A note on non-quasitriangular operators*)

By L. A. FIALKOW in Stony Brook (N. Y., USA)

1. Introduction. Let \mathfrak{F} be a fixed, separable, infinite dimensional, complex Hilbert space, and let $\mathscr{L}(\mathfrak{H})$ denote the algebra of all bounded linear operators on \mathfrak{G}. Let \mathscr{P} denote the directed set of all finite rank projections in $\mathscr{L}(\mathfrak{H})$ under the usual ordering, and for each T in $\mathscr{L}(\mathfrak{H})$ define $q(T)=\liminf _{\boldsymbol{P} \in \mathscr{P}}\|(1-P) T P\|$ and $Q(T)=\limsup _{P \in \mathscr{P}}\|(1-P) T P\|$. In [10], Halmos initiated the study of quasitriangular operators and proved that an operator T is quasitriangular if and only if $q(T)=0$. In [7], Douglas and Pearcy employed the η-function of Brown and Pearcy (see [5], [12]) to prove that T is a thin operator (i.e., an operator that is the sum of a scalar and a compact operator) if and only if $Q(T)=0$. The functions q and Q were studied, respectively, by Apostol in [1] and by Foias and Zsidó in [8]. We appreciatively acknowledge access to preliminary versions of [1] and [8].

In a preliminary version of [8], FoIAş and Zsidó proved the following lemma.
Lemma $\mathrm{F}-\mathrm{Z}$. Let T be in $\mathscr{L}(\mathfrak{H}),\|T\|=1$, and for $0 \leqq t \leqq 1$, let E_{r} denote the spectral projection of $\left(T^{*} T\right)^{\frac{1}{2}}$ which corresponds to the interval $[0, t]$. The following implications are valid.
i) If $q(T)=1$, then $\operatorname{dim} E_{t} \mathfrak{H}<\aleph_{0}$ for all $t<1$.
ii) If $q(T) \geqq 0.95$, then there exists $t>1-q(T)$ such that $\operatorname{dim} E_{i} \mathfrak{H}<\aleph_{0}$.

Because of its length and complexity, this writer could not see through the proof of Lemma $\mathrm{F}-\mathrm{Z}$. One purpose of this note is to provide (in section 3) a straightforward and short proof of a somewhat stronger version of Lemma $F-Z$. In particular, we prove that if $\|T\|=1$ and $q(T)>2 / 3$, then there exists $t>1-q(T)$ such that $\operatorname{dim} E_{t} \mathfrak{S}<\mathbb{N}_{0}$; an example shows that $2 / 3$ is the best possible lower bound. We discuss the relationship between this result and a theorem of [8]. In section 2, values of q and q / Q are obtained for certain partial isometries. We also prove that if

[^0]A is in $\mathscr{L}(\mathfrak{H})$ and $q(T+A)=0$ for each quasitriangular operator T in $\mathscr{L}(\mathfrak{H})$, then A is a thin operator.

The referee has kindly pointed out that several of the results in section two were proven independently by Apostol, Foiaş, and Zsidó in [4], and by Apostol, Foias, and Voiculescu in [2]. These papers followed [1] and [8] in a series of papers on non-quasitriangular operators. In an appendix we give the precise relationship between our results and those of the Rumanian mathematicians.
2. Partial isometries. Let $(Q T)$ and (N) denote, respectively, the subsets of quasitriangular and normal operators in $\mathscr{L}(\mathfrak{H})$.

In section 3 of [10], Halmos proved $(N) \subset(Q T)$. For each T in $\mathscr{L}(\mathfrak{H})$ we set $d(T)=\inf _{S \in(Q T)}\|T-S\|$ and $d_{N}(T)=\inf _{S \in(N)}\|T-S\|$. Then clearly $d(T) \leqq d_{N}(T)$. The proofs of the following two lemmas are easy and will be omitted.

Lemma 2.1. (Apostol [1].) If A and B are operators in $\mathscr{L}(\mathfrak{Y})$, then $|q(A)-q(B)| \leqq\|A-B\|$.

Remark. Lemma 2.1 implies that if T is in $\mathscr{L}(\mathfrak{H})$, then $q(T) \leqq d(T)$. Indeed, if $q(S)=0$, we have $q(T) \leqq\|T-S\|$, and therefore $q(T) \leqq \inf _{S \in(Q T)}\|T-S\|$. We are also able to prove the reverse inequality $d(T) \leqq q(T)$ and to thereby conclude that $q(T)$ is the distance from T to the set $(Q T)$. This result is not used in this note and the proof will appear elsewhere.

Lemma 2.2. (FoiAş and Zsidó [8].) The following implications are valid.
i) If U is a non-unitary isometry, then $q(U)=1$.
ii) If T is in $\mathscr{L}(\mathfrak{H})$ and A is a thin operator, then $q(T)=q(T+A)$.

The following proposition, which we believe to be new, is the converse of Lemma 2.2 ii).

Proposition 2.3. If A is in $\mathscr{L}(\mathfrak{H})$ and $q(T+A)=0$ for each T in $(Q T)$, then A is a thin operator.

Proof. If A is not thin, then Corollary 3.4 of [5] implies that A is similar to an operator $\mathfrak{G} \oplus \mathfrak{5}$ of the form

$$
A_{1}=\left(\begin{array}{ll}
B & V \\
C & 0
\end{array}\right)
$$

where V is a non-unitary isometry. Let A_{2} be the operator on $\mathfrak{G} \oplus \mathfrak{5}$ whose matrix is

$$
\left(\begin{array}{ll}
B & 0 \\
C & 0
\end{array}\right)
$$

and choose an integer $n>1$ such that $n>\left\|A_{2}\right\|$. Let S denote the invertible operator on $\mathfrak{G} \oplus \mathfrak{5}$ of the form'

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & n
\end{array}\right)
$$

and let $A_{3}=S^{-1} A_{1} S$. Finally, let X and \dot{Y} denote, respectively, the operators on $\mathfrak{G} \oplus \mathfrak{H}$ whose matrices are

$$
\left(\begin{array}{ll}
0 & 0 \\
n & 0
\end{array}\right) \text { and }\left(\begin{array}{cc}
0 \cdot n V \\
0 & 0
\end{array}\right)
$$

Theorem 6 of [6] implies that $q(X)=0$, and from Lemma 2.2 i), we have $q(X+Y)=n$ Since $\left|q\left(X+A_{3}\right)-q(X+Y)\right| \leqq\left\|A_{3}-Y\right\|<n$, it is clear that $q\left(X+A_{3}\right)>0$. Let $R: \mathfrak{G} \rightarrow \mathfrak{5} \oplus \mathfrak{H}$ be an invertible, operator such that $A=R^{-1} A_{3} R$. Theorem 9 of [6] implies that $q\left(R^{-1} X R\right)=0$, and it follows that $q\left(R^{-1} X R+A\right)>0$. (Indeed, if $q\left(R^{-1} X R+A\right)=0$, another application of [6, Theorem 9] shows that

$$
0=q\left(R\left(R^{-1} X R+A\right) R^{-1}\right)=q\left(X+R A R^{-1}\right) \doteq q\left(X+A_{3}\right)
$$

which is a contradiction.)
Corollary 2.4: (Douglas and Pearcy [7]) If A is in $\mathscr{L}(\mathfrak{H})$ and $\lim _{P \in \mathscr{F}}\|(1-P) A P\|=0$, then A is a thin operator.

Proof. If $\lim _{P \in \mathscr{F}}\|(1-P) A P\|=0$, it is easy to prove that for each T in $(Q T)$, $q(A+T)=0$. Then, from Proposition 2.3, A is a thin operator.

Lemma 2.5. If V is an isometry in $\mathscr{L}(\mathfrak{H})$, then $q\left(V^{*}\right)=0$.
Proof. The proof is trivial if V is a unilateral shift of multiplicity one. If V is unitary, then V^{*} is in (N). The proof for an arbitrary isometry procedes from the above special cases via the von Neumann decomposition theorem and Theorem 4 of [10].

Proposition 2.6. Let V be a partial isometry in $\mathscr{L}(\mathfrak{S})$ with nullity $V=\alpha$ and corank $V=\beta$. The following implications are valid.
i) If $\alpha=\beta<\aleph_{0}$, then $q(V)=0$.
ii) If $\alpha=\beta=\aleph_{0}$, then $q(V) \leqq 1 / 2$.
iii) If $\alpha<\beta$, then $q(V)=1$ and $q\left(V^{*}\right)=0$.

Proof. i) If $\alpha=\beta<\boldsymbol{K}_{0}$, there is a finite rank operator F such that $V+F$ is unitary. Then $q(V)=q(V+F)=0$. ii) The proof of [9, Theorem 5] shows that if $\alpha=\beta$, then $d_{N}(V) \leqq 1 / 2$. Therefore $q(V) \leqq d(V) \leqq d_{N}(V) \leqq 1 / 2$. iii) If $\alpha<\beta$, there is a finite rank operator G such that $V+G$ is a non-unitary isometry. From Lemma 2.2 i), $q(V)=q(V+G)=1$, and from Lemma $2.5, q\left(V^{*}\right)=q\left(V^{*}+G^{*}\right)=0$.

Lemma 2.7. Let U denote a unilateral shift of multiplicity one in $\mathscr{L}(\mathfrak{H})$. If $T=U \oplus 0$ in $\mathscr{L}(\mathfrak{G} \oplus \mathfrak{S})$, then $q(T)=1 / 2$ and $Q(T)=1$.

Proof. Let $S=T-1 / 2$. Since S is bounded below by $1 / 2$ and nullity $S^{*} \neq 0$, Lemma 2.1 of [6] implies that $q(T)=q(S) \supseteqq 1 / 2$. The reverse inequality follows directly from Proposition 2.6 ii).

Let \mathscr{P}_{1} denote the directed set of all finite rank projections in $\mathscr{L}(\mathfrak{G} \oplus \mathfrak{S})$ under the usual ordering. To show that $Q(T) \geqq 1$, it suffices to prove that if P_{0} is in \mathscr{P}_{1}; then there exists P_{1} in \mathscr{P}_{1} such that $P_{1} \geqq P_{0}$ and $\left\|\left(1-P_{1}\right) T P_{1}\right\|=1$. Now since P_{0} is in \mathscr{P}_{1}, it is easy to prove that there exist projections R in \mathscr{P} and P_{1} in \mathscr{P}_{1} such that $P_{1}=R \oplus R$ and $P_{1} \geqq P_{0}$. The proof of [6, Lemma 2.1] implies that R may be chosen so that $\|(1-R) U R\|=1$. Then $\left\|\left(1-P_{1}\right) T P_{1}\right\|=\|(1-R) U R\|=1$. Since $Q(T) \leqq\|T\|=1$, the proof is complete.

Proposition 2.8. If $0 \leqq r \leqq 1 / 2$, there exist partial isometries V and W in $\mathscr{L}(\mathfrak{H} \oplus \mathfrak{H})$ such that $q(V) / Q(V)=r$ and $q(W)=r$.

Proof. Let U be a unilateral shift of multiplicity one in. $\mathscr{L}(\mathfrak{H})$, and for $0 \leqq t \leqq 1$ define $P(t)$, by the operator matrix

$$
\left(\begin{array}{cc}
\frac{t U}{} & 0 \\
\sqrt{1-t^{2}} & 0
\end{array}\right)
$$

Then $P(t)$ is a norm continuous function on [0,1] whose values are partial isometries in $\mathscr{L}(5 \oplus \mathfrak{H})$. It is easy to prove that if $0 \leqq t \leqq 1$, then $Q(P(t))>0$. From Lemma 2.1 and an obvious analogue involving Q, the functions q and Q are continuous. If $f_{1}(t)=q(P(t))$ and $f_{2}(t)=f_{1}(t) / Q(P(t))$, then f_{1} and f_{2} are each continuous on $[0,1]$ and therefore each has connected. range. The proof is completed by noting that $P(0)$ is quasitriangular $\left[6\right.$, Theorem 6] and that $f_{1}(1)=f_{2}(1)=1 / 2$ by Lemma 2.7.
3. An improvement of Lemma $\mathbf{F}-\mathbf{Z}$. Theorem 3.1. Let Tbe in $\mathscr{L}(\mathfrak{H}),\|T\|=1$, and for $0 \leqq t \leqq 1$, let E_{t} denote the spectral projection for $\left(T^{*} T\right)^{\frac{1}{2}}$. which corresponds to the interval $[0, t]$. The following implications are valid.
i) If $0 \leqq t_{0}<1 / 3$ and $\operatorname{dim} E_{t_{0}}=\kappa_{0}$, then $q(T) \leqq\left(3-t_{0}\right) / 4$.
ii) If $1 / 3 \leqq t_{0}<1$ and $\operatorname{dim} E_{t_{0}}=\aleph_{0}$, then $q(T) \leqq\left(1+t_{0}\right) / 2$.

Proof. i) Let $T=U P$ denote the polar decomposition of T. Since $E_{t_{0}}$ reduces $P, P=P_{1}+P_{2}$, with P_{1} in $\mathscr{L}\left(\left(E_{t_{0}} \mathfrak{G}\right)^{\perp}\right)$ and P_{2} in $\mathscr{L}\left(E_{t_{0}} \mathfrak{G}\right)$. Clearly P_{1} and P_{2} are positive operators. The spectral theorem implies that $\left\|P_{2}\right\| \leqq t_{0}$ and that $t_{0} \leqq P_{1} \leqq 1$. If $V=U\left(1-E_{t_{0}}\right)$, then V is a partial isometry such that nullity $V=\aleph_{0}$. Proposition 2.6 implies that $q(V) \leqq 1 / 2$, and therefore

$$
q(T) \leqq q\left(\left(1+t_{0}\right) / 2 V\right)+\left\|P-\left(1+t_{0}\right) / 2\left(1-E_{i_{0}}\right)\right\| \leqq\left(1+t_{0}\right) / 4+\left\|P_{1}-\left(1+t_{0}\right) / 2 \oplus P_{2}\right\|
$$

Since

$$
\left\|P_{1}-\left(1+t_{0}\right) / 2\right\| \leqq \sup _{t_{0} \leqq I \subseteq 1}\left|t-\left(1+t_{0}\right) / 2\right|=\left(1-t_{0}\right) / 2
$$

and

$$
\left\|P_{2}\right\| \leqq t_{0} \leqq\left(1-t_{0}\right) / 2
$$

it follows that

$$
q(T) \leqq\left(1+t_{0}\right) / 4+\left(1-t_{0}\right) / 2=\left(3-t_{0}\right) / 4 .
$$

ii) Proceeding as above, we have $q(T) \leqq q\left(\left(1-t_{0}\right) V\right)+\left\|P-\left(1-t_{0}\right)\left(1-E_{t_{0}}\right)\right\| \leqq$ $\leqq\left(1-t_{0}\right) / 2+\left\|\left(P_{1}-\left(1-t_{0}\right)\right) \oplus P_{2}\right\|$. Now $\left\|P_{1}-\left(1-t_{0}\right)\right\| \leqq \sup _{t_{0} \leq t \leq 1}\left|t-\left(1-t_{0}\right)\right|$, and an easy calculation shows that the supremum is less than or equal to t_{0}. Since $\left\|P_{2}\right\| \leqq t_{0}$, we have $q(T) \leqq\left(1-t_{0}\right) / 2+t_{0}=\left(1+t_{0}\right) / 2$.

Corollary 3.2. Let T be as above. If $q(T)>2 / 3$, then there exists $t>1-q(T)$ such that $\operatorname{dim} E_{t} \mathfrak{S}<\boldsymbol{N}_{0}$.

Proof. Suppose that for each $t>1-q(T), \operatorname{dim} E_{t} \mathfrak{S}=\aleph_{0}$. Since $. q(T)>2 / 3$, then $1-q(T)<1 / 3$, and therefore $\operatorname{dim} E_{f} \mathfrak{H}=\aleph_{0}$. Theorem 3.1 ii) implies that $q(T) \leqq$ $\leqq(1+1 / 3) / 2=2 / 3$, which is impossible.

The following example shows that $2 / 3$ is the best possible lower bound for a result like Corollary 3.2.

Example 3.3. Let U denote the unilateral shift of multiplicity one in $\mathscr{L}(\mathfrak{H})$ and let $A=U \oplus-1 / 3$ and $B=U \oplus 0$. Since $A-1 / 3$ is bounded below by $2 / 3$ and nullity $(A-1 / 3)^{*} \neq 0$, Lemma 2.1 of [6] implies that $q(A)=q(A-1 / 3) \geqq 2 / 3$. Lemma 2.7 states that $q(B)=1 / 2$, and therefore $|q(A)-q(2 / 3 B)|=|q(A)-1 / 3| \leqq\|A-2 / 3 B\|=$ $=1 / 3$. Now $1-q(A)=1 / 3$ and $\operatorname{dim} E_{\mathfrak{t}} \mathfrak{H}=\aleph_{0}$. Therefore, for each $t>1 / 3, \operatorname{dim} E_{t} \mathfrak{H}=$ $=\aleph_{0}$. Since $\|A\|=1$, this example shows that Corollary 3.2 cannot be extended beyond those operators for which $\dot{q}(T)>2 / 3\|T\|$.

Remark. In [8] Fóraş and Zsidó used Lemma F-Z to prove that if T is in $\mathscr{L}(\mathfrak{H}),\|T\|=1$, and $q(T) \geqq 0.95$, then $T=U+S+K$, where U is a nonunitary isometry, S is an operator such that $\|S\|<q(T)$, and K is a finite rank operator. Corollary 3.2 extends this result to any operator T in $\mathscr{L}(5)$ such that $q(T)>2 / 3$ and $\|T\|=1$. In particular, T is a semi-Fredholm operator with negative index. We furthur remark that if T is in $\mathscr{L}(\mathfrak{H}),\|T\|=1$, and T has the above structure, then $q(T)>1 / 2$. Indeed, since $T=U+S+K, q(T)=q(U+S)$ and therefore $|q(U)-q(T)| \leqq$ $\leqq\|S\|<q(T)$. Since $q(U)=1$, we have $1-q(T)<q(T)$, and the result follows. On the other hand, if $0<\varepsilon \leqq 2 / 3$, then there exists a Fredholm operator T_{ε} in $\mathscr{L}(\mathfrak{G} \oplus \mathfrak{G})$, such that $\left\|T_{\varepsilon}\right\|=1$, the index of T_{ε} is negative, and $q\left(T_{\varepsilon}\right)=\varepsilon$. For example, if V is the unilateral shift of multiplicity one in $\mathscr{L}(\mathfrak{H})$, then we may let T_{ε} be the
operator in $\mathscr{L}(\mathfrak{G} \oplus \mathfrak{H})$ whose matrix is

$$
\left(\begin{array}{ll}
0 & V \\
\varepsilon & 0
\end{array}\right) .
$$

Finally, if $1 / 2<\varepsilon \leqq 2 / 3$, it is easy to prove that there exists $t>1-q\left(T_{e}\right)$ such that $\operatorname{dim} E_{t} \mathfrak{j}<\aleph_{0}$. This proves that the converse of Corollary 3.2 is false.
4. Appendix. We wish to indicate that some of our results are related to results in [2] and [4]. (The results in [4] were announced in [3].) Proposition 2.6 is identical to Corollary 2.7 of [4]. The remark on page 3 is contained in Theorem 2.2 of [2], which proves, additionally, that the distance from an operator to the set ($Q T$) is actually attained at some operator in ($Q T$). Lemma 2.7 (about q) is contained in Corollary 4.3 of [2], and Proposition 2.8 (about q) is identical to Theorem 4.4 (about q) of [2]. In each of the above cases the proofs of the corresponding results differ somewhat from one another.

References

[1] C. Apostol, Quasitriangularity in Hilbert space (preprint).
[2] C. Apostol, C. Foias, and D. Voiculescu, Some results on non-quasitriangular operators. II, Revue roumaine math. pures et appliquées, 2 (1973), to appear.
[3] C. Apostol, C. Foias, and L. Zsidó, Sur les opérateurs non-quasitriangulaires, Compres Rendus Paris; A 275 (1972), 501-503.
[4] C. Apostol, C. Forass, and L. Zsidó, Some results on non-quasitriangular operators, Indiana J. Math., 22 (1973), 1151-1161.
[5] A: Brown and C. Pearcy, Structure of commutators of operators, Ann. of Math., 82 (1965), 112-127.
[6] R. G. Douglas and C. Pearcy, A note on quasitriangular operators, Duke Math. J., 37 (1970), 177-188.
[7] R. G. Douglas and Carl Pearcy, A characterization of thin operators, Acta Sci. Math. 29 (1968), 295-297.
[8] C. Foiaş and L. Zsidó, Some results on non-quasitriangular operators (preprint).
[9] P. R. Halmos and J. E. Mclaughlin, Partial isometries, Pac. J. Math., 13 (1962), 585-596.
[10] P. R. Halmos, Quasitriangular operators, Acta Sci. Math., 29 (1968), 283-294.
[11] C. Pearcy and N. Salinas, An invariant subspace theorem, Mich. Math. J., 20 (1973), 21-31.
[12] N. Salinas, On the η-function of Brown and Pearcy and the numerical function of an operator, Canad. J. Math., 23 (1971), 565-578.

[^0]: *) This paper constitutes part of the author's.Ph. D. thesis written at the University of Michigan under the direction of Prof. Carl Pearcy.

