Modular lattices of locally finite length

By J. JAKUBÍK in Košice (ČSSR)

A lattice L is said to be of locally finite length if each bounded chain in L is finite. A sublattice S of L will be called a c-sublattice if, whenever $s_1, s_2 \in S$ and s_1 covers s_2 in S, then s_1 covers s_2 in L.

It is well-known that a lattice is modular if and only if it does not contain a sublattice isomorphic to the lattice A on Fig. 1 (this result goes back to DEDEKIND [3]; cf. also [1], [4], [6]). A relatively complemented lattice with the greatest element 1 and the least element 0 is modular if and only if it does not contain a sublattice S isomorphic to the lattice on Fig. 1 such that $0 \in S$ and $1 \in S$ (SZÁSZ [7]). A finite lattice is nonmodular if and only if it contains a lattice on Fig. 1 as a sublattice such that a covers b (cf. GRÄTZER [4], p. 151). Other conditions for a lattice to be modular were established by CROISOT [2].

The following result on finite modular lattices is known (cf. GRÄTZER [4], p. 151):

(*) Let L be a finite modular lattice. Then L is nondistributive if and only if it contains the lattice on Fig. 4 as a sublattice such that a, b, and c cover u and v covers a, b, and c.

Thus distributive lattices in the class of finite modular lattices can be characterized by means of c-sublattices.

The purpose of this note is to characterize modular lattices in the class of lattices of locally finite length by means of their *c*-sublattices. A nonmodular lattice of locally finite length need not contain a *c*-sublattice isomorphic to the lattice *A* on Fig. 1. Let *B* be the lattice on Fig. 2 and let *B'* be the lattice dual to *B*. We denote by L(m, n) the lattice on Fig. 3 ($m \ge 3$, $n \ge 4$). Further let *C* be the lattice on Fig. 4. The following theorems will be proved:

Theorem 1. Let L be a lattice of locally finite length. Then L is modular if and only if L does not contain a sublattice isomorphic to some of the following lattices: B, B', L(m, n) $(m \ge 3, n \ge 4)$.

Corollary. (Šik [5].) A lattice of locally finite length fulfilling the upper covering condition is modular if and only if it does not contain a sublattice isomorphic to B.

J. Jakubik

Theorem 2. Let L be a lattice of locally finite length. Then L is distributive if and only if it does not contain a c-sublattice isomorphic with some of the following lattices: $B, B', L(m, n) (m \ge 3, n \ge 4), C$.

The standard terminology of the lattice theory will be used (cf. [1], [4], [6]). The lattice operations will be denoted by \land , \lor . Let L be a lattice, $a, b \in L, a \leq b$. The interval [a, b] is the set $\{x \in L : a \le x \le b\}$. If a < b and $[a, b] = \{a, b\}$, then [a, b]is called a prime interval; in this case b covers a (and a is covered by b).

If two elements x, y of a lattice are uncomparable, we write x|y. Let m, n be positive integers, $m \ge 3$, $n \ge 4$. We denote by L(m, n) a lattice with elements $x_1, x_2, ...$..., $x_m, y_1, y_2, ..., y_n$ such that $x_1=y_1, x_m=y_n, x_i < x_{i+1}$ $(i=1, ..., m-1), y_j < y_{j+1}$ $(j=1, ..., n-1), x_i|y_j$ (i=2, 3, ..., m-1; j=2, 3, ..., n-1) (cf. Fig. 3).

Let L be a lattice of locally finite length. We denote by M_1 the set of all intervals [u, v] of L such that there are elements $a, b \in [u, v]$, $a \mid b$ fulfilling the conditions:

(i) both a and b are covered by v;

(ii) $u = a \wedge b$ and either a or b does not cover u.

Let M_2 be defined dually and put $M = M_1 \cup M_2$. The set M is partially ordered by the inclusion. Since L is of locally finite length, M satisfies the descending chain condition. If L is nonmodular, then we have $M \neq \emptyset$ and hence the set M_0 of all minimal elements of M is nonempty.

Let us recall that if K is a bounded lattice of locally finite length and if L is modular, then any two maximal chains in K have the same number of elements (cf. [1]).

Proof of Theorem 1.

The lattices B, B', L(m, n) $(m \ge 3, n \ge 4)$ being nonmodular, it suffices to verify the assertion "only if".

Assume that L is nonmodular. Then $M_0 \neq \emptyset$. Let [u, v] be a fixed element of M_0 . We may suppose that $[u, v] \in M_1$ (in the case $[u, v] \in M_2$ we would apply a dual method). Let a, b be as in (i) and (ii).

Let $u=x_1 < ... < x_{m-1}=a$, $u=y_1 < ... < y_{n-1}=b$ be two maximal chains in [u, a], [u, b], respectively. In case $x_2 \lor y_2 = v$ the set $N_1 = \{u, v, x_2, ..., x_{m-1}, y_2, ..., y_{n-1}\}$ is a *c*-sublattice isomorphic to L(m, n), $m \ge 3$, $n \ge 3$ and by (ii), either *m* or *n* is ≥ 4 . Therefore N_1 is isomorphic to one of the lattices listed in the Theorem.

Suppose that $x_2 \lor y_2 = v_1 \lt v$. Then $[u, v_1]$ is a proper subset of [u, v], both x_2 and y_2 cover u, thus with respect to the minimality of [u, v] in M it follows, that v_1 covers both x_2 and y_2 , as well. Obviously $x_2 | b$ and $y_2 | a$. Therefore

(1) $v_1 \lor a = v_1 \lor b = v$, (2) $v_1 \land a = x_2$, $v_1 \land b = y_2$, (3) $x_2 \lor b = y_2 \lor a = v$.

From (1)-(3) it follows that the set $N_2 = \{a, b, u, v, x_2, y_2, v_1\}$ is a sublattice of L isomorphic to B.

From the minimality of [u, v] it follows that the lattices $[x_2, v]$ and $[y_2, v]$ are modular. Let $\overline{v} \in [v_1, v]$ such that \overline{v} covers v_1 . Let $\overline{a} = \overline{v} \wedge a$, $\overline{b} = \overline{v} \wedge b$.

Because of the modularity of $[x_2, v]$ and $[y_2, v]$ both \overline{a} and \overline{b} are covered by \overline{v} , furthermore $\overline{a}|\overline{b}, \overline{a} \wedge \overline{b} = u$ and neither \overline{a} nor \overline{b} covers u. Hence $[u, \overline{v}] \in M$ and $[u, \overline{v}] \subseteq \subseteq [u, v]$, i.e., $[u, \overline{v}] = [u, v]$; $\overline{v} = v$.

6 A

Thus we proved that v covers v_1 ; therefore a covers x_2 and b covers y_2 which proves that N_2 is a c-sublattice. Q.e.d.

Lemma. Let L be a non-distributive modular lattice fulfilling the descending chain condition. Then L contains a c-sublattice isomorphic to C.

Remark. Since a distributive lattice can not contain any sublattice isomorphic. to C, this Lemma generalizes the statement (*) to modular lattices fulfilling the descending chain condition.

Proof of the Lemma. In fact, $C = \{u, a, b, c, v\}$ $(u \le a, b, c \le v)$ is a sublattice of L. Let $\bar{a} \in [u, a]$ such that \bar{a} covers u. Set

 $\bar{v} = (\bar{a} \lor b) \land (\bar{a} \lor c), \quad \bar{b} = b \land (\bar{a} \lor c), \quad \bar{c} = c \land (\bar{a} \lor b).$

Clearly $\bar{b} = \bar{v} \wedge b$ and $\bar{c} = \bar{v} \wedge c$. Using the projectivity it follows easily that all intervals $[\bar{a}, \bar{v}]$, $[\bar{b}, \bar{v}]$, $[\bar{c}, \bar{v}]$, $[u, \bar{b}]$, $[u, \bar{c}]$ are prime. From this we obtain that the set $C = \{u, \bar{a}, \bar{b}, \bar{c}, \bar{v}\}$ is a *c*-sublattice of *L* isomorphic to *C*. The proof of Theorem 2 follows immediately from Lemma and Theorem 1.

Added in proof. Theorem 1 can be deduced also from Thm. 2.2 of V. VILHELM, Двойственное себе ядро условий Биркгофа в структурах с конечными цепями, *Czech. Math. J.*, 5 (1955), 439—450.

References

- [1] G. BIRKHOFF, Lattice theory, second edition (Providence, 1948).
- [2] R. CROISOT, Axiomatique des treillis modulaires, C. R. Acad. Sci. Paris, 231 (1950), 12-14.
- [3] R. DEDEKIND, Über die von drei Moduln erzeugte Dualgruppe, Math. Annalen, 53 (1900), 371–403.
- [4] G. GRÄTZER, Lattice theory (San Francisco, 1971).
- [5] F. Šik, A note on the modular lattices of locally finite length (preprint).
- [6] G. Szász, Einführung in die Verbandstheorie (Budapest-Leipzig, 1962).
- [7] G. Szász, On complemented lattices, Acta Sci. Math., 19 (1958), 77-81.

(Received December 27, 1973, revised March 18, 1974)

0