On a property of operators of class C_0

By BÉLA SZ.-NAGY in Szeged

In their paper [1] CLANCEY and MOORE prove (as a step to their main result) that for any contraction T of class C_0 and with finite defect indices there exists a nonzero compact operator commuting with T.

Recall that T is of class C_0 if it is completely non-unitary and $\varphi(T)=0$ for some inner function φ ; among these functions there is a minimal one (i.e. which is a divisor in H^{∞} of all the others), denoted by m_T . To every given nonconstant inner function m there exist contractions T of class C_0 with m_T equal to m; the simplest example is the operator T=S(m) on the function space $\mathfrak{H}(m)$, defined by

(1)
$$\mathfrak{H}(m) = H^2 \ominus m H^2$$
, $S(m)u = P_{\mathfrak{H}(m)}(\chi u)$ for $u \in \mathfrak{H}(m)$,

where $\chi(e^{it}) = e^{it}$ and H^2 is the Hardy—Hilbert space for the unit disc. See [3], Chapter III.

By theorems of SARASON [2] the operators Φ commuting with S(m) are precisely those which can be written in the form

(2)
$$\Phi u = P_{\mathfrak{H}(m)}(\varphi u) \quad (u \in \mathfrak{H}(m)),$$

where φ is any fixed function in H^{∞} . Moreover, Φ is compact if and only if φ/m is, on the unit circle, the sum of a continuous function and of an H^{∞} function. From (1) and (2) it follows, finally, that $\Phi \neq 0$ if and only if $\varphi \notin mH^2$, i.e. if $\varphi/m \notin H^{\infty}$.

Now for every nonconstant inner *m* there exists even $\varphi \in H^{\infty}$ such that φ/m is continuous on the unit circle, but not belonging to H^{∞} . If *m* has at least one (simple) Blaschke factor *b* then an obvious choice is $\varphi = m/b$. If *m* is a purely singular inner function, such a φ was constructed in [1].

Thus every operator S(m) has a nonzero compact operator in its commutant. This property is shared by all contractions of class C_0 . Indeed, we have

Theorem. For every contraction T of class C_0 on a Hilbert space \mathfrak{H} there exists a nonzero compact operator commuting with T.

Proof. By virtue of Proposition 2 in [4] we have $T > S(m) \oplus T_1^{-1}$ for some contraction T_1 of class C_0 and for $m = m_T$. Applying this to T^* as well and taking

B. Sz.-Nagy: On a property of operators

adjoints it also follows that

(3)

$$S(m) \oplus T_2 > T > S(m) \oplus T_1$$

with some contractions T_i on spaces \mathfrak{H}_i (i=1, 2), and with $m=m_T$. Hence there exist quasi-affinities

$$X_1: \mathfrak{H}(m) \oplus \mathfrak{H}_1 \to \mathfrak{H}, \quad X_2: \mathfrak{H} \to \mathfrak{H}(m) \oplus \mathfrak{H}_2$$

such that

$$TX_1 = X_1(S(m) \oplus T_1), \quad (S(m) \oplus T_2)X_2 = X_2T.$$

Now choose a nonzero compact operator Φ commuting with S(m) and define, for $h \in \mathfrak{H}$,

(5)
$$Fh = X_1(\Phi P_2 X_2 h \oplus 0_1),$$

where 0_1 denotes the zero vector in \mathfrak{H}_1 and P_2 is the orthogonal projection of $\mathfrak{H}(m) \oplus \mathfrak{H}_2$ onto its subspace $\mathfrak{H}(m) \oplus \{0\}$, which we identify with $\mathfrak{H}(m)$.

Clearly, $P_2(S(m) \oplus T_2) = S(m)P_2$ and by (4) we have for $h \in \mathfrak{H}$

$$FTh = X_1(\Phi P_2 X_2 Th \oplus 0_1) = X_1(\Phi P_2(S(m) \oplus T_2) X_2 h \oplus 0_1) =$$

= $X_1(\Phi S(m) P_2 X_2 h \oplus 0_1) = X_1(S(m) \Phi P_2 X_2 h \oplus 0_1) =$
= $X_1(S(m) \oplus T_1) (\Phi P_2 X_2 h \oplus 0_1) = TX_1(\Phi P_2 X_2 h \oplus 0_1) = TFh.$

Hence, T commutes with F. Since Φ is compact so is F by its definition (5). Moreover $F \neq 0$. For, F=0 implies $\Phi P_2 X_2 = 0$ because X_1 has zero kernel, $\Phi P_2 X_2 = 0$ implies $\Phi P_2 = 0$ because X_2 has dense range, and $\Phi P_2 = 0$ simply means $P_2 = 0$. This contradicts the fact that $\mathfrak{H}(m) \neq \{0\}$ for nonconstant inner m.

Thus F is a nonzero compact operator on \mathfrak{H} commuting with T.

Remark. F is, in general, not included in the weakly closed algebra generated by T and I_5 . Hence, we have no immediate generalization of the Theorem in [1].

References

- [1] K. CLANCEY—B. MOORE III, Operators of class $C_0(N)$ and transitive algebras, Acta Sci. Math., **36** (1974), 215–218.
- [2] D. SARASON, Generalized interpolation in H^{∞} , Trans. Amer. Math. Soc., 127 (1967), 179–203.
- [3] B. SZ.-NAGY-C. FOIAS, Harmonic analysis of operators on Hilbert space, Akadémiai Kiadó (Budapest, 1970).
- [4] B. Sz.-NAGY—C. FOIA\$, Compléments à l'étude des opérateurs de classe C₀, Acta Sci. Math., 31 (1970), 287—296.

(Received October 29, 1973)

¹) A > B means that there exists a "quasi-affinity" X (i.e. an operator with zero kernel and dense range) such that AX = XB.