Dissipative J-self-adjoint operators and associated
J-isometries

By C. R. PUTNAM in West Lafayette (Indiana, USA)

1. Introduction, Only bounded operators on a Hilbert space £ will be considered
in this paper. Let J be self-adjoint. If 4 is any operator satisfying

1.1 JA4 = A*J,
then A will be called J-self-adjoint; similarly, if V satisfies
(1.2) ' ' VJv =J,

V will be called J-isometric or a J-isométry. This terminology corresponds to that
in -the literature dealing with géometry of spaces having indefinite metrics. Thus,
if (x, y) is the usual inner product on $ and if one introduces the modified inner
product (x,3),=(Jx, y) then 4 is J-self-adjoint if (Ax, y);=(x, Ay), for all x, y
in 9. This is the same as (JAx, y)=(Jx, Ay), that is, (1.1). Similarly, V is J-isometric
Af (Vx, Vy);=(x, y), for all x, y in H, which is equivalent to (1.2). See, in particular,
the surveys by KREIN [5] and NAIMARK and ISMAGILOV [6] where, for the most part,
it is assumed that J%=/. Another kind of indefinite scalar product is considered by
Bergzin [1]. In the present paper, the aforementioned restriction J2=J will be con-
siderably relaxed (see(1.5) below) but additional conditions ((1.3), (1.4)) will be
imposed on the operators 4 and ¥ of (1.1) and (1.2).

Throughout it will be supposed that 1f A satisfies (1.1) then Im (A) (4—A4 )/21
satisfies

(1.3) cither Im (A) =0 or Im(4) = 0.
An operator 4 will be called dissipative if the first part of (1.3) holds; thus, condi-

tion (1.3) is that either 4 or — A be dissipative. (This definition coincides with that
of Sz.-NAGY and Foias [9], p. 167. It should be noted, however, that sometimes 4
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is said-to be dissipative if Re (4)=0; see, e.g., KaTO [4] p. 279). Further, it will be
supposed that if V satisfies (1.2) then

(1.9 1¢sp (V) and either VV*=1T or VV* =1L

The first inequality of (1.4) is of course equivalent to ||V]||=1, that is, that V is a
contraction. Incidentally, if (l 2) holds then ||J ||<[|J V)% so that, unless J=0,
necessarily | V]=1.

It will be convenient to recall the notion of the absolutely contmuous part of
a self-adjoint operator J. If J has the spectral resolution J= f tdE,, then the set,
9,1, of vectors x in § for which || £, x|}? is an absolutely continuous function of ¢
is a subspace of § invariant under J. If $,(J)>0, the restriction J,=J|9,(J) is called
the absolutely continuous part of J; in particular, J is said to be absolutely con-
tinuous if J=J,. (See, e.g., HALmoOS [3], p. 104, KaTO [5] p. 516.) For later use, let
Py(J))={x: Jx=0}; clearly, $,(/) L Py(J).

Theorem 1. Let J be self-adjoint and suppose that J and A are bounded operators
on a Hilbert space 9 satisfying (1.1), (1.3) and

(1.5) J #= J,60, that.is, 5.(YBP(J) is a proper subspace of 9.
Then there exists a subspace M satisfying
(1.6) M O (H,(V)BP(J))* =0,

reducing both A and J and for which
(1.7) o AIM  is self-adjoint.

It is understood that either term in the direct sum on the right side of the in-
equality (1.5) may be absent, that is, that either $,(J) or Py(J) may be the 0 space.
In particular, if J has no absolutely continuous part and if 0 is not in the point
spectrum of J then I of (1.6) i1s H and so, by (1.7), 4 is self-adjoint.

Theorem 2. Let J be self-adjoint and suppose that J and V.are bounded operators
on a Hilbert space $ satisfying (1.2), (1.4) and (1.5). Then there exists a subspace M
satisfying (1.6), reducing both V and J and for which ’

(1.8) V|9 s unitary.

The proof of Theorem 1 will be given in section 2 and will depend on a genéra[
result on commutators in PUTNAM [7], p. 20. The proof of Theorem 2 will be derived
in section 3 as a corollary of Theorem | via the Cayley transform. Some remarks
on the Theorems as well as some applications will be given in section 4.
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2. Proof of Theorem 1. In view of (1.1),

2.1 . AJ—JA = (A—A4%J,
therefore, .
(2.2) ' (JA)J— J(JA) iC, where C = 2J(Im (4))J.

Let 9 denote the least subspace of $ reducing both self-adjoint operators J4 and
J and containing the range of the self-adjoint operator C. By (1.3), either C=0
or C=0, and so, by the Theorem of [7], p. 20, ﬂtc(sf)a(l)ﬂﬁ,,(JA))'cﬁa (/), hence
N+ O(H,(J))*. In addition, it is clear that RN+ reduces both J and JA4 (and C) and
that C|9+=0. Thus, if x€RN, 0=(Cx, x)=2(Im (4)Jx, Jx), hence, since Im (4) is
semi-definite, '

(2.3) ' Im(4A)Jx =0 for xeN*t.

Next, note that Py(J)(H(/))t <R+ and that N+ P(J)D (ba(J )b Po(J))* =0,
the last inequality by (1.5). Let

2.4 M= N-OP,(J) (=0).

It is clear that M reduces J. Also, if x€IM and y€ Py(J) then (JAx, y)=(4x, Jy)=0,
so that, since M reduces JA, so also does M. Thus, '

(2.5) M reduces J and JA.
Further, ‘
(2.6) J(OM) is dense in IMN.

In fact, otherwise, there would exist a vector y€I, y=0, such that 0=(Jx, y)=
=(x, Jy) for all x€M. Hence y€ Py(J) and hence ye M Py(J), so y=0, a contra-
diction.

It now follows from (2.1), (2.3) and (2.6) that

2.7 . AJx = JAx for xcIM.

In view of (2.5) and (2.6), this implies that 9t is invariant under 4. Finally, relations
(1.1), (2.5) and (2.6) imply that M is also invariant under A*. Thus, M reduces 4
and relations (2.1), (2.6) and (2.7) imply (1.7).

3. Proof of Theorem 2. Since 1¢sp (V), the operator A=i(I+ VY([I—V)"! is
bounded. Further it is easily verified that —i¢ sp (4) and that V is the Cayley trans-
form of A, that is

(3.1) V=(UA—i(A+iD)" and A= il+V)I-V)
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A straightforward calculation shows that A satisfies (1.1) if and only if V satisfies
(1.2). Furthermore, (I—¥)(Im (A))(I—V*)=I-VV*, so that Im (4)=0 or =0
according as I—VV*=0 or =0; in this connection, see [9], p. 357.

In order to prove Theorem 2 one need only define 4 as in (3.1) and then apply
Theorem 1 to A. Then the space M of Theorem 1 clearly reduces ¥ while (1.7)
implies (1.8) by the well-known properties of the Cayley transform. '

4. Remarks. It may be noted that the first part of (1.4), namely, that 1 not be
in the spectrum of ¥, is essential in Theorem 2 for the validity of assertion (1.8).
In fact, if J=1 and if ¥ denotes the unilateral shift, then, although 1¢sp (V) (in
fact, sp (V) is the unit disk {z: |z|=1}), nevertheless, V is a contraction, ¥ and J .
satisfy (1.2) and (1.5), and V is irreducible, so that, in particular;, ¥ has no unitary
part; cf. (3], p. 73. ’ :

It is clear that if (1.1) holds and if J is non-singular, then 4* is similar to 4
and hence 4 and A™ have identical spectra. Further, condition (1.3) implies that
the spectrum of A lies either in the upper half-plane or in the lower half-plane. Thus,
if J is non-singular then (1.1) and (1.3) imply that the spectrum of 4 is real. Hence,
for instance, if 4 is also normal it is necessarily self-adjoint. On the other hand,
there exist non-singular seif-adjoint operators J and dissipative operators 4 for
which (1.1) holds and for which A4 is completely non-self-adjoint, that is, 4 has no
reducing space on which it is self-adjoint. It follows from Theorem 1 that such an
operatar J is necessarily absolutely continuous.

To obtain such a pair J and 4, let A4 be the operator on $H=L%(0, 1) defined by

(Ax)(t) = t x(1)+i jx(s)ds.

Then A is dissipative (see [9], p. 365). In addition, A is completely non-self-adjoint
and is similar to the seif-adjoint multiplication operator 4,=r on L2(0, 1). (This
result is due to SAHNOVIC; see [9], pp. 368, 372.) Let T denote any non-singular
operator T for which A=T4,T1. If T has the polar factorization T=PU where
P is positive and U is unitary, then A=PUA,U*P~! and A*=P1UA4,U*P=
=P 24P2, so that (1.1) holds with J=P~2 It follows from Theorem 1 that P2,
hence also P, must be absolutely continuous.

- It is clear from the above argument that if 7 is non- smgular with the polar
factorization 7=2PU and if B is any self-adjoint operator then (1.1) holds with
A=TBT 'and J=P"2

Concerning not necessarily bounded dissipative operators and, in particular,
ones similar to self-adjoint operators, sée Sz.-NAGY and Foiag [9], Chapt. IX, §§ 4, 5,
as well as their paper [8].
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