

Fourier effective methods of summation

By GEN-ICHIRÔ SUNOUCHI in Sendai (Japan)

1. Let the Fourier expansion of $f(x) \in L(-\pi, \pi)$ be

$$f(x) \sim \sum_{n=-\infty}^{\infty} c_n e^{inx} = \sum_{n=0}^{\infty} a_n(x).$$

We consider now summation of the series at a given point x . The summation behaviour of this series at a point x is reduced to properties of the cosine expansion

$$\varphi(t) \sim \sum_{n=0}^{\infty} a_n \cos nt$$

at $t=0$, where

$$\varphi(t) = \{f(x+t) + f(x-t)\}, \quad a_n = a_n(x).$$

By F_C we denote the class of all series $\sum a_n \cos nt$ for which $\varphi(t)$ is continuous at $t=0$, and by F_L the class of all series $\sum a_n \cos nt$ for which $t=0$ is a Lebesgue point of $\varphi(t)$, i.e.

$$\int_0^h |\varphi(t) - \varphi(0)| dt = o(h), \quad (0 < h \rightarrow 0).$$

W. B. JURKAT and A. PEYERIMHOFF [3] considered general summation methods $B = (b_{nv})$ in the series to sequence form satisfying

$$b_{nv} \rightarrow 1 \quad (n \rightarrow \infty, v \text{ fixed}), \quad b_{nv} \rightarrow 0 \quad (n \text{ fixed}, v \rightarrow \infty).$$

$$\sum_{v=0}^{\infty} b_{nv} a_v = \sigma_n(\varphi) \quad (C, 1),$$

which means summable by the first Cesàro method. They called this the applicability condition. If for a method B satisfying the applicability condition

$$\sigma_n(\varphi) \rightarrow \varphi(0) \quad (n \rightarrow \infty)$$

for all φ corresponding to series F_C , respectively F_L , then we call the method B F_C -effective, respectively F_L -effective. Concerning F_C -effectiveness, they proved the following theorems.

Theorem A. *A method $B=(b_{nv})$ with the applicability property is F_C -effective if and only if*

$$\frac{1}{2}b_{n0} + \sum_{v=1}^{\infty} b_{nv} \cos vt \quad (n = 0, 1, \dots)$$

are the cosine expansions of functions (which are called kernels) $b_n(t) \in L(0, \pi)$ satisfying for every δ in $0 < \delta < \pi$,

$$(i) \quad \text{ess sup}_{\delta \leq t \leq \pi} |b_n(t)| \leq M_{\delta} \quad (n = 0, 1, \dots),$$

$$(ii) \quad \int_{\delta}^{\pi} b_n(t) dt \rightarrow 0, \quad \frac{2}{\pi} \int_0^{\pi} b_n(t) dt \rightarrow 1 \quad (n \rightarrow \infty),$$

$$(iii) \quad \int_0^{\pi} |b_n(t)| dt \leq M \quad (n = 0, 1, \dots).$$

Theorem B. *Let $\sum a_v$ be summable to the same s by all F_C -effective methods B . Then the series $\sum a_v \cos vt$ is the cosine expansion of a function $\varphi(t) \in L(0, \pi)$ which is continuous at $t=0$. In other words, the intersection of summability fields of all F_C -effective methods is F_C .*

In the present note, we will give the complete analogues of Theorems A and B for F_L -effectiveness.

2. Theorem 1. *A method $B=(b_{nv})$ with the applicability property is F_L -effective if and only if*

$$\frac{1}{2}b_{n0} + \sum_{v=1}^{\infty} b_{nv} \cos vt \quad (n = 0, 1, \dots)$$

are the cosine expansions of functions $b_n(t) \in L(0, \pi)$ satisfying for every δ ($0 < \delta < \pi$)

$$(i) \quad \text{ess sup}_{\delta \leq t \leq \pi} |b_n(t)| \leq M_{\delta} \quad (n = 0, 1, \dots),$$

$$(ii) \quad \int_{\delta}^{\pi} b_n(t) dt \rightarrow 0, \quad \frac{2}{\pi} \int_0^{\pi} b_n(t) dt \rightarrow 1 \quad (n \rightarrow \infty),$$

$$(iii) \quad \int_0^{\pi} m_n(t) dt \leq M, \quad \text{where} \quad m_n(t) = \text{ess sup}_{t \leq u \leq \pi} |b_n(u)|.$$

In other words, the kernel $b_n(t)$ has hump-backed majorants with uniformly bounded integrals.

Proof. Since F_L -effectiveness implies F_C -effectiveness, (b_{nv}) has to satisfy the condition of Theorem A. We write the kernel $b_n(t)$ as

$$b_n(t) \sim \frac{1}{2}b_{n0} + \sum_{v=1}^{\infty} b_{nv} \cos vt \quad (n = 0, 1, \dots).$$

If we can write

$$(1) \quad \sigma_n(\varphi) = \frac{2}{\pi} \int_0^\pi \varphi(t) b_n(t) dt$$

as a Lebesgue integral, a condition for F_L -effectiveness was given by D. FADDEEFF [2], see also S. G. KREIN—B. JA. LEVIN [4] and K. TANDORI [5]. The exposition is also given in ALEXITS' book [1].

For the representation (1), we proceed with Tandori's idea. Without loss of generality we can suppose $\varphi(0)=0$. Let us denote by L_0 the class of all functions $\varphi(t) \in L(0, \pi)$ satisfying $\varphi(0)=0$ and

$$\int_0^h |\varphi(t)| dt = o(h) \quad (0 < h \rightarrow 0).$$

Then Tandori proved that with the norm

$$\|\varphi\|_0 = \sup_{0 < h \leq \pi} \left\{ \frac{1}{h} \int_0^h |\varphi(t)| dt \right\}$$

L_0 is the Banach space. For any fixed n , $\sigma_n(\varphi)$ is evidently a linear functional on L_0 . We consider all functions which belong to $L(0, \pi)$ and vanish near the origin. This class is a subspace of L_0 and denoted by L_0^* . For any $\varphi \in L_0^*$

$$\sigma_n(\varphi) = \frac{2}{\pi} \int_0^\pi \varphi(t) b_n(t) dt.$$

In particular for any fixed n we take

$$\begin{aligned} \int_{\pi 2^{-m-1}}^{\pi 2^{-m}} |\varphi_m(t)| dt &= 1, \\ \int_{\pi 2^{-m-1}}^{\pi 2^{-m}} \varphi_m(t) b_n(t) dt &\geq \text{ess sup}_{\pi 2^{-m-1} \leq t \leq \pi 2^{-m}} |b_n(t)| - \frac{\varepsilon}{\pi} \end{aligned}$$

for any given $\varepsilon > 0$ and set

$$\begin{aligned} \varphi^*(t) &= \pi 2^{-m} \varphi_m(t) \quad \text{in } (\pi 2^{-m-1}, \pi 2^{-m}) \quad (m = 0, 1, \dots), \\ \varphi^*(t) &= 0 \quad \text{in } (0, \pi 2^{-N}) \quad \text{for some } N > m+1. \end{aligned}$$

If we take $\pi 2^{-k-1} < h \leq \pi 2^{-k}$ ($N > k+1$), then

$$\begin{aligned} \frac{1}{h} \int_0^h |\varphi^*(t)| dt &\leq \frac{2^{k+1}}{\pi} \int_{\pi 2^{-N}}^{\pi 2^{-k}} |\varphi^*(t)| dt = \frac{2^{k+1}}{\pi} \sum_{m=k}^{N-1} \frac{\pi}{2^m} \int_{\pi 2^{-m-1}}^{\pi 2^{-m}} |\varphi_m(t)| dt = \\ &= 2^{k+1} \sum_{m=k}^{N-1} 2^{-m} = 2^{k+1} (2^{-k+1} - 2^{-N+1}) = 4 - 2^{k-N+2} \leq 4. \end{aligned}$$

So $\|\varphi^*\|_0 \leq 4$. On the other hand,

$$\sigma_n(\varphi^*) = \frac{2}{\pi} \int_0^\pi 2\varphi^*(t)b_n(t) dt \geq \sum_{m=0}^N \frac{\pi}{2^m} \text{ess sup}_{\pi 2^{-m-1} \leq t \leq \pi 2^{-m}} |b_n(t)| - \varepsilon.$$

Hence we get

$$\sup_{\|\varphi^*\|_0 \leq 1} |\sigma_n(\varphi^*)| \geq \frac{1}{2} \sum_{m=0}^N \frac{1}{2^m} \text{ess sup}_{\pi 2^{-m-1} \leq t \leq \pi 2^{-m}} |b_n(t)|$$

and we have

$$\sum_{m=0}^{\infty} \frac{1}{2^m} \text{ess sup}_{\pi 2^{-m-1} \leq t \leq \pi 2^{-m}} |b_n(t)| \sim \int_0^\pi \{\text{ess sup}_{t \leq u \leq \pi} |b_n(u)|\} dt$$

is finite for any fixed n . Thus the integral

$$\int_0^\pi |\varphi(t)b_n(t)| dt \leq \sum_{m=0}^{\infty} \left\{ 2^m \int_{\pi 2^{-m-1}}^{\pi 2^{-m}} |\varphi(t)| dt \right\} \left\{ \frac{1}{2^m} \text{ess sup}_{\pi 2^{-m-1} \leq t \leq \pi 2^{-m}} |b_n(t)| \right\}$$

exists in the Lebesgue sense for any $\varphi \in L_0$ as Tandori shows. We get the representation (1) by extension from L_0^* to L_0 and the conclusion is given by Faddeeff's theorem.

Theorem 2. Let $\sum a_v$ be summable to the same s by all F_L -effective method B . Then $\sum a_v \cos vt$ is the cosine expansion of a function $\varphi \in L(0, \pi)$ which has $t=0$ as its Lebesgue point, i. e.

$$\int_0^h |\varphi(t) - s| dt = o(h) \quad (0 < h \rightarrow 0).$$

In other words, the intersection of summability fields of all F_L -effective methods is F_L .

Proof. Fix the series

$$\frac{1}{2} a_0 + \sum_{v=0}^{\infty} a_v$$

and consider only kernels $b_n(t) \in C[0, \pi]$. By the same idea as in W. B. JURKAT and A. PEYERIMHOFF [3] we can prove that there exists a function $\varphi(t) \in L(0, \pi)$ such that

$$\frac{2}{\pi} \int_0^\pi \cos vt \varphi(t) dt = a_v \quad (v = 0, 1, 2, \dots).$$

Hence for every bounded F_L -effective kernel $b_n(t)$ by Parseval's relation

$$\sigma_n(\varphi) = \frac{2}{\pi} \int_0^\pi b_n(t) \varphi(t) dt.$$

Next we have to show that

$$(2) \quad \int_0^h |\varphi(t) - s| dt = o(h) \quad (0 < h \rightarrow 0).$$

We can suppose $s=0$. If (2) fails, we may assume that some $\varepsilon > 0$ and $h_k \rightarrow 0$ exist such that

$$\frac{1}{h_k} \int_0^{h_k} |\varphi(t)| dt > \varepsilon.$$

Set

$E_k = [0, h_k]$, $E_k^+ = \{t | 0 \leq t \leq h_k, \varphi(t) \geq 0\}$, and $E_k^- = \{t | 0 \leq t \leq h_k, \varphi(t) < 0\}$, then

$$E_k^+ \cup E_k^- = E_k, \quad E_k^+ \cap E_k^- = \varnothing, \quad \text{and} \quad |E_k^+| + |E_k^-| = h_k.$$

We select a subsequence $\{n_k\}$ such that

$$\alpha = \lim_{n_k \rightarrow \infty} |E_{n_k}^-|/|E_{n_k}^+|$$

exists ($0 \leq \alpha \leq \infty$). Let us set

$\Psi_{E_{n_k}}(t) = \text{sign } \varphi(t)$ for $t \in E_{n_k}$, and $\Psi_{E_{n_k}} = 0$ for $t \notin E_{n_k}$, and

$$d_{n_k}(t) = \frac{\pi}{2} \Psi_{E_{n_k}}(t)/(Ch_{n_k})$$

where C will be determined soon. Then,

$$\begin{aligned} \frac{2}{\pi} \int_0^\pi d_{n_k}(t) dt &= \frac{2}{\pi} \int_0^{h_{n_k}} d_{n_k}(t) dt = \frac{1}{Ch_{n_k}} \int_0^{h_{n_k}} \Psi_{E_{n_k}}(t) dt \\ &= \frac{|E_{n_k}^+| - |E_{n_k}^-|}{Ch_{n_k}} = \frac{1}{C} \frac{|E_{n_k}^+| - |E_{n_k}^-|}{|E_{n_k}^+| + |E_{n_k}^-|} \rightarrow \frac{1}{C} \frac{1 - \alpha}{1 + \alpha} \quad (0 \leq \alpha \leq \infty). \end{aligned}$$

If $\alpha \neq 1$, we set $\frac{1}{C} = \frac{1 + \alpha}{1 - \alpha}$; then $d_{n_k}(t)$ satisfies (i) and (ii). The integral of the hump-backed majorant is

$$\frac{2}{\pi} \frac{\pi}{2} \int_0^\pi \frac{\chi_{E_{n_k}}(t)}{|C| h_{n_k}} dt = \frac{h_{n_k}}{|C| h_{n_k}} = \left| \frac{1 + \alpha}{1 - \alpha} \right| < \infty.$$

However,

$$\begin{aligned} &\left| \frac{2}{\pi} \int_0^\pi \varphi(t) d_{n_k}(t) dt \right| = \\ &= \frac{1}{|C| h_{n_k}} \int_0^{h_{n_k}} \varphi(t) \text{sign } \varphi(t) dt = \frac{1}{|C|} \frac{1}{h_{n_k}} \int_0^{h_{n_k}} |\varphi(t)| dt > \frac{\varepsilon}{|C|}. \end{aligned}$$

Now we approximate $d_{n_k}(t)$ by continuous $b_{n_k}(t)$ and obtain a contradiction.

When $\alpha=1$, the absolute values of both

$$\frac{1}{h_{n_k}} \int_0^{h_{n_k}} \varphi^+(t) dt \quad \text{and} \quad \frac{1}{h_{n_k}} \int_0^{h_{n_k}} \varphi^-(t) dt$$

are greater than $\varepsilon/2$, where $\varphi^+(t)$ and $\varphi^-(t)$ are the positive and negative parts of $\varphi(t)$ for large n_k . Since

$$|E_{n_k}^-|/|E_{n_k}^+| \rightarrow 1 \quad (n_k \rightarrow \infty, h_{n_k} \rightarrow 0),$$

the function

$$d_{n_k}(t) = \pi \chi_{E_{n_k}^+}(t)/h_{n_k}$$

satisfies conditions (i) and (ii) of Theorem 1. The integral of the hump-backed majorant is smaller than

$$\frac{2}{\pi} \pi \int_0^{h_{n_k}} \frac{1}{h_{n_k}} dt \leq 2.$$

However, we also have

$$\frac{2}{\pi} \int_0^\pi \varphi(t) d_{n_k}(t) dt = \frac{2}{\pi} \pi \int_0^\pi \frac{\chi_{E_{n_k}^+}(t)}{h_{n_k}} \varphi(t) dt = \frac{2}{h_{n_k}} \int_0^{h_{n_k}} \varphi^+(t) dt > \varepsilon,$$

which is a contradiction. Hence we proved the theorem completely.

References

- [1] G. ALEXITS, *Convergence problems of orthogonal series*, Pergamon Press (1961).
- [2] D. K. FADDEEFF, Sur la représentation des fonctions sommables au moyen d'intégrales singulières, *Mat. Sbornik*, **1** (1936), 351—368.
- [3] W. B. JURKAT and A. PEYERIMHOFF, Fourier effectiveness and order summability, *J. Approximation Theory*, **4** (1971), 231—244.
- [4] S. G. KREIN and B. JA. LEVIN, On the strong representation of functions by singular integrals, *Doklady Akad. Nauk USSR*, **60** (1948), 195—198. (Russian.)
- [5] K. TANDORI, Über die Konvergenz singulärer Integrale, *Acta Sci. Math.*, **15** (1954), 223—230.

MATHEMATICAL INSTITUTE
TOHOKU UNIVERSITY
SENDAI, JAPAN

(Received November 5, 1972)