On the strong approximation of orthogonal series

By L. LEINDLER in Szeged
Dedicated to Professor Károly Tandori on his 50th birthday

Introduction

Let $\left\{\varphi_{n}(x)\right\}$ be an orthogonal system on the interval (a, b). We consider the orthogonal series

$$
\begin{equation*}
\sum_{n=0}^{\infty} c_{n} \varphi_{n}(x) \quad \text { with } \quad \sum_{n=0}^{\infty} c_{n}^{2}<\infty \tag{1}
\end{equation*}
$$

It is well known that the series (1) converges in L^{2} to a square-integrable function $f(x)$. Let us denote the partial sums and the (C, α)-means of the series (1) by $s_{n}(x)$ and $\sigma_{n}^{\alpha}(x)$, respectively.

In [2] we proved that if

$$
\begin{equation*}
\sum_{n=1}^{\infty} c_{n}^{2} n^{2 \gamma}<\infty \quad \text { and } \quad 0<\gamma<1 \tag{2}
\end{equation*}
$$

then

$$
f(x)-\sigma_{n}^{1}(x)=o_{x}\left(n^{-\gamma}\right)
$$

almost everywhere in (a, b).
G. Sunouchi [4] generalized this result proving that if (2) is satisfied, then

$$
\begin{equation*}
\left\{\frac{1}{A_{n}^{\alpha}} \sum_{v=0}^{n} A_{n-v}^{\alpha-1}\left|f(x)-s_{v}(x)\right|^{k}\right\}^{1 / k}=o_{x}\left(n^{-\gamma}\right) \tag{3}
\end{equation*}
$$

holds almost everywhere in (a, b) for any $\alpha>0$ and $0<k<\gamma^{-1}$, where $A_{n}^{\alpha}=\binom{n+\alpha}{n}$.
This result was generalized in [3] in such a way that we replaced the partial sums in (3) by (C, δ)-means, where δ can also be negative. (See Theorem 1 of [3].)

In [3] (Theorem 2) we also proved that if $\sum_{n=1}^{\infty} c_{n}^{2} n^{2 \alpha}<\infty$ with any positive $\cdot \gamma$, then

$$
\begin{equation*}
\left\{\frac{1}{n} \sum_{v=n}^{2 n}\left|\ddot{s}_{v}(x)-f(x)\right|^{k}\right\}^{1 / k}=o_{x}\left(n^{-\gamma}\right) \tag{4}
\end{equation*}
$$

holds almost everywhere in (a, b) for any $0<k \leqq 2$.

The aim of the present paper is to generalize further these results.
We consider a regular summation method T_{n} determined by a triangular matrix $\left\|\alpha_{n k} / A_{n}\right\|\left(\alpha_{n k} \geqq 0\right.$ and $\left.A_{n}=\sum_{k=0}^{n} \alpha_{n k}\right)$, i.e. if s_{k} tends to s, then

$$
T_{n}=\frac{1}{A_{n}} \sum_{k=0}^{n} \alpha_{n k} s_{k} \rightarrow s
$$

Theorem I. Suppose that $0<\gamma<1$ and $0<k<\gamma^{-1}$,

$$
\begin{equation*}
\sum_{n=1}^{\infty} c_{n}^{2} n^{2 \gamma}<\infty \tag{5}
\end{equation*}
$$

furthermore that there exists a number $p>1$ such that

$$
\begin{equation*}
\frac{p}{p-1} k \geqq 2 \tag{6}
\end{equation*}
$$

and with this p for any $0<\delta<1$ and $2^{m}<n \leqq 2^{m+1}$

$$
\begin{equation*}
\sum_{l=0}^{m}\left\{\sum_{v=2^{i}-1}^{\min \left(2^{l+1}, n\right)} \alpha_{n v}^{p}(v+1)^{p(1-\delta)-1}\right\}^{1 / p} \leqq K\left(\sum_{v=0}^{n} \alpha_{n v}\right) n^{-\delta} . \tag{7}
\end{equation*}
$$

Then for arbitrary

$$
\begin{equation*}
\beta>1-\frac{p-1}{p k} \tag{8}
\end{equation*}
$$

we have

$$
\begin{equation*}
\left\{\frac{1}{A_{n}} \sum_{v=0}^{n} \alpha_{n v}\left|f(x)-\sigma_{v}^{\beta-1}(x)\right|^{k}\right\}^{1 / k}=o_{x}\left(n^{-\gamma}\right) \tag{9}
\end{equation*}
$$

almost everywhere in (a, b).
It is easy to verify that in the special case $\alpha_{n v}=A_{n-v}^{\alpha-1}(\alpha>0)$ condition (7) is satisfied, thus with $\beta=1$ Theorem I contains the result of SUNOUCHI. It can be shown that Theorem I includes our result in connection with (C, δ)-means of negative order, too. Furthermore we have some corollaries:

Corollary 1. Suppose that $0<\gamma<1,0<k<\gamma^{-1}$, and that (5) is satisfied. Then we have

$$
\left\{\frac{1}{n} \sum_{v=n}^{2 n}\left|f(x)-\sigma_{v}^{\beta-1}(x)\right|^{k}\right\}^{1 / k}=o_{x}\left(n^{-\gamma}\right)
$$

for any $\beta>1-\min (1 / 2,1 / k)$ almost everywhere in (a, b).
Corollary 2. Under the hypothesis of Theorem 1 we have

$$
\left\{\frac{1}{A_{n}} \sum_{v=0}^{n} \alpha_{n v}\left|f(x)-\sigma_{v}^{\beta-1}\left(\left\{\mu_{i}\right\} ; x\right)\right|^{k}\right\}^{1 / k}=o_{x}\left(n^{-\gamma}\right)
$$

$\left.{ }^{1}\right) K, K_{1}, K_{2}, \ldots$ will denote positive constants not necessarily the same at each occurrence.
almost everywhere in (a, b) for any $\beta>1-(p-1) / p k$ and for any increasing sequence $\left\{\mu_{i}\right\}$; where

$$
\sigma_{n}^{\alpha}\left(\left\{\mu_{i}\right\} ; x\right)=\frac{1}{A_{n}^{\alpha}} \sum_{v=0}^{n} A_{n-v}^{\alpha-1} s_{\mu_{i}}(x)
$$

From Corollary 2 in the special case $\beta=1$ we obtain immediately

Corollary 3. Under the conditions of Theorem 1 we have

$$
\begin{equation*}
\left\{\frac{1}{A_{n}} \sum_{\nu=0}^{n} \alpha_{n v}\left|f(x)-s_{\mu_{\nu}}(x)\right|^{k}\right\}^{1 / k}=o_{x}\left(n^{-\gamma}\right) \tag{10}
\end{equation*}
$$

almost everywhere in (a, b) for any increasing sequence $\left\{\mu_{v}\right\}$.
In the special case $\alpha_{n v}=A_{n-v}^{\alpha-1}(\alpha>0)$ Corollary 3 reduces to Theorem 3 of [3].
Under the restrictions $0<k \leqq 2$ and $\beta=1$, but for arbitrary positive γ, Corollary 1 can be generalized to very strong approximation. In fact we have

Theorem II. Suppose that $0<k \leqq 2$ and $\gamma>0$; and that (5) holds. Then

$$
\begin{equation*}
\left\{\frac{1}{n} \sum_{v=n}^{2 n}\left|s_{\mu_{\nu}}(x)-f(x)\right|^{k}\right\}^{1 / k}=o_{x}\left(n^{-\gamma}\right) \tag{11}
\end{equation*}
$$

almost everywhere in (a, b) for any increasing sequence $\left\{\mu_{v}\right\}$.
It is clear that (11) is a generalized form of (4).
Finally we show that under certain restrictions on γ, and $\left\{c_{n}\right\}$ an estimate similar to (10) can be given with any not necessarily monotonic sequence $\left\{l_{v}\right\}$ of distinct non-negative integers. Namely we have

Theorem III. Suppose that $0<\gamma<1 / 2,0<k \leqq 2$ and

$$
\begin{equation*}
\sum_{n=4}^{\infty} c_{n}^{2} n^{2 \gamma}(\log \log n)^{2}<\infty \tag{12}
\end{equation*}
$$

furthermore that

$$
\begin{equation*}
\left\{\sum_{v=0}^{n}\left(\alpha_{n v}\right)^{2 /(2-k)}\right\}^{(2-k) / 2} \leqq K\left(\sum_{v=0}^{n} \alpha_{n v}\right) n^{-k / 2} \tag{13}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\left\{\frac{1}{A_{n}} \sum_{v=0}^{n} \alpha_{n v}\left|s_{l_{v}}(x)-f(x)\right|^{k}\right\}^{1 / k}=o_{x}\left(n^{-\gamma}\right) \tag{14}
\end{equation*}
$$

almost everywhere in (a, b) for any (not necessarily monotonic) sequence $\left\{l_{v}\right\}$ of distinct non-negative integers.

Theorem III gives immediately
${ }^{2}$) If $k=2$ then (13) means that $\max _{0 \leqq v \leqq n} \alpha_{n \nu} \leqq K\left(\sum_{v=0}^{n} \alpha_{n v}\right) n^{-1}$.

Corollary 4. If $0<\gamma<1 / 2,0<k \leqq 2$ and $\alpha>k / 2$, furthermore (12) is satisfied, then

$$
\left\{\frac{1}{A_{n}^{\alpha}} \sum_{v=0}^{n} A_{n-v}^{\alpha-1}\left|s_{l_{v}}(x)-f(x)\right|^{k}\right\}^{1 / k}=o_{x}\left(n^{-\gamma}\right)
$$

almost everywhere in (a, b) for any (not necessarily monotonic) sequence $\left\{l_{v}\right\}$ of distinct non-negative integers.

§ 1. Lemmas

We require the following lemmas.
Lemma 1 ([1], p. 359). Let $r \geqq l>1, \bar{\gamma}>0, \bar{\alpha}>\bar{\gamma}-1$ and $\bar{\beta} \geqq \bar{\alpha}+l^{-1}-r^{-1}$. Then

$$
\left\{\sum_{n=0}^{\infty}(n+1)^{r \bar{\gamma}-1}\left|\tau_{n}^{\bar{\beta}}(x)\right|^{r}\right\}^{1 / r} \leqq K\left\{\sum_{n=0}^{\infty}(n+1)^{l \bar{\gamma}-1}\left|\tau_{n}^{\bar{\alpha}}(x)\right|^{1 / l}\right\}^{1 / l},
$$

where $\tau_{n}^{\alpha}(x)=\alpha\left(\sigma_{n}^{\alpha-1}(x)-\sigma_{n}^{\alpha}(x)\right)$.
Lemma 2 ([4], Lemma 1). If

$$
\sum_{n=1}^{\infty} c_{n}^{2} n^{2 \gamma}<\infty \quad \text { with } \quad 0<\gamma<1
$$

then

$$
\int_{a}^{b}\left\{\sum_{n=0}^{\infty}(n+1)^{2 y-1}\left|\sigma_{n}^{\alpha-1}(x)-\sigma_{n}^{\alpha}(x)\right|^{2}\right\} d x \leqq K \sum_{n=1}^{\infty} c_{n}^{2} n^{2 \gamma}
$$

for any $\dot{\alpha}>1 / 2$.
Lemma 3 ([3], Theorem 4). If $0<\gamma \leqq 1 / 2,0<k \leqq 2, k \gamma<1$ and

$$
\sum_{n=4}^{\infty} c_{n}^{2} n^{2 \gamma}(\log \log n)^{2}<\infty
$$

then

$$
\begin{equation*}
\left\{\frac{1}{n} \sum_{v=0}^{n}\left|\dot{s}_{l_{v}}(x)-f(x)\right|^{k}\right\}^{1 / k}=o_{x}\left(n^{-y}\right) \tag{1.1}
\end{equation*}
$$

almost everywhere in (a, b) for any (not necessarily monotonic) sequence $\left\{l_{v}\right\}$ of distinct non-negative integers.

Lemma 4. Under the conditions of Theorem I we have the inequality

$$
\begin{equation*}
\int_{a}^{b}\left\{\sup _{0 \leqq n<\infty}\left\{\left(\frac{n^{k y}}{A_{n}} \sum_{v=0}^{n} \alpha_{n v}\left|\sigma_{v}^{\beta-1}(x)-\sigma_{v}^{\beta}(x)\right|^{k}\right)^{1 / k}\right\}^{2} d x \leqq K \sum_{n=1}^{\infty} c_{n}^{2} n^{2 \gamma}\right. \tag{1.2}
\end{equation*}
$$

Proof of Lemma 4. Set $q=p /(p-1)$, then

$$
\begin{equation*}
q k \geqq 2 \quad \text { and } \quad \beta>1-\frac{1}{q k} \tag{1.3}
\end{equation*}
$$

Applying Hölder's inequality, by (7) and $0<\gamma k<1$ we obtain that

$$
\begin{gather*}
\sum_{v=0}^{n} \alpha_{n v}\left|\tau_{v}^{\beta}(x)\right|^{k} \leqq\left\{\sum_{v=0}^{n} \alpha_{n v}^{p}(v+1)^{(p / q)-\gamma k p}\right\}^{1 / p} \times \\
\times\left\{\sum_{v=0}^{n}(v+1)^{\gamma k q-1}\left|\tau_{v}^{\beta}(x)\right|^{q k}\right\}^{1 / q} \leqq \tag{1:4}\\
\leqq K\left(\sum_{v=0}^{n} \alpha_{n v}\right) n^{-\gamma k}\left\{\sum_{v=0}^{n}(v+1)^{\nu k q-1}\left|\tau_{v}^{\beta}(x)\right|^{q k}\right\}^{1 / q}
\end{gather*}
$$

By (1.3) we can choose α^{*} such that

$$
\begin{equation*}
\beta-\frac{1}{2}+\frac{1}{q k}>\alpha^{*}>\frac{1}{2} . \tag{1.5}
\end{equation*}
$$

By (1.5), $0<\gamma<1$ and $q k \geqq 2$ the conditions of Lemma 1 are fulfilled with $r=q k$, $l=2, \bar{\gamma}=\gamma, \alpha=\alpha^{*}$ and $\bar{\beta}=\beta$. Using Lemma 1 we get

$$
\begin{equation*}
\left\{\sum_{v=0}^{\infty}(v+1)^{\gamma k q-1}\left\{\left.\tau_{v}^{\beta}(x)\right|^{q k}\right\}^{1 / q} \leqq K_{1}\left\{\sum_{v=0}^{\infty}(v+1)^{2 \gamma-1}\left|\tau_{v}^{\alpha^{*}}(x)\right|^{2}\right\}^{1 / 2}\right. \tag{1.6}
\end{equation*}
$$

Thus by (1.4), (1.5), (1.6) and Lemma 2 we have

$$
\begin{gathered}
\int_{a}^{b}\left\{\sup _{1 \leqq n<\infty}\left(\frac{n^{\gamma k}}{A_{n}} \sum_{v=0}^{n} \alpha_{n v}\left|\tau_{v}^{B}(x)\right|^{k}\right\}^{1 / k}\right\}^{2} d x \leqq K_{2} \int_{a}^{b}\left\{\sum_{v=0}^{\infty}(v+1)^{2 \gamma-1}\left|\tau_{v}^{\tau_{v}^{*}}(x)\right|^{2}\right\} d x \leqq \\
\therefore \leqq K_{3} \sum_{n=1}^{\infty} c_{n}^{2} n^{2 \gamma}<\infty,
\end{gathered}
$$

which gives statement (1.2).

§ 2. Proof of the theorems and corollaries

Proof of Theorem I. First we show that (7) implies

$$
\begin{equation*}
\sum_{v=0}^{n} \alpha_{n v}(v+1)^{-\delta} \leqq K A_{n} n^{-\delta} \tag{2.1}
\end{equation*}
$$

for any $0<\delta<1$. Indeed,

$$
\begin{aligned}
& \sum_{v=0}^{n} \alpha_{n v}(v+1)^{-\delta} \leqq \sum_{l=0}^{m} \sum_{v=2^{i}-1}^{\min \left(2^{l+1}, n\right)} \alpha_{n v}(v+1)^{-\delta} \leqq \\
& \leqq \sum_{l=0}^{m}\left\{\sum_{v=2^{i}-1}^{\min \left(2^{l+1}, n\right)} \alpha_{n v}^{p}(v+1)^{-\delta p}\right\}^{1 / p} \cdot 2^{l / q} \leqq K A_{n} n^{-\delta} .
\end{aligned}
$$

By conditions (6) and (8) $\beta>1 / 2$, so we have (see e.g. inequality (3) with $k=1$)

$$
\sigma_{n}^{\beta}(x)-f(x)=o_{x}\left(n^{-\gamma}\right)
$$

Hence and from (2.1) it follows

$$
\begin{equation*}
\frac{1}{A_{n}} \sum_{v=0}^{n} \alpha_{n v}\left|\sigma_{v}^{\beta}(x)-f(x)\right|^{k}=o_{x}\left(n^{-\gamma k}\right), \tag{2.2}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\frac{1}{A_{n}} \sum_{v=0}^{n} \alpha_{n v}\left|\sigma_{v}^{\beta-1}(x)-f(x)\right|^{k} \leqq \frac{K}{A_{n}} \sum_{v=0}^{n} \alpha_{n v}\left|\sigma_{v}^{\beta-1}(x)-\sigma_{v}^{\beta}(x)\right|^{k}+o_{x}\left(n^{-\gamma k}\right) \tag{2.3}
\end{equation*}
$$

Now for any fixed positive $\dot{\varepsilon}$ we choose N such that

$$
\begin{equation*}
\sum_{n=N}^{\infty} c_{n}^{2} n^{2 \gamma}<\varepsilon^{3} . \tag{2.4}
\end{equation*}
$$

Let us define two new series

$$
\sum_{n=1}^{\infty} a_{n} \varphi_{n}(x) \quad \text { with } \quad a_{n}=\left\{\begin{array}{lll}
c_{n} & \text { for } & n \leqq N \tag{2.5}\\
0 & \text { for } & n>N
\end{array}\right.
$$

and

$$
\sum_{n=1}^{\infty} b_{n} \varphi_{n}(x) \text { with } b_{n}=\left\{\begin{align*}
& 0 \text { for } n \leqq N \tag{2.6}\\
& c_{n} \text { for } \\
& n>N
\end{align*}\right.
$$

Denote $\sigma_{n}^{\beta}(a ; x)$ and $\sigma_{n}^{\beta}(b ; x)$, respectively, the n-th Cesàromeans of order β of the series (2.5) and (2.6).

It is clear that

$$
\sigma_{n}^{\beta}(x)=\sigma_{n}^{\beta}(a ; x)+\sigma_{n}^{\beta}(b ; x) .
$$

Applying Lemma 4 with the series (2.5) and γ^{\prime} satisfying the conditions $\gamma<\gamma^{\prime}<1$ and $k \gamma^{\prime}<1$, we obtain that

$$
\begin{equation*}
\frac{n^{\gamma k}}{A_{n}} \sum_{v=0}^{n} \alpha_{n v}\left|\sigma_{v}^{\beta-1}(a ; x)-\sigma_{v}^{\beta}(a ; x)\right|^{k} \rightarrow 0 \tag{2.7}
\end{equation*}
$$

almost everywhere in (a, b).
On the other hand using Lemma 4 and (2.4) we obtain

$$
\int_{a}^{b}\left\{\sup _{0 \leqq n<\infty}\left(\frac{n^{k \gamma}}{A_{n}} \sum_{\nu=0}^{n} \alpha_{n v}\left|\sigma_{v}^{\beta-1}(b ; x)-\sigma_{v}^{\beta}(b ; x)\right|^{k}\right)^{1 / k}\right\}^{2} d x \leqq K \varepsilon^{3} .
$$

Hence

$$
\text { meas }\left\{x \left\lvert\, \lim \sup \left(\frac{n^{k \gamma}}{A_{n}} \sum_{v=0}^{n} \alpha_{n v}\left|\sigma_{v}^{\beta-1}(b ; x)-\sigma_{v}^{\beta}(b ; x)\right|^{k}\right\}^{1 / k}>\varepsilon\right.\right\} \leqq K \varepsilon .
$$

This and (2.7) imply

$$
\frac{n^{\gamma k}}{A_{n}} \sum_{v=0}^{n} \alpha_{n v}\left|\sigma_{v}^{\beta-1}(x)-\sigma_{v}^{\beta}(x)\right|^{k} \rightarrow 0
$$

almost everywhere in (a, b).

Collecting our results we obtain statement (9).
Proof of Corollary 1. It is easy to verify that if

$$
\alpha_{n v}= \begin{cases}0 & \text { for } \quad v \leqq n / 2, \\ 1 & \text { for } \quad v>n / 2,\end{cases}
$$

then (7) holds for arbitrary $p>1$. Thus, if $\beta>1-\min (1 / 2,1 / k),(6)$ and (8) can be satisfied with a suitably chosen p, and the statement of Corollary 1 follows from (9) immediately.

Proof of Corollary 2. We define

$$
C_{n}=\left(\sum_{i=\mu_{n-1}+1}^{\mu_{n}} c_{i}^{2}\right)^{1 / 2}
$$

and

$$
\Phi_{n}(x)= \begin{cases}C_{n}^{-1} \sum_{i=\mu_{n-1}+1}^{\mu_{n}} c_{i} \varphi_{i}(x) & \text { for } C_{n} \neq 0, \\ \left(\mu_{n}-\mu_{n-1}\right)^{-1 / 2} \sum_{i=\mu_{n-1}+1}^{\mu_{n}} \varphi_{i}(x) & \text { for } C_{n}=0 .\end{cases}
$$

It is clear that the system $\left\{\Phi_{n}(x)\right\}$ is also an orthonormal one and

$$
\sum_{n=1}^{\infty} C_{n}^{2} n^{2 \gamma}<\infty
$$

obviously. Since

$$
S_{n}(x)=\sum_{k=1}^{n} C_{k} \Phi_{k}(x)=s_{\mu_{n}}(x),
$$

applying Theorem I to the series $\sum_{n=1}^{\infty} C_{n} \Phi_{n}(x)$, we obtain the statement of Corollary 2.

Proof of Theorem II. Applying inequality (4) to the series $\sum_{n=1}^{\infty} C_{n} \Phi_{n}(x)$ defined above, we get (11).

Proof of Theorem III. If $k=2$, then for any $v(\leqq n)$

$$
\frac{\alpha_{n v}}{A_{n}} \leqq \frac{K}{n}
$$

whence, by (1.1), the estimate (13) follows obviously.
If $k<2$, then we can choose $p=2 / k$. Using Hölder's inequality with this p and $q=2 /(2-k)$ we obtain that

$$
\sum_{v=0}^{n} \alpha_{n v}\left|s_{l_{v}}(x)-f(x)\right|^{k} \leqq\left\{\sum_{v=0}^{n} \alpha_{n v}^{q}\right\}^{1 / q}\left\{\sum_{v=0}^{n}\left|s_{l v}(x)-f(x)\right|^{k p}\right\}^{1 / p}
$$

Hence, by (13) and (1.1),

$$
\left\{\frac{1}{A_{n}} \sum_{v=0}^{n} \alpha_{n v}\left|s_{t_{v}}(x)-f(x)\right|^{k}\right\}^{1 / k} \leqq \dot{K}\left\{\frac{1}{n} \sum_{v=0}^{n}\left|s_{l_{v}}(x)-f(x)\right|^{2}\right\}^{1 / 2}=o_{x}\left(n^{-\gamma}\right)
$$

which is the required estimate.

References

[1] T. M. Flett, Some more theorems concerning the absolute summability of Fourier series and power series, Proc. London Math. Soc., 8 (1958), 357-387.
[2] L. Leindler, Über die Rieszschen Mittel allgemeiner Orthogonalreihen, Acta Sci. Math., 24 (1963), 129-138.
[3] L. Leindler, On the strong approximation of orthogonal series, Acta Sci. Math., 32 (1971), 41-50.
[4] G. Sunouchi, Strong approximation by Fourier series and orthogonal series, Indian J. Math., 9 (1967), 237-246.
(Received April 20, 1974)

