Operators of class $C_0(N)$ and transitive algebras

By KEVIN CLANCEY¹) in Athens (Ga., USA) and BERRIEN MOORE, III²) in Durham (N.H., USA)

The recent remarkable result of V. I. LOMONOSOV [4], that if an operator (bounded linear transformation) T on a Banach space \mathfrak{X} has a nonzero compact operator in its commutant then T has a nontrivial invariant subspace, has a beautiful and astonishingly simple proof. The proof establishes even stronger results than that stated. Lomonosov does mention one of these in a note at the end of his paper. Another and closely related result is that if \mathscr{A} is a transitive algebra in the Banach algebra $\mathscr{B}(\mathfrak{H})$ of all operators on a separable complex Hilbert space \mathfrak{H} which contains a nonzero compact operator, then \mathscr{A} is weakly dense in $\mathscr{B}(\mathfrak{H})$; see [6].

By a transitive algebra \mathscr{A} we mean a subalgebra of $\mathscr{B}(\mathfrak{H})$ for which there does not exist a nontrivial subspace which is invariant under each operator in \mathscr{A} . We should mention that a primary motivation for the study of transitive algebras is that if the only weakly closed transitive algebra is $\mathscr{B}(\mathfrak{H})$, then the invariant subspace conjecture is true, i.e. every operator on a separable complex Hilbert space has a nontrivial invariant subspace. For an excellent discussion of transitive algebras and the history of their development see the monograph by RADJAVI and ROSENTHAL [6; particularly Chapter 8 and 10].

In this paper, we establish that if T is a contraction on \mathfrak{H} such that T^n and T^{*n} go strongly to zero as $n \to \infty$, and if the ranks of $I - T^*T$ and $I - TT^*$ are finite and equal (if N is this rank, then T is said to be of class $C_0(N)$, see [10; p. 350]; also finiteness implies their equality [10; Theorem VI.5.2]), then any transitive algebra that contains T is weakly dense in $\mathfrak{B}(\mathfrak{H})$.

The essential underlying result for our study is that if T is in $C_0(N)$ then T commutes with a particularly simple nonzero compact operator, and this is established by working within the functional model **T** for T (see [8] or [10]) where the structure of commuting compacts is well understood (see [7] for N=1; [5] for $N\geq 1$). Finally, the result is reached by using the transitive algebra result which followed from

¹) Supported in part by NSF GRANT GP 38488.

²) Supported in part by NSF GRANT GP 14784.

Lomonosov's proof and noting that the specific nature of this commuting compact implies that it is in the weakly closed algebra \mathscr{A}_{T} generated by I and T.

The functional model T of T in $C_0(N)$ on the space H is defined by

$$\mathbf{H} = H^2(\mathfrak{E}) \ominus \Theta H^2(\mathfrak{E}) \quad \text{and} \quad (\mathbf{T}u) \left(e^{it} \right) = \left(P_{\mathbf{H}}(\chi u) \right) \left(e^{it} \right) \quad \left(u \in \mathbf{H} \quad \text{and} \quad \chi(e^{it}) = e^{it} \right).$$

Here \mathfrak{E} is N-dimensional complex Hilbert space, $H^2(\mathfrak{E})$ is the Hardy space of \mathfrak{E} -valued functions on the unit circle, P_{H} the orthogonal projection of $H^2(\mathfrak{E})$ onto \mathbf{H} , and Θ is a matrix-valued "analytic" function, in the sense that $\Theta H^2(\mathfrak{E}) \subseteq H^2(\mathfrak{E})$, on the unit circle which is inner from both sides, (i.e., unitary valued a.e. or equivalently, in this case, inner). Finally, the Banach algebras of matrix-valued "analytic" and continuous functions on the unit circle will be denoted by $H^{\infty}(\mathfrak{B}(\mathfrak{E}))$ and $C(\mathfrak{B}(\mathfrak{E}))$, respectively. When \mathfrak{E} is simply the complex plane we shall use only H^{∞} or C. For further discussion see [10; Chapter IV] and [1; Lectures VII and VIII].

In order to establish our Theorem we need the

Lemma. If $\psi \in H^{\infty}$ is a nonconstant inner function which is not a finite Blaschke product then there exists $\varphi \in H^{\infty}$ such that

 $\overline{\psi}\varphi \in H^{\infty} + C$ and $\overline{\psi}\varphi^{p} \notin H^{\infty}$ for any positive integer p.

Proof. This proof is similar to the proofs of Lemma 4 and Lemma 5 in [3]; however, there are some differences so we shall give the details for completeness.

Let $\beta \sigma = \psi$ be the factorization of ψ into a Blaschke product β and a singular inner function σ . If β is nontrivial, then let z_0 be a zero of β of multiplicity *m*. Define β_0 on the unit circle \mathcal{T} by

$$\beta_0(z) = \left(\frac{z-z_0}{1-\bar{z}_0 z}\right)^m.$$

Then $\varphi = \overline{\beta}_0 \psi \in H^{\infty}$, and $\overline{\psi} \varphi^p = \overline{\beta}_0 \varphi^{p-1}$, for any positive integer p. As β_0 does not divide φ^{p-1} we have $\overline{\psi} \varphi^p \notin H^{\infty}$.

The more difficult case occurs when ψ is purely singular, i.e.

$$\psi(z) = \exp\left\{-\int_{0}^{2\pi} h(t, z) \, ds(t)\right\} \quad (|z| = 1), \quad {}^{3})$$

where $h(t, z) = \frac{e^{it} + z}{e^{it} - z}$ and s is a singular, finite, positive Borel measure on $[0, 2\pi)$. We identify $[0, 2\pi)$ with \mathcal{T} .

Let \mathscr{E} be a Borel set of Lebesgue measure zero such that \mathscr{E} has full s-measure. By regularity, we can find a closed set \mathscr{K} contained in \mathscr{E} such that $s(\mathscr{K}) > 0$. Define the measure s_0 on the Borel sets \mathscr{F} in $[0, 2\pi)$ by $s_0(\mathscr{F}) = s(\mathscr{K} \cap \mathscr{F})$. Clearly

^a) Every integral with h(t, z) is interpreted as a limit of the same integral with h(t, rz) as r-1-0.

 s_0 is supported on the closed set \mathcal{K} , and the nonconstant inner function

$$\psi_0(z) = \exp\left\{-\int_0^{2\pi} h(t, z) \, ds_0(t)\right\} \quad (|z| = 1)$$

divides ψ . In fact, ψ_0 and $\psi/\psi_0 = \gamma$ are relatively prime; therefore, ψ_0 does not divide γ^p for any positive integer p. Since s_0 is supported on \mathscr{K} , it follows that ψ_0 is continuous on the complement $\mathscr{T} \setminus \mathscr{K}$. Further, we can choose an outer function v which is continuous on \mathscr{T} and vanishes on \mathscr{K} . This follows by applying the portion of the proof on page 80 of [2] in which a log-integrable function $y(\cdot) \ge 0$ is constructed on \mathscr{T} having the following properties: y is continuous on \mathscr{T} , continuously differentiable on $\mathscr{T} \setminus \mathscr{K}$, and vanishing precisely on \mathscr{K} . Then we define for $z \in \mathscr{T}$

$$v(z) = \exp\left\{\frac{1}{2\pi}\int_{0}^{2\pi}h(t,z)\log y(e^{it})\,dt\right\};$$

v is an outer function in H^{∞} which is continuous on \mathscr{T} and vanishes precisely at the points of \mathscr{K} . Set $\varphi = v\gamma$. Again $\varphi \in H^{\infty}$, and $\overline{\psi}\varphi = \overline{\psi}_0 v$ is continuous. Further, for any positive integer p we have

$$\overline{\psi}\varphi^p = \overline{\psi}_0 \gamma^{p-1} \nu^p,$$

but ψ_0 cannot divide γ^{p-1} because of being relatively prime to ψ , nor can ψ_0 divide ν since ν is outer; therefore, $\overline{\psi}\varphi^p \notin H^{\infty}$.

So in each case we have constructed $\varphi \in H^{\infty}$ such that $\overline{\psi}\varphi \in C$ but $\overline{\psi}\varphi^{p} \notin H^{\infty}$ for any positive integer p.

Theorem. If a weakly closed transitive algebra \mathcal{A} in $\mathcal{B}(\mathfrak{H})$ contains a nonzero $C_0(N)$ operator T, then it is $\mathcal{B}(\mathfrak{H})$.

Proof. As stated, we shall work within the functional model T; let Θ be the associated inner function. An operator K on H commutes with T if and only if there exists $\Phi \in H^{\infty}(\mathcal{B}(\mathfrak{C}))$ such that

$$\Phi \Theta H^2(\mathfrak{E}) \subseteq \Theta H^2(\mathfrak{E})$$

and $\mathbf{K} = \Phi(\mathbf{T})$, where we define $\Phi(\mathbf{T})u = P_{\mathbf{H}}(\Phi u)$

for every $u \in \mathbf{H}$. For the case N=1 see [7]; for the general case see [9] and within a functional model [10; in particular Theorem VI.3.6]. Since Θ is unitary valued and $\Phi \Theta H^2(\mathfrak{G}) \subseteq \Theta H^2(\mathfrak{G})$, it follows that $\Phi(\mathbf{T})$ is nonzero if and only if $\Theta^* \Phi \notin H^{\infty}(\mathfrak{G})(\mathfrak{G})$.

Let $\psi = \det \Theta$ and set $\Psi = \psi \cdot I$, where *I* is the identity matrix on \mathfrak{E} . If ψ is a finite Blaschke product, then **H** is finite dimensional and the result follows from Burnside's Theorem [6; Chapter 8]. If ψ is not a finite Blaschke product, then choose, by the lemma, a function $\varphi \in H^{\infty}$ such that $\psi \varphi \in C$ but $\overline{\psi} \varphi^p \notin H^{\infty}$ for $p=1, 2, \ldots$. Set

 $\mathbf{H}' = H^2(\mathfrak{G}) \ominus \Psi H^2(\mathfrak{G}), \quad \mathbf{T}' u = P_{\mathbf{H}'}(\chi u) \text{ and } \Phi(\mathbf{T}')u = P_{\mathbf{H}'}(\Phi u)$

where $u \in \mathbf{H}'$, $P_{\mathbf{H}'}$ is the orthogonal projection of $H^2(\mathfrak{G})$ onto \mathbf{H}' , and $\Phi = \varphi \cdot I$. By the choice of φ we have that

$$\Psi^* \Phi = \overline{\Psi} \varphi I \in C(\mathscr{B}(\mathfrak{E})).$$

Further, it is obvious that $\Phi \Psi H^2(\mathfrak{E}) \subseteq \Psi H^2(\mathfrak{E})$ since Φ and Ψ have diagonal matrices as values. Consequently, $\Phi(\mathbf{T}')$ is a compact operator. But $\Phi(\mathbf{T})$ is just the compression of $\Phi(\mathbf{T}')$ to the space **H**. Hence $\Phi(\mathbf{T})$ is compact too. Further, since $\Phi = \varphi \cdot I$, $\Phi(\mathbf{T})$ is an H^{∞} function of T, and hence it is in the weakly closed algebra \mathscr{A}_T generated by **I** and **T** (see [10; Theorem III.2.1]).

It remains only to show that $\Phi(\mathbf{T})$ is nonzero. This will follow if we can establish that $\Theta^* \Phi \notin H^{\infty}(\mathscr{B}(\mathfrak{E}))$. Assume the contrary, so that there exists $\Gamma \in H^{\infty}(\mathscr{B}(\mathfrak{E}))$ such that $\Phi = \Theta \Gamma$. Thus det $\Phi = (\det \Theta)(\det \Gamma)$, so $\overline{\psi} \varphi^N = \det \Gamma \in H^{\infty}$, a contradiction to the choice of φ . Therefore, $\Phi(\mathbf{T})$ is a nonzero compact operator in $\mathscr{A}_{\mathbf{T}}$. Thus there is a nonzero compact in $\mathscr{A}_{\mathbf{T}} \subseteq \mathscr{A}$, so by Lomonosov $\mathscr{A} = \mathscr{B}(\mathfrak{H})$.

We would like to thank Professor Ronald Douglas for the suggestion to "take the determinant" in the proof of our Theorem, and we express our appreciation to Professor Béla Sz.-Nagy for his comments during revision which greatly aided in the improvement of our exposition.

References

- [1] H. HELSON, Lectures on invariant subspaces, Academic Press (New York, 1964).
- [2] K. HOFFMAN, Banach Spaces of Analytic Functions, Prentice Hall (Englewood Cliffs, N. J., 1962).
- [3] T. L. KRIETE III, B. MOORE III, and L. B. PAGE, Compact intertwining operators, Michigan Math. J., 18 (1971), 115-119.
- [4] V. I. LOMONOSOV, Invariant subspaces of a family of operators commuting with a compact operator, *Funkcional. Anal. Priložen.*, 3 (1973). (Russian)
- [5] P. S. MUHLY, Compact operators in the commutant of a contraction, J. Funct. Anal, 8 (1971), 197-224.
- [6] H. RADJAVI and P. ROSENTHAL, Invariant Subspaces, Springer-Verlag (Berlin, 1973).
- [7] D. SARASON, Generalized interpolation in H[∞], Trans. Amer. Math. Soc., 127 (1967), 179–203.
- [8] B. SZ.-NAGY and C. FOIA\$, Commutants de certains opérateurs, Acta Sci. Math., 29 (1968), 1-17.
- [9] B. Sz. -NAGY and C. FOIAŞ, Dilatation des commutants d'opérateurs, C. R. Acad. Sci. Paris, 266 (1968), 493-495.
- [10] B. Sz.-NAGY and C. FOIAŞ, Harmonic analysis of operators on Hilbert space, Akadémiai Kiadó (Budapest, 1970).

(Received July 27, 1973, revised October 17, 1973)