On affine spaces over prime fields

By B. CSÁKÁNY in Szeged

The aim of this note to prove a result for affine spaces over arbitrary prime fields like the Grätzer-Padmanabhan characterization theorem of affine spaces over $G F(3)$. Our terminology and notation are the standard ones (see [1]) excepting that the identical mapping of any set will be considered as an essentially unary operation which permits to give a more concise form for the succeeding propositions. Under this agreement, $p_{1}(\mathbf{A})$ - the number of essentially unary polynomials equals 1 for any idempotent algebra.

Following Plonka [6], for any group $\mathbf{G}=\langle G ;+\rangle$ the algebra $\langle G ; I\rangle$, where I denotes the set of all idempotent polynomials of \mathbf{G}, is called the idempotent reduct of. G. Concerning this notion we shall need the fact that idempotent reducts of abelian groups of exponent p are exactly the affine spaces over $G F(p)$; furthermore, the free affine space over $G F(p)$ with an n-element free generating set. is the same as the idempotent reduct of \mathbf{Z}_{p}^{n-1}, where \mathbf{Z}_{p} is the group of order p.

The characterization theorem we mentioned above (i.e., the join of Theorems 2 and 3 in [5]) may be formulated as follows:

A groupoid \mathbf{A} is equivalent to an affine space over $G F(3)$ if and only if

$$
\begin{equation*}
p_{k}(\mathbf{A})=\frac{1}{3}\left(2^{k}-(-1)^{k}\right) \tag{3,k}
\end{equation*}
$$

holds for $k=1,2,3,4$. In this case $(3, k)$ remains valid for all non-negative integers k.
Our result is the following.
Theorem. Let p be an arbitrary prime. An algebra $\mathbf{A}=\langle A ; f\rangle$, where f is at most quaternary, is equivalent to an affine space over $G F(p)$ if and only if

$$
\begin{equation*}
p_{k}(\mathbf{A})=\frac{1}{p}\left((p-1)^{k}-(-1)^{k}\right) \tag{p,k}
\end{equation*}
$$

holds for $k=1,2,3,4$, and
(p^{*}) there exists no subalgebra \mathbf{B} in \mathbf{A} with $1<|B|<p$. In this case (p, k) remains valid for all non-negative integers k.

Proof. Let \mathscr{V} be the variety generated by \mathbf{A} and, for any natural k, denote by \mathbf{F}_{k} the free algebra over \mathscr{V} with the free generating set $\left\{x_{0}, \ldots, x_{k-1}\right\}$. Suppose that \mathbf{A} is equivalent to an affine space over $G F(p)$. The variety of all affine spaces over $G F(p)$ is equationally complete; hence it is equivalent to \mathscr{V}. Thus, for every natural k, \mathbf{F}_{k} is equivalent to the idempotent reduct of \mathbf{Z}_{p}^{k-1}, implying $\left|F_{k}\right|=p^{k-1}$. The formula
(a)

$$
\left|\dot{F}_{k}\right|=\sum_{i=0}^{k}\binom{k}{i} p_{i}(\mathbf{A})
$$

(see [4], p. 38.) gives

$$
p_{k}(\mathbf{A})=\sum_{i=0}^{k}\binom{k}{i}(-1)^{k-i}\left|F_{i}\right|=\frac{1}{p}\left((p-1)^{k}-(-1)^{k}\right),
$$

which was needed. Further, any subalgebra of \mathbf{A} is also equivalent to an affine space over $G F(p)$, which clearly cannot have q elements for $1<q<p$.

To prove the sufficiency, first we remark that ($p, 1$) and ($p, 3$) jointly imply that f is at least binary and \mathbf{A} is idempotent. Now, if $p=2$, using Urbánik's description of idempotent algebras ([7], Theorem 4) we get that \mathbf{A} is equivalent to an affine space over $G F(2)$, moreover, f is essentially ternary.

Suppose $p>2$. By $(\alpha),(p, 1)$ and $(p, 2)$ we have $\left|F_{2}\right|=p$. Let \mathbf{B} a minimal subalgebra of \mathbf{A} having at least two elements. By $\left(p^{*}\right)$, we have $|B| \geqq p$. Since \mathbf{B} is generated by two elements, it is a homomorphic image of \mathbf{F}_{2}, whence $|B|=p$ and $\mathbf{B} \cong \mathbf{F}_{2}$. Thus, the proper subalgebras of \mathbf{F}_{2} are exactly the one-element ones.

Next we show that $\mathbf{F}_{2}^{2}\left(=\mathbf{F}_{2} \times \mathbf{F}_{2}\right)$ is generated by the set $S=\left\{\left\langle x_{1}, x_{0}\right\rangle,\left\langle x_{0}, x_{0}\right\rangle\right.$, $\left.\left\langle x_{0}, x_{1}\right\rangle\right\}$. Let $\left\langle g_{1}\left(x_{0}, x_{1}\right), g_{2}\left(x_{0}, x_{1}\right)\right\rangle$ be an arbitrary element of F_{2}^{2}. Consider an essentially binary polynomial h of \mathbf{F}_{2}. Then

$$
\begin{gathered}
\left\langle x_{0}, h\left(x_{0}, x_{1}\right)\right\rangle\left(=h\left(\left\langle x_{0}, x_{0}\right\rangle,\left\langle x_{0}, x_{1}\right\rangle\right)\right) \in[S], \\
\left\langle h\left(x_{1}, x_{0}\right), h\left(x_{0}, x_{1}\right)\right\rangle\left(=h\left(\left\langle x_{1}, x_{0}\right\rangle,\left\langle x_{0}, x_{1}\right\rangle\right)\right) \in[S] .
\end{gathered}
$$

Now, $h\left(x_{1}, x_{0}\right) \neq x_{0}$; hence $\left[\left\langle h\left(x_{1}, x_{0}\right), h\left(x_{0}, x_{1}\right)\right\rangle,\left\langle x_{0}, h\left(x_{0}, x_{1}\right)\right\rangle\right](\subseteq[S])$ contains p elements, i.e., all elements of F_{2}^{2} with second component $h\left(x_{0}, x_{1}\right)$, and thus $\left\langle f\left(x_{0}, x_{1}\right), h\left(x_{0}, x_{1}\right)\right\rangle \in[S]$. Analogously, $\left\langle g_{1}\left(x_{0}, x_{1}\right), x_{0}\right\rangle \in[S]$, whence $\left\langle g_{1}\left(x_{0}, x_{1}\right)\right.$, $\left.g_{2}\left(x_{0}, x_{1}\right)\right\rangle \in[S]$ follows.

Let $\varphi: F_{3} \rightarrow F_{2}^{2}$ that homomorphism for which $x_{0} \varphi=\left\langle x_{0}, x_{0}\right\rangle, x_{1} \varphi=\left\langle x_{1}, x_{0}\right\rangle$, $x_{2} \varphi=\left\langle x_{0}, x_{1}\right\rangle$ holds. Then φ is onto. Hence there exists an essentially ternary polynomial m of \mathbf{F}_{3} satisfying $\left(m\left(x_{0}, x_{1}, x_{2}\right)\right) \varphi=\left\langle x_{1}, x_{1}\right\rangle$. But

$$
\left(m\left(x_{0}, x_{1}, x_{2}\right)\right) \varphi=\left\langle m\left(x_{0}, x_{1}, x_{0}\right), m\left(x_{0}, x_{0}, x_{1}\right)\right\rangle
$$

whence we get that the identity

$$
m\left(x_{0}, x_{1}, x_{0}\right)=m\left(x_{0}, x_{0}, x_{1}\right)=x_{1}
$$

holds in \mathscr{V}. This implies
$\left(\gamma_{3}\right)$

$$
\left(m\left(x_{0}, f_{1}\left(x_{0}, x_{1}\right), f_{2}\left(x_{0}, x_{2}\right)\right)\right) \varphi=\left\langle f_{1}\left(x_{0}, x_{1}\right), f_{2}\left(x_{0}, x_{1}\right)\right\rangle
$$

for any binary polynomials f_{1}, f_{2}.
Observe that $\left|F_{3}\right|=p^{2}=\left|F_{2}^{2}\right|$. Thus φ is an isomorphism; i.e., $\mathbf{F}_{3} \cong \mathbf{F}_{2}^{2}$. We show that $\mathbf{F}_{4} \cong \mathbf{F}_{2}^{3}$ is valid too. Since $\left|F_{4}\right|=\left|F_{2}^{3}\right|\left(=p^{3}\right)$, it is enough to show that the homomorphism $\psi: F_{4} \rightarrow F_{2}^{3}$ for which

$$
x_{0} \psi=\left\langle x_{0}, x_{0}, x_{0}\right\rangle, \quad x_{1} \psi=\left\langle x_{1}, x_{0}, x_{0}\right\rangle, \quad x_{2} \psi=\left\langle x_{0}, x_{1}, x_{0}\right\rangle, \quad x_{3} \psi=\left\langle x_{0}, x_{0}, x_{1}\right\rangle
$$

holds, is surjective. Applying (β), we get
(γ_{4})

$$
\begin{gathered}
\left(\dot{m i}\left(x_{0}, m\left(x_{0}, f_{1}\left(x_{0}, x_{1}\right), f_{2}\left(x_{0}, x_{2}\right)\right), f_{3}\left(x_{0}, x_{3}\right)\right)\right) \psi= \\
=\left\langle f_{1}\left(x_{0}, x_{1}\right), f_{2}\left(x_{0}, x_{1}\right), f_{3}\left(x_{0}, x_{1}\right)\right\rangle
\end{gathered}
$$

for any binary polynomials f_{1}, f_{2}, f_{3}. Hence ψ is onto, indeed.
Now, let 0 be an arbitrary element of A. Introduce the binary algebraic function + on A, called addition and defined by $\dot{a}+b=m(0, a, b)$ for all $a, b \in A$. We claim that $\langle A ;+\rangle$ is an abelian group of exponent p. Using (β) as well as the isomorphisms φ and ψ it follows

$$
m\left(x_{0}, x_{1}, m\left(x_{0}, x_{2}, x_{3}\right)\right)=\left\langle x_{1}, x_{1}, x_{1}\right\rangle \psi^{-1}=m\left(x_{0}, m\left(x_{0}, x_{1}, x_{2}\right), x_{3}\right)
$$

in \mathbf{F}_{4} and

$$
m\left(x_{0}, x_{1}, x_{2}\right)=\left\langle x_{0}, x_{1}, x_{1}\right\rangle \varphi^{-1}=m\left(x_{0}, x_{2}, x_{1}\right)
$$

in \mathbf{F}_{3}, implying associativity, resp. commutativity of the addition. From (β) we get $a+0=0+a=a$ for any $a \in A$. Further,

$$
m\left(x_{0}, x_{1}, m\left(x_{2}, x_{0}, x_{0}\right)\right)=\left\langle x_{1}, m\left(x_{1}, x_{0}, x_{0}\right)\right\rangle \varphi^{-1}=m\left(x_{2}, x_{1}, x_{0}\right)
$$

holds in \mathbf{F}_{3}, whence for any $a \in A$ we have $a+m(a, 0,0)=m(a, a, 0)=0$; i.e., $m(a, 0,0)$ is the additive inverse for a. Finally, let $a \in A, a \neq 0$. Then every element of the subgroup by a in $\langle A ;+\rangle$ is contained in the subalgebra \mathbf{C} of \mathbf{A} generated by $\{a, 0\}$. Since $\langle C ;+\rangle$ is also a subgroup of $\langle A ;+\rangle$ and $|C|=p$, the order of a equals p in $\langle A ;+\rangle$, proving our claim.

For arbitrary $a, b, c \in A$,

$$
m(a, b, c)=-a+b+c
$$

holds. Indeed, let $\theta: F_{4} \rightarrow A$ the homomorphism for which $x_{0} \theta=0, x_{1} \theta=a, x_{2} \theta=b$, $x_{3} \theta=c$. Then, using $\left(\gamma_{4}\right)$, we get

$$
\begin{gathered}
m(a, b, c)=\left(m\left(x_{1}, x_{2}, x_{3}\right)\right) \theta=\left\langle m\left(x_{1}, x_{0}, x_{0}\right), x_{1}, x_{1}\right\rangle \psi^{-1} \theta= \\
\quad=\left(m\left(x_{0}, m\left(x_{0}, m\left(x_{1}, x_{0}, x_{0}\right), x_{2}\right), x_{3}\right)\right) \theta=-a+b+c .
\end{gathered}
$$

In view of (δ) and Lemma 1 in [6], $\langle A ; m\rangle$ is equivalent to an affine space over $G F(p)$.

The completing step is to prove that $\langle A ; f\rangle$ is equivalent to $\langle A ; m\rangle$. For this aim, it suffices to show that f is a polynomial of $\langle A ; m\rangle$. Assume first that f is binary. The binary polynomials q_{0}, \ldots, q_{p-1} of A , defined by $q_{0}=e_{1}^{2}$ (i.e., the second binary projection) and $q_{k}=m\left(e_{0}^{2}, q_{k-1}, e_{1}^{2}\right)$ for $k>0$, are, by definition, polynomials of $\langle A ; m\rangle$, too. Moreover, they are pairwise different, since, by (δ), for any $a, b \in A$ and $k=0, \ldots, p-1$ the equality $q_{k}(a, b)=-k a+(k+1) b$ holds. But A has exactly p binary polynomials, whence $f=q_{i}$ follows for some $i(0 \leqq i<p)$. Thus, f is a polynomial of $\langle A ; m\rangle$. Finally, let f be n-ary with $2<n \leqq 4$. Then $\left(\gamma_{n}\right)$ shows that f is generated by m and sóme binary polynomials of A. Just we saw, however, that binary polynomials of \mathbf{A} are generated by m. Hence, f is a polynomial of $\langle A ; m\rangle$, q.e.d.

Remarks. 1. Our theorem is not a generalization of the Grätzer-Padmanabhan theorem, because the last one contains no assumption on the power of subalgebras in \mathbf{A}. In fact, groupoids satisfying $(3,1)-(3,4)$ cannot have two-element subgroupoids, as the identity (15) in [5] shows. In other words, $(3,1)-(3,4)$ together imply $\left(3^{*}\right)$ for any groupoid A. It is an open problem whether $\left(p^{*}\right)$ follows from ($p, 1$)-($p, 4$) for some (possibly for all) primes $p>3$.
2. The method we used allows some minor generalizations of our theorem. Thus, we can take any algebra $\langle A ; F\rangle$ instead of $\langle A ; f\rangle$ where the arities of operations from F do not exceed 4. Moreover, if we require (p, k) for $k=0, \ldots, n$ then it suffices to assume that all operations from F are at most n-ary. Hence it follows that an arbitrary algebra \mathbf{A} satisfying $\left(p^{*}\right)$ and (p, k) for every non-negative integer k, is equivalent to an affine space over $G F(p)$.

References

[1] G. Grätzer, Universal Algebra, Van Nostrand (1968).
[2] S. Mac Lane--G. Birkhoff, Algebra Macmillan (1967).
[3] B. CsÁk ány, Varieties of affine modules, Acta Sci. Math., 37 (1975), 3-10.
[4] G. Grätzer, Composition of functions, Proc. Conf. on Universal Algebra, pp. 1-106, Queen's Univ. (Kingston, Ont., 1970).
[5] G. Grätzer-R. Padmanabhan, On idempotent, commutative and nonassociative groupoids Proc. Amer. Math. Soc., 28 (1971), 75-80.
[6] J. Plonka, On the arity of idempotent reducts of groups, Coll. Math., 21 (1970), 35-37.
[7] K. Urbanik, On algebraic operations in idempotent algebras, Coll. Math., 13 (1965), 129-157.

