
A note on nori-quasitriangular operators*) 

By L. A. F I A L K O W in Stony Brook (N. Y. , USA) 

1. Introduction. Let § be a fixed, separable, infinite dimensional, complex 
Hilbert space, and let ,£?($) denote the algebra of all bounded linear operators 
on Let 0> denote the directed set of all finite rank projections in (§) under the 
usual ordering, and for each T in define q(T) = \\minf ||(1 — P)TP\\ and 

PÍ» • 

G(R)= l imsup | |(1 — P)TP\\. In [10], HALMOS initiated the study of quasitriangular 

operators and proved that an operator T is quasitriangular if and only if q(T) = 0. 
In [7], DOUGLAS and PEARCY employed the ^-function of BROWN and PEARCY (see 
[5], [12]) to prove that T is a thin operator (i.e., an operator that is the sum of a 
scalar and a compact operator) if and only if Q(T) = 0. The functions q and Q were 
studied, respectively, by APOSTOL in [1] and by FOIA§ and ZSIDÓ in [8]. We apprecia-
tively acknowledge access to preliminary versions of [1] and [8]. 

In a preliminary version of [8], FOIA§ and ZSIDÓ proved the following lemma. 

L e m m a F — Z . Let T be in f£ (§), | | r | | = l, and for O ^ i ^ l , let E, denote the 
spectral projection of (T* T)1 which corresponds to the interval [0, t]. The following 
implications are valid. 

i) If q(T)=\, then dim $-< K 0 / o r all t< 1. 

ii) If q(T)^ 0.95, then there exists t>\—q(T) such that dim 

Because of its length and complexity, this writer could not. see through the 
proof of Lemma F—Z. One purpose of this note is to provide (in section 3) a straight-, 
forward and short proof of a somewhat stronger version of Lemma F—Z. In parti-
cular, we prove that if ||7"|| = 1 and q(T)>2/3, then there exists f=-l— q{T) such 
that dim £•(§-=: an example shows that 2/3 is the best possible lower bound. 
We discuss the relationship between this result and a theorem of [8]. In section 2, 
values of q and q/Q are obtained for certain partial isometries. We also prove that if 

*) This paper consti tutes part of the au thor ' s Ph . D. thesis written at the University of Michigan 
under the direction of Prof . Carl Pearcy. 

14 A 



210 L. A. Fialkow 

A is in i?(£)) and q(T+A)'— 0 for each quasitriangular operator T in then A 
is a thin operator. 

The referee has kindly pointed out that several of the results in section two 
were proven independently by APOSTOL, FOIA§, and ZSIDO in [4], and by APOSTOL, 

FOIA§, and VOICULESCU in [2]. These papers followed [1] and [8] in a series of papers 
on non-quasitriangular operators. In an appendix we give the precise relationship 
between our results and those of the Rumanian mathematicians. 

2. Partial isometries. Let (QT) and (N ) denote, respectively, the subsets of quasi-
triangular and normal operators in .£?(§). 

In section 3 of [10], HALMOS proved (N)a(QT). For each T in we set 
d(T) = inf \\T-S\\ and dN(T) = inf UT-SII. Then clearly d(T)SdN(T). The 

se(QT) se(N) 
proofs of the following two lemmas are easy and will be omitted. 

L e m m a 2 . 1 . (APOSTOL [1].) If A and B are operators in ¡£(§), then 
\q(A)-q(B)\ti\\A-B\\. 

R e m a r k . Lemma 2.1 implies that if T is in JS?(§), then q(T)^d(T). Indeed, 
if q(S) = 0, we have g>-(T) || J - S ||, and therefore q(T)^ inf \\T-S\\. We are 

S£(QT) 
also able to prove the reverse inequality d(T)^q(T) and to thereby conclude that 
q(T) is the distance from T to the set (QT). This result is not used in this, note and 
the-proof will appear elsewhere. 

L e m m a 2 . 2 . (FOIA§ and ZSIDO [8].) The following implications are valid. 

i) IfU is a non-unitary isometry, then q(U)= 1. 

ii) IfTis in i ? ( § ) and A is a thin operator, then q(T) — q(T+A). 

The following proposition, which we believe to be new, is the converse of 
Lemma 2.2 ii). 

P r o p o s i t i o n 2.3. If A is in .£?(§) and q(T+A)=0for each Tin (QT), then 
A is a thin operator. 

P r o o f . If A is not thin, then Corollary 3.4 of [5] implies that A is similar to 
an operator §.© § of the form 

where Kis a non-unitary isometry. Let A2 be the operator on § . © § whose matrix is 
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and choose an integer « > 1 such that rt>|M2||. Let S denote the invertible operator 
on § © § of the form' • - . ' ' -

(I 0\ 
0 n 

and let A3 = S~1A1S. Finally, let Xand F denote, respectively, the operators on § © § 
whose matrices are 

(0 01 (0 nV\ 
and 

[n 0J (0 0. 
Theorem 6 of [6] implies that q(X) = 0, and from Lemma 2.2 i), we have q(X+ Y)=n 
Since \q(X+AJ)-q(X+Y)\^\\A3-Y\\<n, it is clear that q(X+As)>0. Let 
R- § — be an invertible operator such that A=R~XA3R. Theorem9 of [6] 
implies that q(R~1XR) = 0, and it follows that qiR^XR + A^O. (Indeed, if 
q(R~1XR+A)=0, another application of [6, Theorem 9] shows that 

0 = q(R(R~1XR + A)R-1) = q(X+RAR-x) = q(X+A3), 

which is a contradiction.) 

C o r o l l a r y 2.4: (DOUGLAS and PEARCY [7]) If A is in and 
lim ||(1 — P)AP\\ =0 , then A is a thin operator. 
pes> 

P r o o f . If lim | | (1-P) /4P | |=0, it is easy to prove that for each T i n (QT), 

q{A + T)—0. Then, from Proposition 2.3, A is a thin operator. 

L e m m a 2.5. If V is an isometry in .£?(§), then q(V*) = 0. 

P r o o f . The proof is trivial if V is a unilateral shift of multiplicity one. If V 
is unitary, then V* is in (N) . The proof for an arbitrary isometry procedes from 
the above special cases via the von Neumann decomposition theorem and Theorem 4 
of [10]. 

P r o p o s i t i o n 2.6. Let V be a partial isometry in (§) with nullity V=ot and 
corank V=p. The following implications are valid. 

i) I f a = P^Xo,thenq(V)=0. 

i i ) I f x = P=X0,thenq(V)^l/2. 

in) If then q{V) = \ and q(V*)=Q. 

P r o o f , i) I f a = /?<^ 0 , there is a finite rank operator F such that V.+ F is 
unitary. Then q(V) = q(V+F) = 0. ii) The proof of [9, Theorem 5] shows that if 
<x = P, then dN(V)^ 1/2.. Therefore q(V)^d(V)^dN(V)^l/2. iii) If a</?, there is 
a finite rank operator G such that V+G is a non-unitary isometry. From Lemma 
2.2 i), q(V) = q(V+G)=\, and from Lemma 2.5, q(V*) = q(V* + G*)—.0. 
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L e m m a 2.7. Let U denote a unilateral shift of multiplicity one in i f (§). If 
T=U®0 in JS? (§ ©§), then q{T)=1/2 and Q(T) = 1. 

P r o o f . Let S=T—1/2. Since S is bounded below by 1/2 and nullity S V 0 , 
Lemma 2.1 of [6] implies that q(T) = q(S)^\/2. The reverse inequality follows 
directly from Proposition 2.6 ii). 

Let 0>
x denote the directed set of all finite rank projections in <£ ( § © § ) under 

the usual ordering. To show that Q(T)^ 1, it suffices to prove that if P0 is in 3PX, 
then there exists Px in SPX such that PX^P0 and ||(1 -PX)TPX\\ = 1. Now since P0 

is in SPX, it is easy to prove that there exist projections R in 3? and Px in gPx such that 
PX = R®R and PX^P0. The proof of [6, Lemma 2.1] implies that R may be chosen 
so that | | ( l - / g t r a | | = l. Then ||(1 -PX)TPX\\ = ||(1 -R)UR\\ = 1. Since Q{T)mT\\ = 1, 
the proof is complete. 

P r o p o s i t i o n 2.8. If 1/2, there exist partial isometries V and W in 
% (§ © §) such that q(V)/Q(V) = r and q(W) = r. 

P r o o f . Let ¡7 be a unilateral shift of multiplicity one in.JSP(Jrj), and for O S i ^ l 
define P(t) by the operator matrix 

Then P(t) is a norm continuous function on [0, 1] whose values are partial isometries 
in .£?($©$). It is easy to prove that if 0=£iSl , then £»(>(O)>0. From Lemma 2.1 
and an obvious analogue, involving Q, the functions q and Q are continuous. If 
fx(t)=q(P(t)) and f2(t)=fx(t)/Q(P(t)), t h e n / j and / 2 are each continuous on 
[0, 1] and therefore each has connected, range. The proof is completed by noting 
that P(0) is quasitriangular [6, Theorem 6] and t h a t / i ( l ) = / 2 ( l ) = 1/2 by Lemma 2.7. 

3. An improvement of Lemma F — Z. T h e o r e m 3.1. Let The in ££($), ||T|| = 1, 
and for 0 1, let E, denote the spectral projection for (T* T)* which corresponds to 
the interval [0, /]. The following implications are valid. 

i) If 1/3 and dim E,=X0, then q(T)^(3-t^4. 

ii) If l /3s=?0<l and d im£ , o =K 0 , then q(T)^(l+t0)/2. 

P r o o f , i) Let T=UP denote the polar decomposition of T. Since E, reduces 
P, P = PX+P2, with Px in §)-*-) and P2 in JS?(£,o§). Clearly Px and P2 are 
positive operators. The spectral theorem implies that ||.P2 | |^/0 and that t 0 ^ P x ^ 1. 
If V= U( 1 then Kis a partial isometry such that nullity K=K0 . Proposition 2.6 
implies that q ( V ) S 1 /2, and therefore 

q(T) ^q((\+t»)l2V) + \\P-(\+t0)l2(\-E,)\\ ^ (1 +./0)/4 + | | i»1-(l + 0/2©/>2 | | . 
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Since 
\\Pi-(l+QI2\\k sup | í - ( l + 0 / 2 | = ( l - g / 2 

I OS'SI 
and 

||P2|| (1 -0 /2 , 
it follows that 

<7 ( 7 ) ^ ( 1 + 0 / 4 - K I - 0 / 2 = ( 3 - 0 / 4 . ' 

ii) Proceeding as above, we have q(T)^q((\-i0)K) + | | P - ( l - f 0 ) ( l —^r0)ll = 
^ (1 - 0 / 2 + II (Pi - (1 - /0» © ̂ 11 • Now || Pi - (1 - OH ̂  sup \t - (1 - O I, and an easy 

ÍOSstSl 
calculation shows that the supremum is less than or equal to t0. Since ||P2II— O w e 

have <7(r)^(l-í0)/2 + í0 = ( l + 0 / 2 . 

C o r o l l a r y 3.2. Let T be as above. If q(T)>2/3, then there exists t>l -q{T) 
such that 

P r o o f . Suppose that for each t>\—q(T), dim ii (i) = K0. Since q(T)>2/3, 
then 1 —q(T)< 1/3, and therefore dim £ ^ § = «0. Theorem 3.1 ii) implies that q(T)S 
S ( l + ]/3)/2 = 2/3, which is impossible. 

The following example shows that 2/3 is the best possible lower bound for a 
result like Corollary 3.2. 

E x a m p l e 3.3. Let U denote the unilateral shift of multiplicity one in 
and let A = £ / © - 1 / 3 and B=U®0. Since .4 -1 /3 is bounded below by 2/3 and 
nullity (A —1/3)*T^O, Lemma 2.1'of [6] implies that q(A) = q(A-1/3)^2/3. Lemma 
2.7 states that q(B) = 1/2, and therefore \q(A)-q(2/3B)] = \q(A)—l/3\s\\A-2/3B\\ = 
= 1/3. Now 1—^r(^) = l/3 and dim £ ^ § = 8,,. Therefore, for each 1/3, dim £,?) = 
= K0- Since ||/4|| = 1, this example shows that Corollary 3.2 cannot be extended 
beyond those operators for. which ^(T)>2/31|71. 

R e m a r k . In [8] FÓIA§ and ZSIDÓ used Lemma F — Z to prove that if T is in 
¿ f (§ ) ; | | r | | = l, and q(T)^0.95, then T=U+S+K, where U is a nonunitary iso-
metry, S is an operator such that | |5 | |<9(T), and A" is a finite rank operator. Corol-
lary 3.2 extends this result to any operator T in ¿?(§) such that q(T)>2/3 and 
|| 71 = 1. In particular, T is a semi-Fredholm operator with negative index. We 
furthur remark that if T is in =S?(§), ||71 = 1, and T has the above structure, then 
q(T)> 1/2. Indeed, since T= U+S+K, q(T) = q(U+ S) and therefore \q(U)-q(T)\£ 

Since q(U)= 1, we have 1 -q(T)<q(T), and the result follows. 
On the other hand, if 0<e^2 /3 , then there exists a Fredholm operator Tt in 
&(£>©§)» such that ||r.|| = l, the index of Te \s negative, and q(TE) = s. For example, 
if V is the unilateral shift of multiplicity one in ü?(§), then we may let Tc be the 
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operator in JS? (£)©§) whose matrix is 

Finally, if l / 2 < e ^ 2 / 3 , it is easy to prove that there exists i>l—q(T^) such that 
dim This proves that the converse of Corollary 3.2 is false. 

4. Appendix. We wish to indicate that some of our results are related to results 
in [2] and [4]. (The results in [4] were announced in [3].) Proposition 2.6 is identical 
to Corollary 2.7 of [4]. The remark on page 3 is contained in Theorem 2.2 of [2], 
which proves, additionally, that the distance from an operator to the set ( Q T ) 
is actually attained at some operator in (QT). Lemma 2.7 (about q) is contained 
in Corollary 4.3 of [2], and Proposition 2.8 (about q) is identical to Theorem 4.4 
(about q) of [2]. In each of the above cases the proofs of the corresponding results 
differ somewhat from one another. 
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