On groups and semigroups of spectral operators
on a Banach space

By AHMED RAMZY SOUROUR in Urbana (I1l.,, U.S.A.)

The results of this note complement some results of MCCARTHY and STAMPFLI
[4]. They proved that if {T'(#): —oo<t<oo} is a group of operators on a Hilbert
space with ||7°(+)| bounded on finite intervals, and if T'(s,) is spectral (respectively
scalar type) for some 7,20, then all the operators T'(¢), for —co<f< oo, are spectral
(respectively scalar type).

In what follows X will be a complex Banach space. All operators are assumed
to be bounded. We will denote the spectrum of an operator T by o (T"), and its
resolvent (evaluated at ) by R(A; T). Our terminology concerning groups and semi-
groups of operators will be that of [1; Ch. VIII]. For definitions and results on spectral
operators, we refer to [1; Ch. XV].

Theorem 1. Let {T(t): t=0} be a semigroup of operators with real spectra
on a Banach space X such that |T(t)| is bounded in finite intervals and T(t,) is
one-to-one and scalar type for some ty#0. Then T(t) is scalar type for every t=0,
and the semigroup is strongly continuous,

Proof. Without loss of generality we can take f,=1, for otherwise we can
consider the semigroup [7'(¢,): ¢=0}.

First we prove the theorem in the case where T(1) is invertible (in other words,
we assume, for the present, that the semigroup can be extended to a group
{T(t): —co<t=co}), let E(+) be the resolution of the identity of 7'(1), and let
[a, 5] > o (T(1)), where b=a=0. Define R(t) by

R() = [MdEQ), —e <t<oo,

It is easy to verify that {R(¢)}is a group of operators with positive spectra which is
uniformly bounded on finite intervals (as a matter of fact it is uniformly continuous).
Bach T'(s) commules with 7°(l), hence with E(+) and with every R(z). If U(t)=

Research supported by a National Science Foundation grant.



292 A, R. Sourour

=R(—1)T(t), then {U(t): —eo=t<wo} is a periodic group of opcrators since
U(l)=1 Also |U(¢)|| is bounded in finitc intcrvals, and hence is uniformly bounded
by M=0. For any t, the spectral radius of U(¢) is =1 since {|U" ()l n=1,2,3, ...}
is bounded. But the same is truc for (U(f))~t=U(—1), therefore o(U(#))={1}
and U@)=I-+N(t), where N(¢) is quasi-nilpotent. But since U(¢) is power bounded
it follows [rom [2] that N(¢)=0. Therclore U(f)=1I, and

T(t) = [HdE(J), —co <1< oo,
Now we prove the thecorem in the general case. Let ¢(2'(1))E[0, 0], and let

1 e .
e,,=[;,b], X,=E(e)X, and Xo= U X,. For every ¢, T(t) commutes with £(e,)
n=1

and thus X, is invariant under 7'(¢) and R(u; T(¢)) for p€o(T(®)). If T,(1)=T()|X,
for #=0 then the semigroup {7, (#)} satisfies the hypothesis of the theorem and 7,,(1)
is invertible and scalar type with resolution of the identity E(-)|X,. It follows, by
the frst part, that

1,00 = [ HdEDIX,).

(1/n,b]

Hence

T()x = [ ¥dEWx = [ NMdE@A)x for x€X,,

. (1/n,b] 0,0]

since

[ XdEQyx = [ FAEQ)E(e)x =0, x€X,.

0,1/n) (0,1/n)

Therefore

T(H)x = [ XdEQ)x, x€X,.
0, 1]
But X, is dense in X and E({0})=0 since 7'(1) is one-to-one. Hence, if x€ X, E(e,)x
~ E((0, b])x=x. Therefore
T() = [ XdEQ).

©,5]

It is now easy to show that {7'(¢)} is strongly continuous.

Corollary. If {T(¢)} is a semigroup of operators with real spectra on Hilbert
space, and if | T(t)| is bounded on finite intervals, T(t,) self-adjoint and one-to-one, for
some ty7#0, then every T(t) is self-adjoint.

Proof. If E(.) is the resolution of the identity for T'(t,), then E(J) is self-
adjoint for every Borel set J of the real line. From the proof of the theorem, 7'(¢)=
= [ X"adE(1), and hence T(t) is self-adjoint for #=0.

Theorem 2. If {T(t): t=0} is a semigroup of operators with real spectra on
X such that |T@)| is bounded on finite intervals and T(t,) is scalar type for some
ty#0, then T(t) is spectral for every t=0,
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Proof, Without loss of generalily we can take 7y=1, Let E(-) be the resolu-
tion of the identity for T'(1) and [0, 5] 2 o(T'(1)). Let Z=E({0})X and Y=E((0, b])X.
Therefore X=Y+2Z, and this sum is direct in both algebraic and topological senses;
moreover both ¥ and Z are invariant under T'(¢), for =0, since T(¢) commutes
with E(.). It is easy to see that {T'(1)|Y: t=0} is a semigroup satisfying the conditions
of Theorem 1. Therefore

T()y = [#dED)y, yeY, t=0.

Hence T(t)E((0, b]) is a scalar type operator,

On the other hand {T'(¢)|Z:¢=0} is a semigroup of operators on Z with
T(1)|z=0. Hence T(¢)|Z is nilpotent for ¢=>0 since if n>1/z, then (T'(#)|Z)'=0.
Therefore T'(#)E({0}) is nilpotent, for ¢=0. But T(¢)(=T(#)E((0, b])+T()E{O0})
is the sum of ascalar type operator and a nilpotent operator which commute with one
another; hence it is spectral,

Theorem 3. Let {T(¢): —oo<t<oo} be a group of operators on X, having real
spectra, with | T(t)| bounded on finite intervals, and T(1) spectral. Then every T(t) is
spectral (— co< f< o),

Proof. Let E(-) be the resolution of the identity for 7'(1) and let N be its
radical part. For every ¢, define R(r) by R(¢)=(T(1)). This is well-defined since
the function A—A* is analytic on a neighborhood of ¢(7°(1)). Moreover, R(z) is a
bounded spectral operator whose scalar part is f MAEQR), {R(t): —eo<t=<oo} is
a group of operators with real spectra, and |R(¢)| is bounded in finite intervals,
For any real numbers § and ¢, T'(¢) commutes with 7'(1) and hence with R(s).
It follows that {R(—¢)T(t): —eo<t<oo} is a group of operators, periodic, and
uniformly bounded in norm. Therefore T'(t)=R(¢), exactly as in the proof of Theo-
rem 1, This proves the theorem.

The following two examples are taken from McCARTHY and STAMPELI [4] where
they were used to show the sharpness of their results. They are given here too
because they also show that our results are best possible. .

Example 1. Let X=L,(I"), 1=p<eo, p7#2, where I'={1: |A| =1}, If x€ X, let
[T(t)x](e*™) =x(e** ©+D) for —eo<f<eco, This is a strongly continuous group of
isometries with T'(1)=1, bul T'(¢) is not scalar type or even speciral for irrational ¢
as proved by FixmAN [4]. This shows that we cannot remove the restrictions on the
spectra, even if we have a group instead of a semigroup.

Example 2. Let X=L,[0, 1]. For every =0 and x€X, let

t+s), t+s=1
[T(®)x](s) = {f( 0 2 Z‘-l-j = ],
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T(1)=0 is scalar type, butl 7'(¢) is scalar type for no ¢ in the interval (0, 1) since it
is nonzero nilpotent. This shows that in Theorem | we cannot do without the con-
dition that 7°(1) is onc-to-one, i.c., in Thecorem 2 we cannot conclude that every
T(¢) is scalar type, but only spectral, even when X is a Hilbert space, This shows,
also, that in Theorem 3 we cannot replace “group” by “scmigroup”.
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