By B. M. SCHEIN in Saratov (USSR)

To my colleagues in the city of Szeged where this paper has been written

Let S be a semigroup which is the union of a family $(S_i)_{i \in I}$ of subsemigroups which are classes of a congruence relation on S. Then I may be endowed with a binary operation $ij = k \leftrightarrow S_i S_j \subset S_k$ for all $i, j, k \in I$. Under this operation I is a band (i.e. an idempotent semigroup) and S is called an *I*-band (or merely a band) of subsemigroups $(S_i)_{i \in I}$.

In this paper we present a new method of constructing bands of semigroups. This method permits to build up all bands of unipotent monoids (a *monoid* is a semigroup with identity, a monoid is called *unipotent* if it contains the only idempotent its identity). In particular, we obtain a simple construction for orthodox bands of arbitrary monoids. Our method is a generalization of Clifford's sums of direct systems of groups [1] (called also rigid or strong semilattices of groups).

In our paper [2] we introduced a class of semigroups with the weak involutory property (WIP-semigroups). A semigroup S is a WIP-semigroup if for any $s, t \in S$ and any $\bar{s}, \bar{t} \in S$ such that $s\bar{s}s=s, \bar{s}s\bar{s}=\bar{s}, t\bar{t}t=t, \bar{t}t\bar{t}=\bar{t}$ (i.e. \bar{s} and \bar{t} are inverses for s and t respectively), $\bar{t}\bar{s}$ is an inverse for st. Among other properties it was proved that S is a WIP-semigroup if and only if the idempotents of S form a (possibly empty) subsemigroup [2]. Regular WIP-semigroups were considered also in [3] where they were called orthodox semigroups. So we call the WIP-semigroups orthodox (notice that an orthodox semigroup in our sense need not be regular).

Let $(S_i)_{i \in I}$ be a family of semigroups with pairwise disjoint sets of elements. Suppose \leq is a quasiorder (i.e. reflexive and transitive) binary relation on *I*. A family $\Phi = (\varphi_{ij})_{i \leq j}$; *i*, $j \in I$ is called a *direct system of homomorphisms over* \leq if for every $i, j \in I$ such that $i \leq j \varphi_{ij}$ is a homomorphism of S_j into S_i and the following two properties holds:

1) for every $i \in I \varphi_{ii}$ is the identical automorphism of S_{ii} ;

2) for every $i, j, k \in I$ if $i \leq j \leq k$ then $\varphi_{ii} \circ \varphi_{ik} = \varphi_{ik}$.

10 A

If S_i are monoids and e_i denotes the identity of S_i then we demand that $\varphi_{ij}(e_j) = e_i$, i.e. identities are preserved under homomorphisms of monoids.

Let I be endowed with an associative and idempotent binary operation \cdot , i.e. let (I, \cdot) be a band. Define the following binary relations \leq_1 and \leq_2 on I: $i \leq_1 j \leftrightarrow j i = i$; $i \leq_2 j \leftrightarrow i j = i$. Clearly, both \leq_1 and \leq_2 are quasiorder relations on I. Suppose $\Phi = (\varphi_{ij})$ and $\Psi = (\psi_{ij})$ are direct systems of homomorphisms over \leq_1 and \leq_2 respectively. Φ and Ψ are called *commuting* if for all $i, j, k \in I$ such that $j \leq_1 i, k \leq_2 i$ the following diagram is commutative:

$$\begin{array}{cccc} S_i \rightarrow S_j \\ \downarrow & \downarrow \\ S_{\nu} \rightarrow S_{\nu i} \end{array}$$

where the horizontal arrows represent homomorphisms from Φ and vertical arrows represent homomorphisms from Ψ (i.e. $\psi_{kj,j} \circ \varphi_{ji} = \varphi_{kj,k} \circ \psi_{ki}$). Clearly, $kj \leq_1 k$ and $kj \leq_2 j$ so that all homomorphisms mentioned do exist.

If $a_i \in S_i$ then ρ_{a_i} and λ_{a_i} denote the right and left translations of S_i corresponding to a_i , i.e. $\rho_{a_i}(s) = sa_i$ and $\lambda_{a_i}(s) = a_i s$ for all $s \in S_i$.

Suppose there are given two direct systems of homomorphisms Φ and Ψ over \leq_1 and \leq_2 respectively and an $(I \times I)$ -matrix $A = (a_{ij})$ over $S = \bigcup_{i \in I} S_i$ such that $a_{ij} \in S_{ij}$ for all $i, j \in I$. We call the triple (Φ, Ψ, A) balanced if $a_{ii} = e_i$ for any $i \in I$ and

$$\varrho_{a_{ij,k}} \circ \varphi_{ijk,ij} \circ \lambda_{a_{ij}} \circ \psi_{ij,j} = \lambda_{a_{i,jk}} \circ \psi_{ijk,jk} \circ \varrho_{a_{jk}} \circ \varphi_{jk,j}$$

for all $i, j, k \in I$.

If $a_{ij}=e_{ij}$ for all $i, j \in I$ then the triple (Φ, Ψ, A) is balanced precisely if the direct systems Φ and Ψ commute.

A band S of monoids $(S_i)_{i \in I}$ is called *proper* if the identities of the monoids form a subsemigroup of S.

Theorem 1. Let $(S_i)_{i \in I}$ be a family of pairwise disjoint unipotent monoids, (I, \cdot) be a band, $\Phi = (\varphi_{ij})$ and $\Psi = (\psi_{ij})$ be direct systems of homomorphisms over \leq_1 and \leq_2 respectively, A be an $(I \times I)$ -matrix over $S = \bigcup_{i \in I} S_i$ and the triple (Φ, Ψ, A) be balanced.

Define a binary multiplication \Box on S as follows: if $s_i \in S_i$ and $s_j \in S_j$ then $s_i \Box s_j = \varphi_{ij,i}(s_i)a_{ij}\psi_{ij,j}(s_j)$ where the right-hand side product is taken in the monoid S_{ij} . Then (S, \Box) is an I-band of monoids $(S_i)_{i \in I}$ and every I-band of monoids $(S_i)_{i \in I}$ can be constructed in this way. Moreover, the triple (Φ, Ψ, A) is defined uniquely for any I-band of $(S_i)_{i \in I}$.

Theorem 2. Let $(S_i)_{i \in I}$ be a family of pairwise disjoint semigroups, (I, \cdot) be a band, and Φ and Ψ be commuting direct systems of homomorphisms over \leq_1 and

 \leq_2 , respectively. Define a binary multiplication \Box on $S = \bigcup_{i \in I} S_i$ as follows: if $s_i \in S_i$ and $s_j \in S_j$ then $s_i \Box s_j = \varphi_{ij,i}(s_i)\psi_{ij,j}(s_j)$ where the right-hand side product is taken in the semigroup S_{ij} . Then (S, \Box) is an I-band of semigroups $(S_i)_{i \in I}$. Moreover, if S_i are monoids then (S, \Box) is a proper I-band of the monoids $(S_i)_{i \in I}$ and every proper I-band of the monoids $(S_i)_{i \in I}$ can be constructed in the above fashion, the direct systems Φ and Ψ being determined in the unique way. (S, \Box) is orthodox if and only if all the monoids S_i are orthodox.

Some corollaries will follow after the proofs.

Proof of Theorem 1. Suppose $s_i \in S_i$, $s_i \in S_j$ and $s_k \in S_k$. Then

$$(s_{i} \Box s_{j}) \Box s_{k} = (\varphi_{ij,i}(s_{i})a_{ij}\psi_{ij,j}(s_{j})) \Box s_{k} = \varphi_{ijk,ij}(\varphi_{ij,i}(s_{i})a_{ij}\psi_{ij,j}(s_{j}))a_{ij,k}\psi_{ijk,k}(s_{k}) =$$
$$= [\varphi_{ijk,ij}\circ\varphi_{ij,i}(s_{i})][\varrho_{a_{ij,k}}\circ\varphi_{ijk,ij}\circ\lambda_{a_{ij}}\circ\psi_{ij,j}(s_{j})]\psi_{ijk,k}(s_{k}) =$$
$$= \varphi_{ijk,i}(s_{i})[\lambda_{a_{i,jk}}\circ\psi_{ijk,jk}\circ\varrho_{a_{jk}}\circ\varphi_{jk,j}(s_{j})][\psi_{ijk,jk}\circ\psi_{jk,k}(s_{k})] =$$

 $=\varphi_{ijk,i}(s_i)a_{i,jk}[\psi_{ijk,jk}(\varphi_{jk,j}(s_j)a_{jk}\psi_{jk,k}(s_k))]=\varphi_{ijk,i}(s_i)a_{i,jk}\psi_{ijk,jk}(s_j\Box s_k)=s_i\Box(s_j\Box s_k),$

i.e. (S, \Box) is a semigroup. If i=j then $s_i \Box s_j = \varphi_{ii}(s_i)a_{ii}\psi_{ii}(s_j) = s_ie_is_j = s_is_j$. Thus, (S, \Box) is an *I*-band of the family $(S_i)_{i \in I}$ of monoids.

Now $e_i \Box e_j = \varphi_{ij,i}(e_i) a_{ij} \psi_{ij,j}(e_j) = e_{ij} a_{ij} e_{ij} = a_{ij}$ so that the matrix A is determined in the unique way $-A = (e_i \Box e_j)$. Using this fact we obtain

$$a_{i,ij} = e_i \Box e_{ij} = e_i \Box (e_i \Box e_{ij}) = e_i \Box (e_{ij} \Box (e_i \Box e_{ij})) = (e_i \Box e_{ij})^2,$$

i.e. $a_{i,ij}$ is an idempotent from S_{ij} . Since S_{ij} is unipotent, $a_{i,ij} = e_{ij}$. Thus,

$$s_i \Box e_{ij} = \varphi_{ij,i}(s_i) a_{i,ij} \psi_{ij,ij}(e_{ij}) \doteq \varphi_{ij,i}(s_i) \cdot a_{i,ij} e_{ij} = \varphi_{ij,i}(s_i)$$

i.e. the direct system Φ of homomorphisms is determined in the unique way. Analogously we may prove that $\psi_{ii,i}(s_i) = e_{ii} \Box s_i$ for any $s_i \in S_i$.

To prove the second part of Theorem 1 suppose (S, \cdot) is a band of a family $(S_i)_{i \in I}$ of unipotent monoids. Let $a_{ij} = e_i e_j$ for any $i, j \in I$, $\varphi_{ij,i}(s_i) = s_i e_{ij}$ and $\psi_{ii,i}(s_i) = e_{ii}s_i$ for all $i, j \in I$ and $s_i \in S_i$, $s_i \in S_j$. Then $a_{ij} \in S_{ij}$ and if $s_i, t_i \in S_i$ then

$$\varphi_{ij,i}(s_i t_i) = s_i t_i e_{ij} = s_i (e_{ij}(t_i e_{ij})) = \varphi_{ij,i}(s_i) \varphi_{ij,i}(t_i),$$

i.e. $\varphi_{ij,i}$ is a homomorphism of S_i into S_{ij} . Since S_{ij} is unipotent, $\varphi_{ij,i}(e_i) = e_{ij}$. Clearly $\varphi_{ii}(s_i) = s_i e_i = s_i$. Now

$$\varphi_{ijk,ij} \circ \varphi_{ij,i}(s_i) = \varphi_{ijk,ij}(s_i e_{ij}) = (s_i e_{ij})e_{ijk} = s_i(e_{ij} e_{ijk}) = s_i e_{ijk} = \varphi_{ijk,i}(s_i)$$

so that $\Phi = (\varphi_{ij})$ forms a direct system of homomorphisms over \leq_1 . In the same way we may prove that $\Psi = (\psi_{ij})$ forms a direct system of homomorphisms over \leq_2 .

10*

Now $a_{ii} = e_i e_i = e_i$ and

$$\begin{split} \varrho_{a_{ij,k}} \circ \varphi_{ijk,ij} \circ \lambda_{a_{ij}} \circ \psi_{ij,j}(s_j) &= \varrho_{a_{ij,k}} \circ \varphi_{ijk,ij} \circ \varrho_{a_{ij}}(e_{ij}s_j) = \varrho_{a_{ij,k}} \circ \varphi_{ijk,ij}(a_{ij}e_{ij}s_j) = \\ &= \varrho_{a_{ij,k}}(a_{ij}e_{ij}s_je_{ijk}) = a_{ij}e_{ij}s_je_{ijk}a_{ij,k} = a_{ij}s_je_{ijk}a_{ij,k} = a_{ij}s_ja_{ij,k} = \\ &= e_ie_js_ja_{ij,k} = e_is_ja_{ij,k} = e_is_je_{ij}e_k = e_is_je_k = e_ie_{ijk}s_je_k = a_{i,jk}s_je_k = \\ &= a_{i,jk}s_je_je_k = a_{i,jk}s_ja_{jk} = a_{i,jk}e_{ijk}s_ja_{jk} = a_{i,jk}e_{ijk}s_je_{kk} = \\ &= \lambda_{a_{i,jk}}(e_{ijk}s_je_{jk}a_{jk}) = \lambda_{a_{i,jk}} \circ \psi_{ijk,jk}(s_je_{jk}a_{jk}) = \\ &= \lambda_{a_{i,jk}} \circ \psi_{ijk,jk} \circ \varrho_{a_{jk}}(s_je_{jk}) = \lambda_{a_{i,jk}} \circ \psi_{ijk,jk} \circ \varrho_{a_{jk}}(s_je_{jk}) = \\ &= \lambda_{a_{i,jk}} \circ \psi_{ijk,jk} \circ \varrho_{a_{jk}}(s_je_{jk}) = \lambda_{a_{i,jk}} \circ \psi_{ijk,jk} \circ \varrho_{a_{jk}} \circ \psi_{ijk,jk} \circ \varphi_{ijk} \circ \psi_{ijk,jk} \circ \varphi_{ijk} \circ \psi_{ijk,jk} \circ \psi_{ij$$

i.e. the triple (Φ, Ψ, A) is balanced. Finally

$$s_i \square s_j = \varphi_{ij,i}(s_i)a_{ij}\psi_{ij,j}(s_j) = s_i e_{ij}a_{ij}e_{ij}s_j = s_i a_{ij}s_j = s_i e_i e_j s_j = s_i s_j.$$

This fact completes the proof of Theorem 1.

Proof of Theorem 2. Suppose $s_i \in S_i$, $s_j \in S_j$ and $s_k \in S_k$. Then

$$(s_i \Box s_j) \Box s_k = (\varphi_{ij,i}(s_i)\psi_{ij,j}(s_j)) \Box s_k = \varphi_{ijk,ij}(\varphi_{ij,i}(s_i)\psi_{ij,j}(s_j))\psi_{ijk,k}(s_k) =$$
$$= [\varphi_{ijk,ij} \circ \varphi_{ij,i}(s_i)][\varphi_{ijk,ij} \circ \psi_{ij,j}(s_j)]\psi_{ijk,k}(s_k) =$$

$$=\varphi_{ijk,i}(s_i)[\psi_{ijk,jk}\circ\varphi_{jk,j}(s_j)][\psi_{ijk,jk}\circ\psi_{jk,k}(s_k)]=\varphi_{ijk,i}(s_i)\psi_{ijk,jk}(s_j\Box s_k)=s_i\Box(s_j\Box s_k),$$

i.e. (S, \Box) is a semigroup.

If i=j then $s_i \Box s_j = \varphi_{ii}(s_i)\psi_{ii}(s_j) = s_i s_j$. Thus, (S, \Box) is an *I*-band of the family $(S_i)_{i \in I}$ of semigroups. Unicity of Φ and Ψ in case S are monoids for all $i \in I$ is proved in the same way as in the proof of Theorem 1.

If (S, \cdot) is a proper *I*-band of monoids S_i then exactly in the same way as in the proof of Theorem 1 we may verify that $(S, \cdot)=(S, \Box)$ where Φ and Ψ are defined in the same way as in the proof of Theorem 1. Commutativity of Φ and Ψ follows readily.

If S_i are monoids then $e_i \Box e_j = \varphi_{ij,i}(e_i)\psi_{ij,j}(e_j) = e_{ij}e_{ij} = e_{ij}$. Therefore (S, \Box) is a proper band of $(S_i)_{i \in I}$.

Clearly, if (S, \Box) is orthodox then S_i are orthodox for all $i \in I$. Conversely, suppose S_i are orthodox and $s_i \in S_i$, $s_j \in S_j$ are idempotents of (S, \Box) . Then $s_i \Box s_j = \varphi_{ij,i}(s_i)\psi_{ij,j}(s_j)$ and the right-hand side of the equality is a product of two idempotents of S_{ij} (since homomorphisms map idempotents onto idempotents). The orthodoxy of S_{ij} implies $s_i \Box s_j$ is an idempotent. Thus, (S, \Box) is orthodox which completes the proof of Theorem 2.

Obviously, Theorem 2 in case of unipotent monoids is a particular case of Theorem 1.

Remark 1. Since every group is a unipotent and orthodox monoid, every band of groups may be constructed as in Theorem 1 and every orthodox band of

groups may be constructed as in Theorem 2. Another construction for orthodox bands of groups has been given in [4]. A survey of constructions for orthodox unions of groups may be found in [5].

Remark 2. Suppose (Φ, Ψ, A) is a balanced triple and $k \leq_1 j$, $i \leq_2 j$. This being the case, $a_{ij} = e_i$ (which fact has been proved above) and analogously $a_{jk} = e_k$. Thus, the condition of balancedness may be written for these particular *i*, *j*, *k* as follows:

(1)
$$\varrho_{a,\nu} \circ \varphi_{ik,i} \circ \psi_{ij} = \lambda_{a,\nu} \circ \psi_{ik,k} \circ \varphi_{kj}.$$

If i=k then we obtain $\varrho_{a_{ii}} \circ \varphi_{ii} \circ \psi_{ij} = \lambda_{a_{ii}} \circ \psi_{ii} \circ \varphi_{ij}$ or, equivalently, $\psi_{ij} = \varphi_{ij}$. Thus, if $i \leq j$ and $i \leq j$ (i.e. if i=ij=ji) then $\psi_{ij} = \varphi_{ij}$. In particular, if (I, \cdot) is a semilattice then \leq_1 coincides with \leq_2 and Φ coincides with Ψ ; in this case the construction of Theorem 2 turns out to be the well-known [1] construction for sums of direct systems of semigroups. Clearly, if $\Phi = \Psi$ then Φ and Ψ commute. Thus, every proper semilattice of monoids is a sum of their direct system.

Remark 3. Let the band (I, \cdot) satisfy the pseudoidentity $xyx=xy \lor xyx=yx$ where \lor is the disjunction sign. Let $x \le y$ mean that $x \le_1 y$ or $x \le_2 y$. Then \le is a quasiorder relation on *I*. In effect, \le is obviously reflexive. To show transitivity of \le , suppose $i \le j$ and $j \le k$ for some $i, j, k \in I$. Suppose $i \le_1 j$. If $j \le_1 k$ then $i \le_1 k$ and $i \le_1 k$, so let $j \le_2 k$. Then ji=i and jk=j. Then iki=ki or iki=ik. If iki=ki then i=ji=(jk)i=j(ki)=j(iki)=(jk)iki=(jk)ik=jik=ik and $i \le_1 k$, whence $i \le k$. If iki=ik then i=ji=(jk)i=j(ki)=j(ki)=(jk)iki=(jk)ik=iki=ki and $i \le_2 k$, whence $i \le k$. Analogously, $i \le_2 j$ implies $i \le k$. Therefore, \le is a quasiorder relation.

Conversely, suppose \leq is a quasiorder relation. Then the band (I, \cdot) satisfies the above pseudoidentity. In effect, for every two elements $x, y \in I$ the relations $xyx \leq_1 xy$ and $xy \leq_2 y$ hold in every band. Therefore, $xyx \leq xy \leq y$ and, since \leq is transitive, $xyx \leq y$, i.e. $xyx \leq_1 y$ or $xyx \leq_2 y$. The latter means that xyx = y(xyx) = $=(yx)^2 = yx$ or $xyx = (xyx)y = (xy)^2 = xy$, i.e. $xyx = xy \lor xyx = yx$.

Two quasiorder relations on a same set are called *compatible* if their set-theoretical union is a quasiorder relation. We have proved the following

Lemma 1. A band satisfies the pseudoidentity $xyx = xy \lor xyx = yx$ if and only if its quasiorder relations \leq_1 and \leq_2 are compatible.

Now if $i \leq j$ then either $i \leq_1 j$ or $i \leq_2 j$ or both. Suppose two direct systems of homomorphisms Φ and Ψ over \leq_1 and \leq_2 respectively are given. Then φ_{ij} or ψ_{ij} is defined. If both homomorphisms are defined then $i \leq_1 j$ and $i \leq_2 j$ which implies, as we have seen in Remark 2, $\varphi_{ij} = \psi_{ij}$. Therefore, one may consider the system $X = (\chi_{ij})_{i \leq j}; i, j \in I$ of homomorphisms: χ_{ij} coincides with that of homomorphisms φ_{ij} , ψ_{ij} which is defined.

Let the above pseudoidentity be satisfied and (S, \cdot) be an *I*-band of the family $(S_i)_{i \in I}$ of monoids. If $i \leq j$, i.e. if ji = i, then, as we have seen above, $e_j e_i = e_j(e_j e_i) = e_j(e_i(e_j e_i)) = (e_j e_i)^2$. Suppose now all S_i are unipotent. Then $e_j e_i = e_i$. Analogously $i \leq j$ implies $e_i e_j = e_i$. Now let *i* and *j* be arbitrary elements of *I*. Then either iji = ij or iji = ji. In the first case $e_i e_i \in S_{ij}$, therefore $e_{ij} e_i e_j = e_i e_j$. Now

$$e_{ij}e_i\in S_{ij}S_i\subset S_{iji}=S_{ij},$$

therefore

$$e_{ij}e_i = (e_{ij}e_i)e_{ij} = e_{ij}(e_ie_{ij}) = e_{ij}e_{ij} = e_{ij},$$

 $e_i e_i = e_{ij} e_i e_j = e_{ij} e_j = e_{ij},$

· -

since *ii* ≤₁*i*. Hence

since $ij \leq_2 j$.

Suppose now

iji = ji.

Then

$$j = (ij)^2 = (iji)j = (ji)j$$
 and $e_j e_{ij} \in S_{jij} = S_{ij}$
 $e_j e_{ij} = e_{ij}(e_j e_{ij}) = (e_{ij}e_j)e_{ij} = e_{ij}e_{ij} = e_{ij}$

It follows that

and

$$e_ie_j = (e_ie_j)e_{ij} = e_i(e_je_{ij}) = e_ie_{ij} = e_{ij}.$$

Thus,

$$a_{ii} = e_i e_i = e_{ii}$$

for any *i*, $j \in I$, i.e. (S, \cdot) is a proper band of monoids. Then the direct systems Φ and Ψ commute.

Now let $i \leq j \leq k$. If $i \leq_1 j \leq_1 k$ then $\chi_{ik} = \varphi_{ik} = \varphi_{ij} \circ \varphi_{jk} = \chi_{ij} \circ \chi_{jk}$. Analogously, $\chi_{ik} = \chi_{ij} \circ \chi_{jk}$ in case when $i \leq_2 j \leq_2 k$. Now let $i \leq_1 j \leq_2 k$. Then, as we have seen above, $i \leq k$, i.e. $i \leq_1 k$ or $i \leq_2 k$. If $i \leq_1 k$ then $\chi_{ik} = \varphi_{ik}$ and for every $s_k \in S_k$

$$\chi_{ik}(s_k) = \varphi_{ik}(s_k) = s_k e_i = e_i(s_k e_i) = (e_j e_i)(s_k e_i) = e_j(e_i(s_k e_i)) = e_j(s_k e_i) = (e_j s_k)e_i = \varphi_{ij} \circ \psi_{jk}(s_k) = \chi_{ij} \circ \chi_{jk}(s_k),$$

i.e. $\chi_{ik} = \chi_{ij} \circ \chi_{jk}$. The same equality can be proved analogously if $i \leq_2 j \leq_1 k$. Since χ_{ii} is obviously the identical automorphism of S_i and X preserves identities of our monoids, X is a direct system of homomorphisms over \leq .

The above argument together with Theorems 1 and 2 yields the following

Proposition 1. Suppose (I, \cdot) is a band satisfying the pseudoidentity $xyx = xy \lor xyx = yx$. Define $i \le j$ if and only if i = iji. Then \le is a quasiorder relation, the set-theoretical union of the quasiorder relations \le_1 and \le_2 (i.e. $i \le j$ if and only if i = ij or i = ji). Suppose $(S_i)_{i \in I}$ is a family of pairwise disjoint monoids and X is a direct system of homomorphisms over \le . Define a binary multiplication \Box on S as follows: if $s_i \in S_i$ and $s_j \in S_j$ then $s_i \Box s_j = \chi_{ij,i}(s_i)\chi_{ij,j}(s_j)$ where the right-hand side product is taken inside the monoid S_{ij} . Then (S, \Box) is a proper I-band of the family

 $(S_i)_{i \in I}$ of monoids and conversely, every proper I-band of these monoids can be constructed in the above way, the direct system X being determined in the unique fashion for each proper I-band of $(S_i)_{i \in I}$. Moreover, every I-band of unipotent monoids is necessarily proper (and hence orthodox) and so it can be constructed in the above way.

In particular, Proposition 1 holds if (I, \cdot) satisfies one of the following identities: xyx=xy, xyx=yx, xyz=yxz, xyz=xzy, xy=x, xy=y, xy=yx. In the latter case, i.e. for semilattices of unipotent monoids, this has been proved in [8].

It can be easily verified that (I, \cdot) satisfies the identity xyx=xy [the identity xyx=yx] if and only if the quasiorder relation \leq_1 [the quasiorder relation \leq_2] is included into \leq_2 [into \leq_1]. Every band is a semilattice of rectangular bands. Right zero and left zero bands are called singular. It can be trivially verified that a band satisfies the pseudoidentity $xyx=xy \lor xyx=yx$ if and only if it is a semilattice of singular bands.

Remark 4. Suppose (I, \cdot) is a rectangular band and $i, j \in I$. Then $i \leq_1 ij$ and $ij \leq_1 i$, whence $\varphi_{i,ij} \circ \varphi_{ij,i} = \varphi_{ii}$ and $\varphi_{ij,i} \circ \varphi_{i,ij} = \varphi_{ij,ij}$. Therefore, $\varphi_{i,ij}$ is an isomorphism. In the same way we may prove that $\psi_{j,ij}$ is an isomorphism. It follows that S_i and S_j are isomorphic. Thus, all the monoids S_i are pairwise isomorphic. This fact permits us to give an alternative construction for rectangular bands of unipotent monoids.

Fix some element $o \in I$ and for every $i \in I$ fix an isomorphism α_i of S_i onto S_o , say, $\alpha_i = \psi_{o,io} \circ \varphi_{io,i}$. If $s_i \in S_i$ let $f(s_i) = (\alpha_i(s_i), i)$. Then f is a bijective mapping of $S = \bigcup_{i \in I} S_i$ onto the Cartesian product of the sets S_o and I. It remains to define a suitable multiplication in $S_o \times I$ in order f to be an isomorphism. It is clear that

$$\alpha_i(s_i) = \psi_{o,io} \circ \varphi_{io,i}(s_i) = \psi_{o,io}(s_i e_{io}) = e_o(s_i e_{io})$$

so that $f(s_i) = (e_o s_i e_{io}, i)$. Now suppose $(s, i) \in S_o \times I$. Then $f^{-1}((s, i)) = e_{io} se_i$. In effect,

$$e_{io}se_i \in S_{io}S_oS_i \subset S_{iooi} = S_i$$
 and $f(e_{io}se_i) = (e_oe_{io}se_ie_{io}, i) = (s, i)$

 $e_o e_{io} = e_{o(io)} e_{io} = e_{o(io)} = e_o$ and $se_i e_{io} = se_{io} = (se_o)e_{io} = s(e_o e_{io}) = se_o = s$ so that

$$e_o e_{io} s e_i e_{io} = e_o s = s.$$

Thus, we should define such a multiplication \Box on $S_o \times I$ that for any $s, t \in S_o$ and any $i, j \in I$

$$(s,i) \square (t,j) = f((e_{io}se_i) \cdot (e_{jo}te_j)) = (e_o(e_{io}se_i)(e_{jo}te_j)e_{(ij)o}, ij).$$

Now

since

$$a a = c = c = c$$
 and (ii) $a = ia$

so that

$$e_{o}(e_{io}se_{i})(e_{jo}te_{j})e_{(ij)o} = se_{i}e_{jo}te_{j}e_{io} = [s(e_{o}e_{i}e_{jo})][t(e_{o}e_{j}e_{io})] = (sb_{ij})(tb_{ji})$$

where

$$b_{ij} = e_o e_i e_{jo} \in S_{oijo} = S_o.$$

Now

$$b_{ij}b_{ji,k} = (e_oe_ie_{jo})(e_oe_{ji}e_{ko}) = e_oe_i(e_{jo}e_o)e_{ji}e_{ko} = e_oe_ie_{jo}e_{ji}e_{ko} =$$

= $e_oe_ie_{jo}(e_je_{ji})e_{ko} = e_oe_i(e_{jo}e_j)e_{ji}e_{ko} = e_oe_ie_je_{ji}e_{ko} = e_oe_i(e_je_{ji})e_{ko} =$
= $e_oe_ie_{ji}e_{ko} = e_o(e_ie_{ji})e_{ko} = e_oe_ie_{ko} = b_{ik},$
 $e_{jo}e_j = e_j \text{ and } e_ie_{ji} = e_i$

since

which may be proved in the same way as the above equality
$$e_{oi}e_o=e_o$$
.

Conversely, suppose a unipotent monoid S_o and a rectangular band I are given and $b_{ij}b_{ji,k}=b_{ik}$ for every $i, j, k \in I$. Then $b_{ii}b_{ii}=b_{ii}b_{ii,i}=b_{ii}$ which implies that $b_{ii}=e_o$ for every $i \in I$. Now

whence

$$b_{i,j,i} = b_{ij,i}e_o = b_{ij,i}b_{ij,ij} = b_{ij,i}b_{i(ij),ij} = b_{ij,ij} = e_o,$$

$$b_{i,jk}b_{jki,j} = b_{ij} \text{ and } b_{i,jk}b_{jki,j} = b_{i,jk}b_{ji,j} = b_{i,jk}e_o = b_{i,jk},$$

i.e. $b_{i,jk} = b_{ij}$. On the Cartesian product $S_o \times I$ define the following multiplication \Box : $(s,i) \Box(t,j) = (sb_{ij}tb_{ji}, ij)$. Then $(s,i) \Box(t,i) = (sb_{ii}tb_{ii}, ii) = (se_ote_o, i) = (st, i)$, i.e. $S_i = S_o \times \{i\}$ is isomorphic to S_o . Now

$$[(s, i) \Box (t, j)] \Box (u, k) = (sb_{ij}tb_{ji}, ij) \Box (u, k) = (sb_{ij}tb_{ji}b_{ij,k}ub_{k,ij}, ijk) =$$

= $(sb_{ij}tb_{jk}ub_{ki}, ijk) = (sb_{i,jk}tb_{jk}ub_{kj}b_{jk,i}, ijk) =$
= $(s, i) \Box (tb_{jk}ub_{kj}, jk) = (s, i) \Box [(t, j) \Box (u, k)].$

Thus, $(S_o \times I, \Box)$ is an *I*-band of monoids isomorphic to S_o , namely, of monoids S_i .

We have proved the following

Proposition 2. Let S be a unipotent monoid, I be a rectangular band, $B=(b_{ij})$ be an $(I \times I)$ -matrix over S such that $b_{ij}b_{ji,k}=b_{ik}$ for all $i, j, k \in I$. Define the following multiplication \Box on the set $S \times I: (s, i) \Box(t, j) = (sb_{ij}tb_{ji}, ij)$. Then $(S \times I, \Box)$ is an I-band of monoids isomorphic to S and every I-band of monoids isomorphic to S can be constructed in the above way. In particular, there exists an I-band of a family $(S_{i})_{i \in I}$ of unipotent monoids if and only if all the monoids are pairwise isomorphic.

152

Another description of rectangular bands of unipotent monoids has been given in [9, Corollary 3.10].

In case of proper bands we have the following

Proposition 3. Let $(S_i)_{i \in I}$ be a family of monoids and I be a rectangular band. There exists a proper I-band of $(S_i)_{i \in I}$ if and only if all the monoids are pairwise isomorphic, and every such band is isomorphic to a direct product of S_i for some fixed $i \in I$ and I. Conversely, every direct product of S_i and I is isomorphic to a proper I-band of $(S_i)_{i \in I}$.

In effect, from Theorem 2 it follows that Φ and Ψ commute which implies easily our Proposition.

Another proof of Proposition 3 has been given in [6].

Since every band of semigroups is a semilattice of rectangular bands of semigroups [7], Proposition 2 gives some additional insight into the structure of bands of unipotent monoids and Proposition 3 — into the structure of proper bands of monoids.

In particular, if S is a combinatorial monoid (i.e. S has no invertible elements except 1 where 1 is the identity of S) then every I-band of monoids isomorphic to S is isomorphic to a direct product of S and I. This follows from the fact that b_{ij} is an invertible element of S for every $i; j \in I$. Moreover, $b_{ij}^{-1} = b_{ji,i}$. In effect, $b_{ij}b_{ji,i} = b_{ii} = 1$ and $b_{ji,i}b_{ij} = b_{ji,j}b_{i(ji),j} = b_{ji,j} = b_{ji,j} = 1$.

It is a well-known fact that rectangular bands of groups are precisely the completely simple semigroups. Thus Proposition 2 gives, in particular, a new representation theorem for completely simple semigroups.

Remark 5. Suppose *I* is a band and $i \leq j \leftrightarrow i = iji$. Then \leq is a quasiorder relation on *I*. Suppose $(S_i)_{i \in I}$ is a family of monoids and *X* is a direct system of homomorphisms over \leq . Since $ij \leq i$ and $ij \leq j$ for every $i, j \in I$ we may define the following operation \Box on $S = \bigcup_{i \in I} S_i$: if $s_i \in S_i$ and $s_j \in S_j$ then $s_i \Box s_j = \chi_{ij,i}(s_i)\chi_{ij,j}(s_j)$. Then (S, \Box) is an *I*-band of our monoids. A particular case of this construction was used in Proposition 1. Clearly, (S, \Box) is a proper *I*-band. Suppose $i \leq j$. Then

$$e_{i} \Box s_{j} \Box e_{i} = \chi_{iji,i}(e_{i})\chi_{iji,j}(s_{j})\chi_{iji,i}(e_{i}) = \chi_{ii}(e_{i})\chi_{ij}(s_{j})\chi_{ii}(e_{i}) = e_{i}\chi_{ij}(s_{j})e_{i} = \chi_{ij}(s_{j})$$

for every $s_i \in S_i$.

Proposition 4. Let I be a band satisfying the identity xyxzx=xyzx, $(S_i)_{i \in I}$ be a family of pairwise disjoint monoids and $i \leq j \leftrightarrow i = iji$ for all $i, j \in I$. Define an operation \Box on the set $S = \bigcup_{i \in I} S_i$ as follows: if $s_i \in S_i$ and $s_j \in S_j$ then $s_i \Box s_j = \chi_{ij,i}(s_i)\chi_{ij,j}(s_j)$. Then (S, \Box) is a proper I-band of monoids $(S_i)_{i \in I}$ and every proper I-band of these monoids can be constructed in the above way, the direct system X being determined uniquely for every proper I-band of $(S_i)_{i \in I}$. Proof. Suppose (S, \cdot) is a proper *I*-band of $(S_i)_{i \in I}$. Then for every $i, j \in I$ such that $i \leq j$ and every $s_i, t_i \in S_i$

$$(e_i s_j e_i)(e_i t_j e_i) = e_i s_j e_i t_j e_i = (e_i s_j) e_{ij} e_i e_{ji}(t_j e_i) = e_i s_j e_j e_{ij} e_i e_{ji} t_j e_i = e_i s_j e_j e_{ij} e_{ji} e_{ji$$

i.e. the mapping $\chi_{ij}: S_j \to S_i$ such that $\chi_{ij}(s_j) = e_i s_j e_i$ is a homomorphism. Clearly, $\chi_{ij}(e_j) = e_i e_j e_i = e_{iji} = e_i$ and χ_{ii} is the identical automorphism of S_i . Now let $i \le j \le k$ and $s_k \in S_k$. Then

$$\chi_{ij} \circ \chi_{jk}(s_k) = \chi_{ij}(e_j s_k e_j) = e_i e_j s_k e_j e_i = (e_i e_j) e_{kji} s_k e_j e_i = e_{ijkji} s_k e_{ji} = e_{ijkj} s_k e_{ji} = e_{ijkj} s_k e_{ji} = e_{ijkj} s_k e_{ji} = e_{ijkj} s_k e_{ji} s_k e_{ji} = e_{ijkj} s_k e_{ji} = e$$

i.e. (χ_{ij}) form a direct system of homomorphism. We used the fact that ikji=i. In effect,

References

- [1] A. H. CLIFFORD, Semigroups admitting relative inverses, Annals of Math., 42 (1941), 1037-1049.
- [2] Б. М. Шайн, К теории обобщенных групп и обобщенных груд, В сборнике Теория полугрупп и ее приложения, Выш. 1 (Саратов, 1965), 286—324.
- [3] T. E. HALL, On regular semigroups whose idempotents form a subsemigroup, Bull. Austral. Math. Soc., 1 (1969), 195-208; 3 (1970), 287-280.
- [4] M. YAMADA, Strictly inversive semigroups, Bull. Shimane Univ. (Nat. Sci.), 13 (1963), 128-138.
- [5] A. H. CLIFFORD, The structure of orthodox unions of groups, Semigroup Forum, 3 (1972), 283-337.
- [6] M. PETRICH, The maximal matrix decomposition of a semigroup, *Portugal. Math.*, 25 (1966), 15-33.
- [7] A. H. CLIFFORD, Bands of semigroups, Proc. Amer. Math. Soc., 5 (1954), 499-504.
- [8] M. PETRICH, Introduction to semigroups, Merrill Books (Columbus, Ohio, 1973).
- [9] G. LALLEMENT and M. PETRICH, A generalization of the Rees theorem on semigroups, Acta Sci. Math., 30 (1969), 113-132.

(Received September 20, 1972)