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~The recent remarkable result of V. I. LomoNosov {4], that if an operator (bounded
linear transformation) T on a Banach space ¥ has a nonzero compact operator

' " in its commutant then T has a nontrivial invariant subspace has a beautiful and

astonishingly simple proof. The proof establishes even stronger results than that
stated."Lomonosov does mention one of these in a note at the end of:his paper.
Another and closely related result is that if o is a transitive algebra in the Banach
algebra Z () of all operators.on a separable complex Hilbert space $ which con-

. tains a nonzero compact operator, then &7 is weakly-dense in B(9); see [6].

By a transitive algebra o we mean a subalgebra of #(9) for which there does
not ‘exist a nontrivial subspace which is invariant under each operator in /. We
should mention that a primary motivation for the study of transitive algebras is
that if the only weakly closed transitive algebra is #(9), then the. invariant sub-
space conjecture is true, i.e. every operator on a separable complex Hilbert space has
a nontrivial invariant subspace. For an excellent discussion of transitive algebras
and the history of their development see the monograph by RADJ'AVLand ROSENTHAL
[6; particularly Chapter 8 and 10]. :

In this paper, we establish that if T'is a contraction on $ such that 7" and
T*" go strongly to zero as n— oo, and if. the ranks of /—7*7T and I— TT* are finite

and equal (if N is this rank, then T is said to be of class Co(N), see [10; p. 350];
~ also finiteness implies their equality [10; Theorem VIL.5.2]), then any transitive al-
gebra that contains T is weakly dense in (9). ‘

The essential underlymg result for our study is that if T is in CO(N) then T
~commutes with a particularly simple nonzero compact operator, and this is established

by working within the functional model T for T (see [8].or [10]) where the structure -
of commuﬁng compacts is well understood (see [7] for N=1; [5] for N=1). Finally,
the result is reached by using the transitive algebra result which followed from
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- Lomonosov’s proof and noting that the specific nature of this commuting compact
implies that it'is in the weakly closed algebra o/, generated by I and T.
The functional model T of T in Cy(N) on the space H is defined by

H = H*(€)©OHE(€) and (Tu).(e"’) = (Pu()) () (ucH and y(e") =€)

Here € is N-dimensional complex Hilbert space, H2(€) is the Hardy space of €-valued
functions on the unit circle, Py the orthogonal projection of H2(E) onto H, and
© is a matrix-valued “analytic” function, in the sense that @ H%(€) S H?*(€), on
the unit circle which is inner from both sides, (i.e., unitary valued a.e. or equivalently,
in this case, inner). Finally, the Banach algebrés of matrix-valued “analytic” and
continuous functions on the unit circle will be denoted by H=(#(€)) and C(Z(€)),
respectively. When € is simply the complex plane we shall use only H* or C. For
further discussion see [10; Chapter IV] and [1; Lectures VII and VIII]
In order to establlsh our Theorem we need the

Lemma. If y€H® is a nonconstant inner function which is not a ﬁnlte Blaschke
product then there exists ¢ € H™ such that

Jo€ H°° +C and Ye¢H= for any positive integer p.

" Proof. This proof is similar to the proofs of Lemma 4 and Lemma 5 in [3};
however; there are some differences so we shall give the details for completeness.
Let Bo =1y be the factorization of ¥ into a Blaschke product §# and a singular
inner function o. If § is nontrivial, then let z, be a zero of § of multiplicity m. Define

Bo.on the unit circle ° by m
~ -~z
ﬁo(z) [ - ] :

ZZ

Then o= ﬂotpEH“, and Wp"—ﬂ er, for any positive mtegerp As [30 does not

divide ”~* we have Wgo ¢H™.
The more difficult case occurs when ¥ is purely singular, i.e.

V@ = exp{= [ ht Dds®} (=1, Y
it 0 .

L€
where (1, z)= ~
e —

and s is a'singular. finite, positive Borel measure on [0, 2r).

We identify [0, 27) with 7. :

Let & be a Borel set of Lebesgue measure zero such that & has full 5- measure.
By regularity, we can find a closed set 4" contained in & such that s(#")=0. Define
the measure s, on the Borel sets F in [0,27) by $o(F) =s(ANF). Clearly

%) Every integral with h(t z) is lnterpreted as a limit of the same integral w1th h(r,rz) as
r—~1-0. .
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5o is supported on the closed set ', and the nonconstant inner function

) = esp - f ) (= 1)

d1v1des Y. In fact, i, and np/:po_y are relatively pnme therefore, Y, does not d1v1de
y? for any posmve integer p. Since So 1s supported on 7, it follows that y, is con- '
tmuous on the complement 4 \#". Further, we can choose an outer function v
which is continuous on J and vanishes on . This follows by applying the portion
of the proof on page 80 of [2] in which a log-integrable function y(-)=0 is con-
structed-on J having the following properties: y is continuous on 4, continuously
differentiable on J \ ¢, and vanishing precisely on #. Then we define for z€J

v (z) = exp {% ]_n h(t, z) logy(e"") dt};

v is an outer function in H* which is contmuous on J and vanishes precisely at the
-~ points of #. Set o =vy. Again € H=, and ¢ =, v is continuous. Further, for any

positive integer p we have -
PP = oy vP

but y, cannot divide‘j)” ~! because of being relatively prime to ¥, nor can y, divide
v since v is outer; therefore, Yo? ¢ H*.

So in"each case we have constructed @€ H ™ such that Y@ € C but Yo? ¢ H= for
.any positive integer p. ' -

" Theorem. If a weakly closed transitive algebra of in B($) contains a nonzero .
Co(N) operator T, then it is B($H).

Proof. As stated, we shall work within the functional model T; let @ be the
associated inper function. An operator K on H commutes with T 1f and only if there
exists @€ H (% (€)) such that

¢@H2((E) - @H2((E)
and K = &(T), where we define

: P (Tu = Pu(du)
for every uc¢H. For the case N=1 see [7); for the general case see [9] and within
a functional model [10; in particular Theorem VI.3.6]. Since @ is unitary valued
and POH*(E)SOH(E), it follows that &(T) is nonzero if and only if
O*d ¢ H=(%(E)).

Let y=det @ and set ¥=y - -1, where I is the 1dent1ty matrix on €. If W isa -
finite Blaschke product, then H is finite dimensional and the result follows from
Burnside’s Theorem [6; Chapter 8]. If y is not a finite Blaschke product, then choose,
by the lemma, a function ¢ € H = such that $¢ € C but yo? ¢ H* for p=1,2, ... . Set

H = H®©OYH*(®), Tu=Py(u) and &(T)u= Py (Pu)
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where u€¢H’, Py, is the orthogonal projection of H2(E) onto H’, and d=¢-1I. By
the choice of ¢ we have that

o = JolcC(B(©®)

" Further, it is obvious that ®¥ H2(€) & Y H2(€) since @ and ¥ have diagonal matrices
as values. Consequently, @(T") is a compact operator. But ®(T) is just the compres-
sion of ¢(T’) to the space H. Hence @(T) is compact too. Further, since d=¢ -/,
@ (T)is an H = function of T, and hence it is in the weakly closed algebra o/, generated
by Tand T (see [10; Theorem II1.2.1]).

It remains only to show that @(T) is nonzero. This will follow if we can establlsh
that ©*® ¢ H>(#(€)). Assume the contrary, so that there exists I'€ H™(%(€))
such that @=@r. Thus.det ¢=(det @)(det I'), so Yo" =det I'¢ H=, a contradiction
to the choice of . Therefore, ®(T) is a nonzero compact operator in . Thus there
is a nonzero compact in &7, S s/, so by Lomonosov & = Z($).

We would like to thank Professor Ronald Douglas for the suggestion to ‘“take
the determinant” in the proof of our Theorem, and ‘we express our appreciation to
Professor Béla Sz.-Nagy for his comments during revision which greatly aided in
the improvement of our exposition.
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