# Operators of class $C_{0}(N)$ and transitive algebras 

By KEVIN CLANCEY ${ }^{1}$ ) in Athens (Ga., USA) and<br>BERRIEN MOORE, $\mathrm{III}^{2}$ ) in Durham (N.H., USA)

The recent remarkable result of V. I. Lomonosov [4], that if an operator (bounded linear transformation) $T$ on a Banach space $\mathfrak{Z}$ has a nonzero compact operator in its commutant then $T$ has a nontrivial invariant subspace, has a beautiful and astonishingly simple proof. The proof establishes even stronger results than that stated. Lomonosov does mention one of these in a note at the end of his paper. Another and closely related result is that if $\mathscr{A}$ is a transitive algebra in the Banach algebra $\mathscr{B}(\mathfrak{H})$ of all operators on a separable complex Hilbert space $\mathfrak{G}$ which contains a nonzero compact operator, then $\mathscr{A}$ is weakly dense in $\mathscr{B}(\mathfrak{H})$; see [6].

By a transitive algebra $\mathscr{A}$ we mean a subalgebra of $\mathscr{R}(\mathfrak{H})$ for which there does not exist a nontrivial subspace which is invariant under each operator in $\mathscr{A}$. We should mention that a primary motivation for the study of transitive algebras is that if the only weakly closed transitive algebra is $\mathscr{B}(\mathfrak{H})$, then the invariant subspace conjecture is true, i.e. every operator on a separable complex Hilbert space has a nontrivial invariant subspace. For an excellent discussion of transitive algebras and the history of their development see the monograph by Radjaviand Rosenthal [6; particularly Chapter 8 and 10].

In this paper, we establish that if $T$ is a contraction on $\mathfrak{G}$ such that $T^{n}$ and $T^{* n}$ go strongly to zero as $n \rightarrow \infty$, and if the ranks of $I-T^{*} T$ and $I-T T^{*}$ are finite and equal (if $N$ is this rank, then $T$ is said to be of class $C_{0}(N)$, see [10; p. 350]; also finiteness implies their equality [10; Theorem VI.5.2]), then any transitive algebra that contains $T$ is weakly dense in $\mathscr{B}(\mathfrak{G})$.

The essential underlying result for our study is that if $T$ is in $C_{0}(N)$ then $T$ commutes with a particularly simple nonzero compact operator, and this is established by working within the functional model $\mathbf{T}$ for $T$ (see [8] or [10]) where the structure of commuting compacts is well understood (see [7] for $N=1$; [5] for $N \geqq 1$ ). Finally, the result is reached by using the transitive algebra result which followed from

[^0]Lomonosov's proof and noting that the specific nature of this commuting compact implies that it is in the weakly closed algebra $\mathscr{A}_{\mathrm{T}}$ generated by I and T.

The functional model $\mathbf{T}$ of $T$ in $C_{0}(N)$ on the space $\mathbf{H}$ is defined by
$\mathbf{H}=H^{2}(\mathfrak{E}) \ominus \Theta H^{2}(\mathfrak{E}) \quad$ and $\quad(\mathbf{T} u)\left(e^{i t}\right)=\left(P_{\mathbf{H}}(\chi u)\right)\left(e^{i t}\right) \quad\left(u \in \mathbf{H} \quad\right.$ and $\left.\quad \chi\left(e^{i t}\right)=e^{i t}\right)$.
Here $\mathcal{E}$ is $N$-dimensional complex Hilbert space, $H^{2}(\mathbb{E})$ is the Hardy space of $\mathfrak{C}$-valued functions on the unit circle, $P_{\mathbf{H}}$ the orthogonal projection of $H^{2}(\mathcal{E})$ onto $\mathbf{H}$, and $\Theta$ is a matrix-valued "analytic" function, in the sense that $\Theta H^{2}(\mathcal{E}) \subseteq H^{2}(\mathfrak{E})$, on the unit circle which is inner from both sides, (i.e., unitary valued a.e. or equivalently, in this case, inner). Finally, the Banach algebras of matrix-valued "analytic" and continuous functions on the unit circle will be denoted by $H^{\infty}(\mathscr{B}(\mathbb{E}))$ and $C(\mathscr{B}(\mathfrak{E}))$, respectively. When $\mathfrak{E}$ is simply the complex plane we shall use only $H^{\infty}$ or $C$. For further discussion see [10; Chapter IV] and [1; Lectures VII and VIII].

In order to establish our Theorem we need the
Lemma. If $\psi \in H^{\circ \infty}$ is a nonconstant inner function which is not a finite Blaschke product then there exists $\varphi \in H^{\infty}$ such that

$$
\bar{\psi} \varphi \in H^{\infty}+C \quad \text { and } \quad \bar{\psi} \varphi^{p} \ddagger H^{\infty} \quad \text { for any positive integer } p .
$$

Proof. This proof is similar to the proofs of Lemma 4 and Lemma 5 in [3]; however; there are some differences so we shall give the details for completeness.

Let $\beta \sigma=\psi$ be the factorization of $\psi$ into a Blaschke product $\beta$ and a singular inner function $\sigma$. If $\beta$ is nontrivial, then let $z_{0}$ be a zero of $\beta$ of multiplicity $m$. Define $\beta_{0}$ on the unit circle $\mathscr{T}$ by

$$
\beta_{0}(z)=\left(\frac{z-z_{0}}{1-\bar{z}_{0} z}\right)^{m}
$$

Then $\varphi=\bar{\beta}_{0} \psi \in H^{\infty}$, and $\bar{\psi} \varphi^{p}=\bar{\beta}_{0} \varphi^{p-1}$, for any positive integer $p$. As $\beta_{0}$ does not divide $\varphi^{p-1}$ we have $\bar{\psi} \varphi^{p} \ddagger H^{\infty}$.

The more difficult case occurs when $\psi$ is purely singular, i.e.

$$
\left.\psi(z)=\exp \left\{-\int_{0}^{2 \pi} h(t, z) d s(t)\right\} \quad(|z|=1), \quad{ }^{3}\right)
$$

where $h(t, z)=\frac{e^{i t}+z}{e^{i t}-z}$ and $s$ is a singular, finite, positive Borel measure on $[0,2 \pi)$. We identify $[0,2 \pi)$ with $\mathscr{T}$.

Let $\mathscr{E}$ be a Borel set of Lebesgue measure zero such that $\mathscr{E}$ has full $s$-measure. By regularity, we can find a closed set $\mathscr{K}$ contained in $\mathscr{E}$ such that $s(\mathscr{K})>0$. Define the measure $s_{0}$ on the Borel sets $\mathscr{F}$ in $[0,2 \pi)$ by $s_{0}(\mathscr{F})=s(\mathscr{K} \cap \mathscr{F})$. Clearly

[^1]$s_{0}$ is supported on the closed set $\mathscr{K}$, and the nonconstant inner function
$$
\psi_{0}(z)=\exp \left\{-\int_{0}^{2 \pi} h(t, z) d s_{0}(t)\right\} \quad(|z|=1)
$$
divides $\psi$. In fact, $\psi_{0}$ and $\psi / \psi_{0}=\gamma$ are relatively prime; therefore, $\psi_{0}$ does not divide $\gamma^{p}$ for any positive integer $p$. Since $s_{0}$ is supported on $\mathscr{K}$, it follows that $\psi_{0}$ is continuous on the complement $\mathscr{T} \backslash \mathscr{K}$. Further, we can choose an outer function $v$ which is continuous on $\mathscr{T}$ and vanishes on $\mathscr{K}$. This follows by applying the portion of the proof on page 80 of [2] in which a log-integrable function $y(\cdot) \geqq 0$ is constructed on $\mathscr{T}$ having the following properties: $y$ is continuous on $\mathscr{T}$, continuously differentiable on $\mathscr{T} \backslash \mathscr{K}$, and vanishing precisely on $\mathscr{K}$. Then we define for $z \in \mathscr{T}$
$$
\dot{v}(z)=\exp \left\{\frac{1}{2 \pi} \int_{0}^{2 \pi} h(t, z) \log y\left(e^{i t}\right) d t\right\}
$$
$v$ is an outer function in $H^{\infty}$ which is continuous on $\mathscr{T}$ and vanishes precisely at the points of $\mathscr{K}$. Set $\varphi=v \gamma$. Again $\varphi \in H^{\infty}$, and $\bar{\psi} \varphi=\bar{\psi}_{0} v$ is continuous. Further, for any positive integer $p$ we have
$$
\bar{\psi} \varphi^{p}=\bar{\psi}_{0} \gamma^{p-1} \nu^{p},
$$
but $\psi_{0}$ cannot divide $\gamma^{p-1}$ because of being relatively prime to $\psi$, nor can $\psi_{0}$ divide $v$ since $v$ is outer; therefore, $\bar{\psi} \varphi^{p} \notin H^{\infty}$.

So in each case we have constructed $\varphi \in H^{\infty}$ such that $\psi \varphi \in C$ but $\psi \varphi^{p} \notin H^{\infty}$ for any positive integer $p$.

Theorem. If a weakly closed transitive algebra $\mathscr{A}$ in $\mathscr{B}(\mathfrak{H})$ contains a nonzero $C_{0}(N)$ operator $T$, then it is $\mathscr{B}(\mathfrak{H})$.

Proof. As stated, we shall work within the functional model $\mathbf{T}$; let $\Theta$ be the associated inner function. An operator $\mathbf{K}$ on $\mathbf{H}$ commutes with $\mathbf{T}$ if and only if there exists $\Phi \in H^{\infty}(\mathscr{B}(\mathcal{E}))$ such that

$$
\Phi \Theta H^{2}(\mathfrak{E}) \subseteq \dot{\Theta} H^{2}(\mathfrak{E})
$$

and $\mathbf{K}=. \Phi(\mathbf{T})$, where we define

$$
\Phi(\mathbf{T}) u=P_{\mathbf{H}}(\Phi u)
$$

for every $u \in \mathbf{H}$. For the case $N=1$ see [7]; for the general case see [9] and within a functional model [10; in particular Theorem VI.3.6]. Since $\Theta$ is unitary valued and $\Phi \Theta H^{2}(\mathfrak{E}) \subseteq \Theta H^{2}(\mathcal{E})$, it follows that $\Phi(\mathbf{T})$ is nonzero if and only if $\Theta^{*} \Phi \notin H^{\infty}(\mathscr{B}(\mathcal{C}))$.

Let $\psi=\operatorname{det} \Theta$ and set $\Psi=\psi \cdot I$, where $I$ is the identity matrix on $\mathfrak{C}$. If $\psi$ is a finite Blaschke product, then $\mathbf{H}$ is finite dimensional and the result follows from Burnside's Theorem [6; Chapter 8]. If $\psi$ is not a finite Blaschke product, then choose, by the lemma, a function $\varphi \in H^{\infty}$. such that $\psi \varphi \in C$ but $\bar{\psi} \varphi^{p} \notin H^{\infty}$ for $p=1,2, \ldots$. Set

$$
\mathbf{H}^{\prime}=H^{2}(\mathfrak{E}) \ominus \Psi H^{2}(\mathfrak{E}), \quad \mathbf{T}^{\prime} u=P_{\mathbf{H}^{\prime}}(\chi u) \quad \text { and } \quad \Phi\left(\mathbf{T}^{\prime}\right) u=P_{\mathbf{H}^{\prime}}(\Phi u)
$$

where $u \in \mathbf{H}^{\prime}, P_{\mathbf{H}^{\prime}}$ is the orthogonal projection of $H^{2}(\mathbb{C})$ onto $\mathbf{H}^{\prime}$, and $\Phi=\varphi \cdot I$. By the choice of $\varphi$ we have that

$$
\Psi^{*} \Phi=\bar{\psi} \varphi I \in C(\mathscr{B}(\mathfrak{E}))
$$

Further, it is obvious that $\Phi \Psi H^{2}(\mathcal{E}) \subseteq \Psi H^{2}(\mathcal{E})$ since $\Phi$ and $\Psi$ have diagonal matrices as values. Consequently, $\Phi\left(\mathbf{T}^{\prime}\right)$ is a compact operator. But $\Phi(\mathbf{T})$ is just the compression of $\Phi\left(\mathbf{T}^{\prime}\right)$ to the space $\mathbf{H}$. Hence $\Phi(\mathbf{T})$ is compact too. Further, since $\Phi=\varphi \cdot I$, $\Phi(\mathbf{T})$ is an $H^{\infty}$ function of $T$, and hence it is in the weakly closed algebra $\mathscr{A}_{\mathrm{T}}$ generated by I and $\mathbf{T}$ (see [10; Theorem III.2.1]).

It remains only to show that $\Phi(\mathbf{T})$ is nonzero. This will follow if we can establish that $\Theta^{*} \Phi \notin H^{\infty}(\mathscr{B}(\mathbb{E}))$. Assume the contrary, so that there exists $\Gamma \in H^{\infty}(\mathscr{B}(\mathfrak{E}))$ such that $\Phi=\Theta \Gamma$. Thus $\operatorname{det} \Phi=(\operatorname{det} \Theta)(\operatorname{det} \Gamma)$, so $\bar{\psi} \varphi^{N}=\operatorname{det} \Gamma \in H^{\infty}$, a contradiction to the choice of $\varphi$. Therefore, $\Phi(\mathrm{T})$ is a nonzero compact operator in $\mathscr{A}_{\mathrm{T}}$. Thus there is a nonzero compact in $\mathscr{A}_{T} \subseteq \mathscr{A}$, so by Lomonosov $\mathscr{A}=\mathscr{B}(\mathfrak{H})$.

We would like to thank Professor Ronald Douglas for the suggestion to "take the determinant" in the proof of our Theorem, and we express our appreciation to Professor Béla Sz.-Nagy for his comments during revision which greatly aided in the improvement of our exposition.

## References

[1] H. Helson, Lectures on invariant subspaces, Academic Press (New York, 1964).
[2] K. Hoffman, Banach Spaces of Analytic Functions, Prentice Hall (Englewood Cliffs, N. J., 1962).
[3] T. L. Kriete III, B. Moore III, and L. B. Page, Compact intertwining operators, Michigan Math. J., 18 (1971), 115-119.
[4] V. I. Lomonosov, Invariant subspaces of a family of operators commuting with a compact operator, Funkcional. Anal. Priložen., 3 (1973). (Russian)
[5] P. S. Muhly, Compact operators in the commutant of a contraction, J. Funct. Anal, 8 (1971), 197-224.
[6] H. Radjavi and P. Rosenthal, Invariant Subspaces, Springer-Verlag (Berlin, 1973).
[7] D. Sarason, Generalized interpolation in $H^{\infty}$, Trans. Amer. Math. Soc., 127 (1967), 179—203.
[8] B. Sz.-Nagy and C. Foiaş, Commutants de certains opérateurs, Acta Sci. Math., 29 (1968), $1-17$.
[9] B. Sz. -Nagy and C. Foias, Dilatation des commutants d'opérateurs, C. R. Acad. Sci. Paris, 266 (1968), 493-495.
[10] B. Sz.-Nagy and C. Foias, Harmonic analysis of operators on Hilbert space, Akadémiai Kiadó (Budapest, 1970).
(Received July 27, 1973, revised October 17, 1973)


[^0]:    ${ }^{1}$ ) Supported in part by NSF GRANT GP 38488.
    ${ }^{2}$ ) Supported in part by NSF GRANT GP 14784.

[^1]:    ${ }^{3}$ ) Every integral with $h(t, z)$ is interpreted as a limit of the same integral with $h(t ; r z)$ as $r-1-0$.

