On groups and semigroups of spectral operators on a Banach space

By AHMED RAMZY SOUROUR in Urbana (Ill., U.S.A.)

The results of this note complement some results of MCCARTHY and STAMPFLI [4]. They proved that if $\{T(t): -\infty < t < \infty\}$ is a group of operators on a Hilbert space with ||T(t)|| bounded on finite intervals, and if $T(t_0)$ is spectral (respectively scalar type) for some $t_0 \neq 0$, then all the operators T(t), for $-\infty < t < \infty$, are spectral (respectively scalar type).

In what follows X will be a complex Banach space. All operators are assumed to be bounded. We will denote the spectrum of an operator T by $\sigma(T)$, and its resolvent (evaluated at λ) by $R(\lambda; T)$. Our terminology concerning groups and semigroups of operators will be that of [1; Ch. VIII]. For definitions and results on spectral operators, we refer to [1; Ch. XV].

Theorem 1. Let $\{T(t): t \ge 0\}$ be a semigroup of operators with real spectra on a Banach space X such that ||T(t)|| is bounded in finite intervals and $T(t_0)$ is one-to-one and scalar type for some $t_0 \ne 0$. Then T(t) is scalar type for every $t \ge 0$, and the semigroup is strongly continuous.

Proof. Without loss of generality we can take $t_0=1$, for otherwise we can consider the semigroup $[T(tt_0): t \ge 0]$.

First we prove the theorem in the case where T(1) is invertible (in other words, we assume, for the present, that the semigroup can be extended to a group $\{T(t): -\infty < t < \infty\}$, let $E(\cdot)$ be the resolution of the identity of T(1), and let $[a, b] \supset \sigma(T(1))$, where $b \ge a > 0$. Define R(t) by

$$R(t) = \int \lambda^t dE(\lambda), \quad -\infty < t < \infty.$$

It is easy to verify that $\{R(t)\}$ is a group of operators with positive spectra which is uniformly bounded on finite intervals (as a matter of fact it is uniformly continuous). Each T(s) commutes with T(1), hence with $E(\cdot)$ and with every R(t). If U(t) =

Research supported by a National Science Foundation grant.

= R(-t)T(t), then $\{U(t): -\infty < t < \infty\}$ is a periodic group of operators since U(1)=I. Also ||U(t)|| is bounded in finite intervals, and hence is uniformly bounded by M > 0. For any t, the spectral radius of U(t) is ≤ 1 since $\{||U''(t)||: n=1, 2, 3, ...\}$ is bounded. But the same is true for $(U(t))^{-1}=U(-t)$, therefore $\sigma(U(t))=\{1\}$ and U(t)=I+N(t), where N(t) is quasi-nilpotent. But since U(t) is power bounded it follows from [2] that N(t)=0. Therefore U(t)=I, and

$$T(t) = \int \lambda^t dE(\lambda), \quad -\infty < t < \infty.$$

Now we prove the theorem in the general case. Let $\sigma(T(1)) \subseteq [0, b]$, and let $e_n = \left[\frac{1}{n}, b\right]$, $X_n = E(e_n)X$, and $X_0 = \bigcup_{n=1}^{\infty} X_n$. For every t, T(t) commutes with $E(e_n)$ and thus X_n is invariant under T(t) and $R(\mu; T(t))$ for $\mu \in \varrho(T(t))$. If $T_n(t) = T(t)|X_n$ for $t \ge 0$ then the semigroup $\{T_n(t)\}$ satisfies the hypothesis of the theorem and $T_n(1)$ is invertible and scalar type with resolution of the identity $E(\cdot)|X_n$. It follows, by the first part, that

$$T_n(t) = \int_{(1/n, b]} \lambda^t d(E(\lambda)|X_n).$$

Hence

$$T(t)x = \int_{(1/n,b]} \lambda^t dE(\lambda)x = \int_{(0,b]} \lambda^t dE(\lambda)x \text{ for } x \in X_n,$$

since

$$\int_{(0,1/n)} \lambda^t dE(\lambda) x = \int_{(0,1/n)} \lambda^t dE(\lambda) E(e_n) x = 0, \quad x \in X_n.$$

Therefore

$$T(t)x = \int_{(0,b]} \lambda^t dE(\lambda)x, \quad x \in X_0.$$

But X_0 is dense in X and $E({0})=0$ since T(1) is one-to-one. Hence, if $x \in X$, $E(e_n)x \rightarrow E((0, b])x=x$. Therefore

$$T(t) = \int_{(0, b]} \lambda^t dE(\lambda).$$

It is now easy to show that $\{T(t)\}$ is strongly continuous.

Corollary. If $\{T(t)\}$ is a semigroup of operators with real spectra on Hilbert space, and if ||T(t)|| is bounded on finite intervals, $T(t_0)$ self-adjoint and one-to-one, for some $t_0 \neq 0$, then every T(t) is self-adjoint.

Proof. If $E(\cdot)$ is the resolution of the identity for $T(t_0)$, then $E(\delta)$ is selfadjoint for every Borel set δ of the real line. From the proof of the theorem, $T(t) = -\int \lambda^{t/t_0} dE(\lambda)$, and hence T(t) is self-adjoint for $t \ge 0$.

Theorem 2. If $\{T(t): t \ge 0\}$ is a semigroup of operators with real spectra on X such that ||T(t)|| is bounded on finite intervals and $T(t_0)$ is scalar type for some $t_0 \ne 0$, then T(t) is spectral for every $t \ge 0$.

Proof. Without loss of generality we can take $t_0=1$. Let $E(\cdot)$ be the resolution of the identity for T(1) and $[0, b] \supseteq \sigma(T(1))$. Let $Z=E(\{0\})X$ and Y=E((0, b])X. Therefore X=Y+Z, and this sum is direct in both algebraic and topological senses; moreover both Y and Z are invariant under T(t), for $t\geq 0$, since T(t) commutes with $E(\cdot)$. It is easy to see that $\{T(t)|Y:t\geq 0\}$ is a semigroup satisfying the conditions of Theorem 1. Therefore

$$T(t)y = \int \lambda^t dE(\lambda)y, \quad y \in Y, \quad t \ge 0.$$

Hence T(t)E((0, b]) is a scalar type operator.

On the other hand $\{T(t)|Z:t\geq 0\}$ is a semigroup of operators on Z with T(1)|Z=0. Hence T(t)|Z is nilpotent for t>0 since if n>1/t, then $(T(t)|Z)^n=0$. Therefore $T(t)E(\{0\})$ is nilpotent, for t>0. But $T(t)(=T(t)E((0, b])+T(t)E(\{0\}))$ is the sum of a scalar type operator and a nilpotent operator which commute with one another; hence it is spectral.

Theorem 3. Let $\{T(t): -\infty < t < \infty\}$ be a group of operators on X, having real spectra, with ||T(t)|| bounded on finite intervals, and T(1) spectral. Then every T(t) is spectral $(-\infty < t < \infty)$.

Proof. Let $E(\cdot)$ be the resolution of the identity for T(1) and let N be its radical part. For every t, define R(t) by $R(t) = (T(1))^t$. This is well-defined since the function $\lambda \to \lambda^t$ is analytic on a neighborhood of $\sigma(T(1))$. Moreover, R(t) is a bounded spectral operator whose scalar part is $\int \lambda^t dE(\lambda)$, $\{R(t): -\infty < t < \infty\}$ is a group of operators with real spectra, and ||R(t)|| is bounded in finite intervals. For any real numbers s and t, T(t) commutes with T(1) and hence with R(s). It follows that $\{R(-t)T(t): -\infty < t < \infty\}$ is a group of operators, periodic, and uniformly bounded in norm. Therefore T(t) = R(t), exactly as in the proof of Theorem 1. This proves the theorem.

The following two examples are taken from MCCARTHY and STAMPFLI [4] where they were used to show the sharpness of their results. They are given here too because they also show that our results are best possible.

Example 1. Let $X=L_p(\Gamma)$, $1 \le p < \infty$, $p \ne 2$, where $\Gamma = \{\lambda : |\lambda|=1\}$. If $x \in X$, let $[T(t)x](e^{2\pi i s})=x(e^{2\pi i (s+t)})$ for $-\infty < t < \infty$. This is a strongly continuous group of isometries with T(1)=I, but T(t) is not scalar type or even spectral for irrational t as proved by FIXMAN [4]. This shows that we cannot remove the restrictions on the spectra, even if we have a group instead of a semigroup.

Example 2. Let $X=L_2[0, 1]$. For every $t \ge 0$ and $x \in X$, let

$$[T(t)x](s) = \begin{cases} f(t+s), & t+s \leq 1\\ 0 & t+s > 1. \end{cases}$$

.

T(1)=0 is scalar type, but T(t) is scalar type for no t in the interval (0, 1) since it is nonzero nilpotent. This shows that in Theorem 1 we cannot do without the condition that T(1) is one-to-one, i.e., in Theorem 2 we cannot conclude that every T(t) is scalar type, but only spectral, even when X is a Hilbert space. This shows, also, that in Theorem 3 we cannot replace "group" by "semigroup".

References

- N. DUNFORD and J. SCHWARTZ, *Linear operators*, Part I, II, and III, Interscience (New York, 1958, 1963, 1971).
- [2] I. GELFAND, Zur Theorie der Charaktere der Abelschen Topologischen Gruppen, Mat. Sbornik, N. S. 9 (51), (1941), 49–50.
- [3] U. FIXMAN, Problems in spectral operators, Pacific J. Math., 9 (1959), 1029-1059.
- [4] C. A. MCCARTHY and J. G. STAMPFLI, On one-parameter groups and semi-groups of operators in Hilbert space, Acta Sci. Math., 25 (1964), 6–11.
- [5] A. R. SOUROUR, Semigroups of scalar type operators on Banach spaces, Trans. Amer. Math Soc., 201 (1975), to appear.

UNIVERSITY OF ILLINOIS URBANA, ILLINOIS

(Received May 21, 1973)