\right)\left(e_{o} e_{j i} e_{k o}\right)=e_{o} e_{i}\left(e_{j o} e_{o}\right) e_{j i} e_{k o}^{\prime}=e_{o} e_{i} e_{j o} e_{j i} e_{h o}= \\
=e_{o} e_{i} e_{j o}\left(e_{j} e_{j i}\right) e_{k o}=e_{o} e_{i}\left(e_{j o} e_{j}\right) e_{j i} e_{k o}=e_{o} e_{i} e_{j} e_{j i} e_{k o}=e_{o} e_{i}\left(e_{j} e_{j i}\right) e_{k o}= \\
=e_{o} e_{i} e_{j i} e_{k o}=e_{o}\left(e_{i} e_{j i}\right) e_{k o}=e_{o} e_{i} e_{k o}=b_{i k},
\end{gathered}
$$

since ;

$$
e_{j 0} e_{j}=e_{j} \quad \text { and } \quad e_{i} e_{j i}=e_{i}
$$

which may be proved in the same way as the above equality $e_{o i} e_{o}=e_{o}$.
Conversely, suppose a unipotent monoid S_{o} and a rectangular band I are given and $b_{i j} b_{j i, k}=b_{i k}$ for every $i, j, k \in I$. Then $b_{i i} b_{i i}=b_{i i} b_{i i, i}=b_{i i}$ which implies that $b_{i i}=e_{0}$ for every $i \in I$. Now
whence

$$
\begin{aligned}
b_{i j, i} & =b_{i j, i} e_{o}=b_{i j, i} b_{i j, i j}=b_{i j, i} b_{i(i j), i j}=b_{i j, i j}=e_{o} \\
b_{i, j k} b_{j k i, j} & =b_{i j} \quad \text { and } \quad b_{i, j k} b_{j k i, j}=b_{i, j k} b_{j i, j}=b_{i, j k} e_{o}=b_{i, j k}
\end{aligned}
$$

i.e. $b_{i, j k}=b_{i j}$. On the Cartesian product $S_{o} \times I$ define the following multiplication $\square:(s, i) \square(t, j)=\left(s b_{i j} t b_{j i}, i j\right)$. Then $(s, i) \square(t, i)=\left(s b_{i i} t b_{i i}, i i\right)=\left(s e_{o} t e_{o}, i\right)=(s t, i)$, i.e. $S_{i}=S_{o} \times\{i\}$ is isomorphic to S_{o}. Now

$$
\begin{gathered}
{[(s, i) \square(t, j)] \square(u, k)=\left(s b_{i j} t b_{j i}, i j\right) \square(u, k)=\left(s b_{i j} t b_{j i} b_{i j, k} u b_{k, i j}, i j k\right)=} \\
=\left(s b_{i j} t b_{j k} u b_{k i}, i j k\right)=\left(s b_{i, j k} t b_{j k} u b_{k j} b_{j k, i}, i j k\right)= \\
=(s, i) \square\left(t b_{j k} u b_{k j}, j k\right)=(s, i) \square[(t, j) \square(u, k)] .
\end{gathered}
$$

Thus, ($S_{o} \times I, \square$) is an I-band of monoids isomorphic to S_{o}, namely, of monoids S_{i}.
We have proved the following
Proposition 2. Let S be a unipotent monoid, I be a rectangular band, $B=\left(b_{i j}\right)$ be an $(I \times I)$-matrix over S such that $b_{i j} b_{j i, k}=b_{i k}$ for all $i, j, k \in I$. Define the following multiplication \square on the set $S \times I:(s, i) \square(t, j)=\left(s b_{i j} t b_{j i}, i j\right)$. Then $(S \times I, \square)$ is an I-band of monoids isomorphic to S and every I-band of monoids isomorphic to S can be constructed in the above way. In particular, there exists an I-band of a family $\left(S_{i}\right)_{i \in I}$ of unipotent monoids if and only if all the monoids are pairwise isomorphic.

Another description of rectangular bands of unipotent monoids has been given in [9, Corollary 3.10].

In case of proper bands we have the following
Proposition 3. Let $\left(S_{i}\right)_{i \in I}$ be a family of monoids and I be a rectangular band. There exists a proper I-band of $\left(S_{i}\right)_{i_{I}}$ if and only if all the monoids are pairwise isomorphic, and every such band is isomorphic to a direct product of S_{i} for some fixed $i \in I$ and I. Conversely, every direct product of S_{i} and I is isomorphic to a proper I-band of $\left(S_{i}\right)_{i \in I}$.

In effect, from 7.heorem 2 it follows that Φ and Ψ commute which implies easily our Proposition.

Another proof of Proposition 3 has been given in [6].
Since every band of semigroups is a semilattice of rectangular bands of semigroups [7], Proposition 2 gives some additional insight into the structure of bands of unipotent monoids and Proposition 3 - into the structure of proper bands of monoids.

In particular, if S is a combinatorial monoid (i.e. S has no invertible elements except 1 where 1 is the identity of S) then every I-band of monoids isomorphic to S is isomorphic to a direct product of S and I. This follows from the fact that $b_{i j}$ is an invertible element of S for every $i ; j \in I$. Moreover, $b_{i j}^{-\mathbf{1}}=b_{j i, i}$. In effect, $b_{i j} b_{j i, i}=b_{i i}=1$ and $b_{j i, i} b_{i j}=b_{j i, i} b_{i(j i), j}=b_{j i, j}=b_{j i, j i}=1$.

It is a well-known fact that rectangular bands of groups are precisely the completely simple semigroups. Thus Proposition 2 gives, in particular, a new representation theorem for completely simple semigroups.

Remark 5. Suppose I is a band and $i \leqq j \leftrightarrow i=i j i$. Then \leqq is a quasiorder relation on I. Suppose $\left(S_{i}\right)_{i \in I}$ is a family of monoids and X is a direct system of homomorphisms over \leqq. Since $i j \leqq i$ and $i j \leqq j$ for every $i, j \in I$ we may define the following operation [] on $S=\cup_{i \in I} S_{i}$: if $s_{i} \in S_{i}$ and $s_{j} \in S_{j}$ then $s_{i} \square s_{j}=\chi_{i j, i}\left(s_{i}\right) \chi_{i j, j}\left(s_{j}\right)$. Then (S, \square) is an l-band of our monoids. A particular case of this construction was used in Proposition 1. Clearly, (S, \square) is a proper I-band. Suppose $i \leqq j$. Then

$$
e_{i} \square s_{j} \square e_{i}=\chi_{i j i, i}\left(e_{i}\right) \chi_{i j i, j}\left(s_{j}\right) \chi_{i j i, i}\left(e_{i}\right)=\chi_{i i}\left(e_{i}\right) \chi_{i j}\left(s_{j}\right) \chi_{i i}\left(e_{i}\right)=e_{i} \chi_{i j}\left(s_{j}\right) e_{i}=\chi_{i j}\left(s_{j}\right)
$$

for every $s_{j} \in S_{j}$.
Proposition 4. Let I be a band satisfying the identity $x y x z x=x y z x,\left(S_{i}\right)_{i \in I}$ be a family of pairwise disjoint monoids and $i \leqq j \leftrightarrow i=i j i$ for all $i, j \in I$. Define an operation \square on the set $S=\cup_{i \in I} S_{i}$ as follows: if $s_{i} \in S_{i}$ and $s_{j} \in S_{j}$ then $s_{i} \square s_{j}=\chi_{i j, i}\left(s_{i}\right) \chi_{i j, j}\left(s_{j}\right)$. Then (S, \square) is a proper I-band of monoids $\left(S_{i}\right)_{i \in I}$ and every proper I-band of these monoids can be constructed in the above way, the direct system X being determined uniquely for every proper I-band of $\left(S_{i}\right)_{i \in I}$.

Proof. Suppose ($S, \cdot \cdot$) is a proper I-band of $\left(S_{i}\right)_{i \in I}$. Then for every $i, j \in I$ such that $i \leqq j$ and every $s_{j}, t_{j} \in S_{j}$

$$
\begin{gathered}
\left(e_{i} s_{j} e_{i}\right)\left(e_{i} t_{j} e_{i}\right)=e_{i} s_{j} e_{i} t_{j} e_{i}=\left(e_{i} s_{j}\right) e_{i j} e_{i} e_{j i}\left(t_{j} e_{i}\right)=e_{i} s_{j} e_{j} e_{i j} e_{i} e_{j i} e_{j} t_{j} e_{i}= \\
=e_{i} s_{j} e_{j} e_{i j} e_{j i} e_{j} t_{j} e_{i}=e_{i} s_{j} e_{i j} e_{j i} t_{j} e_{i}=e_{i} s_{j} t_{j} e_{i}
\end{gathered}
$$

i.e. the mapping $\chi_{i j}: S_{j} \rightarrow S_{i}$ such that $\chi_{i j}\left(s_{j}\right)=\dot{e}_{i} s_{j} e_{i}$ is a homomorphism. Clearly, $\chi_{i j}\left(e_{j}\right)=e_{i} e_{j} e_{i}=e_{i j i}=e_{i}$ and $\chi_{i i}$ is the identical automorphism of S_{i}. Now let $i \leqq j \leqq k$ and $s_{k} \in S_{k}$. Then

$$
\begin{gathered}
\chi_{i j} \circ \chi_{j k}\left(s_{k}\right)=\chi_{i j}\left(e_{j} s_{k} e_{j}\right)=e_{i} e_{j} s_{k} e_{j} e_{i}=\left(e_{i} e_{j}\right) e_{k j i} s_{k} e_{j} e_{i}=e_{i j k j i} s_{k} e_{j i}=e_{i j i} s_{k} e_{j i}= \\
e_{i} s_{k}=e_{j i}=e_{i} s_{k} e_{i k} e_{j i}=e_{i} s_{k} e_{i k j i}=e_{i} s_{k} e_{i}=\chi_{i k}\left(s_{k}\right)
\end{gathered}
$$

i.e. $\left(\chi_{i j}\right)$ form a direct system of homomorphism. We used the fact that $i k j i=i$. In effect;

$$
i k j i=i k i j i=i j i k i j i=i j k i j i=i j k j i=i j i=i
$$

References

[1] A. H. Clifford, Semigroups admitting relative inverses, Annals of Math, 42 (1941), 1037-1049.
[2] Б. М. Шайн, К теории обобиенных групn и обобиценных груд, В сборнике Теория полугрупп и ее приложения, Выт. 1 (Саратов, 1965), 286-324.
[3] T. E. Hall, On regular semigroups whose idempotents form a subsemigroup, Bull. Austral. Math. Soc., 1 (1969), 195-208; 3 (1970), 287-280.
[4] M. Yamada, Strictly inversive semigroups, Bull. Shimane Univ. (Nat. Sci.), 13 (1963), 128-138.
[5] A. H. Clifford, The structure of orthodox unions of groups, Semigroup Forum, 3 (1972), 283-337.
[6] M. Petrich, The maximal matrix decomposition of a semigroup, Portugal. Math., 25 (1966), 15-33.
[7] A. H. Cufford, Bands of semigroups, Proc. Amer. Math. Soc., 5 (1954), 499-504.
[8] M. Petrich, Introduction to semigroups, Merrill Books (Columbus, Ohio, 1973).
[9] G. Lallement and M. Petrich, A generalization of the Rees theorem on semigroups, Acta Sci. Math., 30 (1969), 113-132.

