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Introduction 

Let {cpn(x)} be an or thogonal system on the interval (a, b). We consider the 
orthogonal series 

(1) ¡cn<Pn(x) with 
7 1 = 0 /1 = 0 

I t is well known that the series (1) converges in L2 to a square-integrable funct ion 
f(x). Let us denote the partial sums and the (C, a)-means of the series (1) by s„ (x) 
and respectively. 

In [2] we proved that if 

(2) • I cW < co and 0 < y < 1, 
n = 1 

then 
f(x)-o\{x) = ox{n-') 

almost everywhere in (a, b). 
G. SUNOUCHI [4] generalized this result proving that if (2) is satisfied, then 

[ 1 ' • . V1'* 
(3) • j ^ ^ ü I Í I / W - í . t o l ' j = o x ( n ~ y ) 

holds almost everywhere in (a,b) for any a>0 and where = . 

This result was generalized in [3] in such a way that we replaced the partial 
sums in (3) by (C, ö)-means, where ő can also be negative. (See Theorem 1 of [3].) 

In [3] (Theorem 2) we also proved that if 2 with any positive y, then 
n — 1 

f 1 2 n . I1 '* 
(4) 7 2 | Í , W - M = °Án->) 

L " v=n J . 

holds almost everywhere in (a, b) for any 
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nki 

The aim of the present paper is to generalize fur ther these results. 
We consider a regular summation method Tn determined by a triangular matr ix 

JAJ and A„=J^ac„^, i.e. if sk tends to i , then 

1 " 
T„ = —7- 2 ankSk s-

k=0 
T h e o r e m I. Suppose that 0 < y < 1 and 

(5) 
n = l 

furthermore that there exists a number p > 1 such that 

(6) 

and with this p for any 0<<5< 1 and 2 m < n ^ 2 m + 1 

m imin(2' + i,„) y lP I " 1 *) 
(7) 2 2 ^ ( v + i ) ^ - ^ - 1 ^ K \Z«nAn-s. 

1=0 1 v=2'-l J Vv=0 ) 

Then for arbitrary 

(S, 
we have 

\l/k I I " 
(9) I J - j ? a J / ( x ) - ff?"1 WI"J = ox(n-') 

almost everywhere in (a, b). 

It is easy to verify that in the special case a n v = A * Z l ( a > 0 ) condition (7) is 
satisfied, thus with /}= 1 Theorem I contains the result of SUNOUCHI. It can be shown 
that Theorem I includes our result in connection with (C, <5)-means of negative 
order, too. Fur thermore we have some corollaries: 

C o r o l l a r y 1. Suppose that O<yd, 0 < / \ < y _ 1 , and that (5) is satisfied. Then 
we have 

•ll/k f ] 2 „ l1 '* 

I n \=n ) 
for any / J > 1 — min (1/2, 1 jk) almost everywhere in (a, b). 

C o r o l l a r y 2. Under the hypothesis of Theorem 1 we have 
]l/k 1 » Ylk 

T 2 ° U / M - ^ ( M ; x)\k\ = ox(n-

l) K, KltKt,... will denote positive constants not necessarily the same at each occurrence. 
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almost everywhere in {a, b) for any /?> 1 — (p—l)/pk and for any increasing sequence 
{/I,}; where 

Sin v = 0 
From Corollary 2 in the special case /?= 1 we obtain immediately 

C o r o l l a r y 3. Under the conditions of Theorem 1 we have 
f i • l1 '* 

(10) j ^ - Z « J / ( * ) - ' , v ( * ) l ' } = o j n - ' ) 

almost everywhere in (a, b) for any increasing sequence {/*„}. 

In the special case a n v =A*Zl ( a > 0 ) Corollary 3 reduces to Theorem 3 of [3]. 
Under the restrictions and /?= 1, but for arbitrary positive y, Coro l -

lary 1 can be generalized to very strong approximation. In fact we have 

T h e o r e m I I . Suppose that 0 < A : ^ 2 and y > 0 ; and that (5) holds. Then 

( 1 2„ I1/* 
(11) - 2 M * ) - / ( * ) I * =oAn~y) 

l n v=n J 

almost everywhere in (a, b) for any increasing sequence {/iv}. 
It is clear that (11) is a generalized form of (4). 
Finally we show that under certain restrictions on y, and {c„} an estimate similar 

to (10) can be given with any not necessarily monotonic sequence {/,,} of distinct 
non-negative integers. Namely we have 

T h e o r e m I I I . Suppose that 0«=y< 1/2, O c A - ^ 2 and 

(12) . ¿c 2 „H 2 >( log logw) 2 <<~, 
n — 4 

furthermore that 
( » l(2-*)/ï ( „ N iv 

(13) ( Z ( 0 2 / ( 2 - ' i , j 

Then we have 
i i " Y l k 

(14) = 
i ik 

almost everywhere in (a, b) for any (not necessarily monotonic) sequence {ly} of distinct 
non-negative integers. 

Theorem III gives immediately 

a) If k=2 then (13) means that max a „ s i ( I a n v )« _ 1 . 
Omvsn "v=o ' 
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C o r o l l a r y 4. If 0-= y «= 1/2. 0<A:ë2 and a>/r /2 , furthermore (12) /s sûri/s-
fied, then . 

almost everywhere in (a, b) for any (not necessarily monotonie) sequence {/„} of distinct 

non-negative integers. 

§ 1. Lemmas 

We require the following lemmas. 

L e m m a 1 ([1], p.. 359). Let / •&/>] , 5 > y - l and ^ â + Z - ' - r " 1 . Then 

ln=0 J l« = 0 J 

where = a(ff^_ 1(x) —<T (̂X)). 

L e m m a 2 ([4], Lemma 1 ). If 

< with 0 < y < 1, 
«=i 

then 

f l z i n + i r ^ K - ' ^ - ^ i x A d x ^KZcWi 
/ ln=0 J n = l 

for any o o l / 2 . 

L e m m a 3 ([3], Theorem 4). 7 f0«=ySl /2 , 0<A;^2 , ¿ y < l and 

2 c j n ^ l o g log «)*•<«,, 
n = 4 

( i i ) = ®,.(«-.') 
l n v = 0 J 

almost everywhere in (a, b) for any (not necessarily monotonie) sequence {/„} of distinct 
non-negative integers. 

L e m m a 4. Under the conditions of Theorem I we have the inequality 

(1.2) / { sup f - f J « „ l o f - K * ) - of (*) | ' | ' \dx ^ K Z 

P r o o f of L e m m a 4. Set q=pl(p— 1), then 

(1.3) qk S 2 and /? > 1 — Î - . 
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Applying Holder's inequality, by (7) and 0<yA:< l we obtain that 

i n )>'" 

v = 0 I v II J 

(1.4) x | J ; (V + I - 1 I t ? j -

S ^ f 1 «„vj { J (v + 1 ^ - ^ ( x r j 

By (1.3) we can choose a* such that 

(1.5) ^ + 

By (1.5), O c y d and qk^2 the conditions of Lemma 1 are fulfilled with r=qk, 
1=2, y = y, a = a* and P=fi. Using Lemma 1 we get 

(1-6) { ^ ( v + i y ^ - i i x e c * ) ! « * } ^ . ^ - ^ ¿ ( v - f - D ^ - ^ ^ c * ) ! * } ' -

Thus by (1.4), (1.5), (1.6) and Lemma 2 we have " . 

/ [ s u L ¿ a „ v K ( x ) | f c ) ' ) dx s K2 / [ J ( v + O ^ - M t f W p J ^ ^ 

n 1 
which gives statement (1.2). 

§ 2. Proof of the theorems and corollaries 

P r o o f o f T h e o r e m I. First we show that (7) implies 

(2-1) i a n i . ( v + l ) - * £ KA„,rs 

v=0 
for any 0 < S < 1 . Indeed, 

n m min(2 I + 1,rt) 
2 a „ v ( v + l ) - a n 2 ' 2 «„v(v + l ) - * S 

v=0 1 = 0 v = 2 ' - l 

m imin(2' + 1 ,n) l 1 / p 

2 a„pv(v + l ) - 6 4 -21'« ^ KA„n-6. 
1=0 I v«2«-l J 

By conditions (6) and (8) /?>I /2 , so we have (see e.g. inequality (3) with k=l) 

o*(x)-f(x) = ox(n-y). 
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Hence and f rom (2.1) it follows 

(2.2) = 
A n v = 0 

which implies 

(2.3) ± 2 a„v | o f _ 1 (* ) - / w i " ¿ « „ v K " 1 W - ^ W l * + in~yk)-
An v = 0 -^n v=0 

Now for any fixed positive £ we choose /V such that 

(2.4) Z c W y < £3-

Let us define two new series 

a, for n •=£ N, 
( 2 : 5 ) Z "n <Pn(x) 

n = l 

with a„ = lo for n 
and 

oo i0 
for n 

( 2 . 6 ) Zbn9n(x) 
1 1 = 1 

with b„ = L for n > N. 

Denote x) and x), respectively, the w-th Cesaro^means of order /5 of 
the series (2.5) and (2.6). 

It is clear that 
aS(x) = a^a;x) + ^(b;x). 

Applying Lemma 4 with the series (2.5) and y'. satisfying the conditions y < y' < 1 
and ky'^z 1, we obtain that 

(2.7) ^ Z ^ M - \ a - , x ) - a f ( a - , x ) \ k - 0 
n v. 0 

almost everywhere in (a, b). 
On the other hand using Lemma 4 and (2.4) we obtain 

/ { sup fcl J a„ v |o>- \b; - . x ) -o>(b; x) |" | ' ! dx ^ Kt?. 
; losn-=~ v = 0 ) J 

Hence 
f ( j p " VM 1 

meas jx | l im sup Z . « / i v k » - 1 ^ ; x)~ai{b-, x)|*j > e j s Ke. 

This and (2.7) imply 

N V—0 . 

almost everywhere in (a, b). , 
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Collecting our results we obtain statement (9). 

P r o o f of C o r o l l a r y 1. It is easy to verify that if 

[ 0 for v ^ n/2, 
for V : - /?/2, 

then (7) holds for arbitrary p> 1. Thus, if /?>1 — min (1/2, 1 jk), (6) and (8) can be 
satisfied with a suitably chosen p, and the statement of Corollary 1 follows from (9) 
immediately. 

P r o o f of C o r o l l a r y 2. We define 

c„ = I 2 c? 
v=e„-i+i 

and 

iC,;1 2 ctq>,(x) for C„ * 0, 

•"=^„-1+1 
(Hn-Hn-1)"1/2 2 <Pi(.x) for C„ = 0. 

<=/v-l+1 

It is clear that the system {<£„(*)} is also an orthonormal one and 

obviously. Since 

Zj n=l 

Sn(x) = 2 Ck<Pk(x) = '¿„„(X), 
k = 1 

applying Theorem I to the series ¿C„<P„(x) , we obtain the statement of Corol-
lary 2. n=i 

P r o o f of T h e o r e m I I . Applying inequality (4) to the series 2 
defined above, we get (11). " = l 

P r o o f of T h e o r e m I I I . If k = 2, then for any v (SM) 

a™ 
An ~ n 

whence, by (1.1), the estimate (13) follows obviously. 
If k<2, then we can choose /> = 2/A\ Using Holder's inequality with this p and 

q=2/(2—k) we obtain that 

f n l ^ f „ l1/p 

, 2 « . , k W - M ^ 2 a n v ) 2 k ( * ) - / ( * ) l t p • 
v = 0 l v = 0 J l v = 0 J 
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Hence, by (13) and (1.1), 

Y'k i i » 11/2 

j I2} =ox{n-y) 
1 Ik 1/2 

I k 

which is the required estimate. 
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