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1. Introduction. Only bounded operators on a Hilbert space § will be considered 
in this paper. Let J be self-adjoint. If A is any operator satisfying 

(1.1) J A = A* J, 

then A will be called / -self-adjoint ; similarly, if F satisfies 

(1.2) V*JV=J, 

V will be called /- isometric or a / - isometry. This terminology corresponds to that 
in the literature dealing with geometry of spaces having indefinite metrics. Thus, 
if (x, y) is the usual inner product on 9) and if one introduces the modified inner 
product (x, y)j = (Jx, y) then A is /-self-adjoint if (Ax, y)j = (x, Ay)j fo r all x, y 
in This is the same as (JAx, y) = (Jx, Ay), that is, (1.1). Similarly, F i s /- isometric 
if (Fx, Vy)j = (x, y)j fo r all x, y in Jr>, which is equivalent to (1.2). See, in particular, 
the surveys by KREIN [5] a n d NAIMARK and ISMAGILOV [6] where , f o r the mos t pa r t , 
it is assumed that J2=I. Another kind of indefinite scalar product is considered by 
BEREZIN [1]. In the present paper, the aforementioned restriction J-=J will be con-
siderably relaxed (see (1.5) below) but additional conditions ((1.3), (1.4)) will be 
imposed on the operators A and F of (1.1) and (1.2). 

Throughout it will be supposed that if A satisfies (1.1) then Im (A) = (A— A*)/2i 
satisfies 

(1.3) either l m ( / l ) ^ 0 or Im (A) == 0. 

An operator A will be called dissipative if the first part of (1.3) holds; thus, condi-
tion (1.3) is that either A or — A be dissipative. (This definition coincides with that 
of SZ.-NAGY and FoiA§ [9], p. 167. It should be noted, however, that sometimes A 
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is said to be dissipative if Re see, e.g., KATO [4], p. 279). Further, it will b e 
supposed that if V satisfies (1.2) then 

(1.4) 1 0 P ( T ) and either VV* ^ I or VV* s I. 

The first inequality of (1.4) is of course equivalent to that is, that V is a 
contraction. Incidentally, if (1.2) holds then | | J | | s | | / | | | |F | |2 so that, unless / = 0 , 
necessarily || V\\ s i . 

It will be convenient to recall the notion of the absolutely continuous part of 
a self-adjoint operator J. If J has the spectral resolution J= J tdE„ then the set, 
9)a (J), of vectors x in § for which | |£,x| |2 is an absolutely continuous function of t 
is a subspace of § invariant under / . If §„( .7)^0, the restriction Ja = J\5)a(J) is called 
the absolutely continuous part of J; in particular, J is said to be absolutely con-
t i n u o u s i f J=Ja. (See , e .g . , HALMOS [3], p. 104, KATO [5], p . 5 1 6 . ) F o r l a t e r u s e , l e t 

P0U)={x: / x = 0 } ; clearly, Z>a(J) ±P0(J). 

Theorem 1. Let J be self-adjoint and suppose that J and A are bounded operators 
on a Hilbert space § satisfying (1.1), (1.3) and 

(1.5) J^Ja® 0, that is, (J)® P(i{J) is a proper subspace of 

Then there exists a subspace 301 satisfying 

(1.6) arc r» (§a(/)0Jp„(/))J- o, 

reducing both A and J and for which 

(1.7) A |93i is self-adjoint. 

It is understood that either term in the direct sum on the right side of the in-
equality (1.5) may be absent, that is, that either § „ ( / ) or P0(J) may be the 0 space. 
In particular, if J has no absolutely continuous part and if 0 is not in the point 
spectrum of J then 9Ji of (1.6) is § and so, by (1.7), A is self-adjoint. 

T h e o r e m . 2. Let J be self-adjoint and suppose that-J and V are bounded operators 
on a Hilbert space § satisfying (1.2), (1.4) and (1.5). Then there exists a subspace S0i 
satisfying (1.6), reducing both V and J and for which 

(1.8) F|0U is unitary. 

The proof of Theorem 1 will be given in section 2 and will depend on a general 
result on commutators in PUTNAM [7], p. 20. The proof of Theorem 2 will be derived 
in section 3 as a corollary of Theorem 1 via the Cayley transform. Some remarks 
on the Theorems as well as some applications will be given in section 4. 
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2. Proof of Theorem 1. In view of (1.1), 

(2.1) AJ-JA = (A-A*)J, 

therefore, 

(2.2) ( J A ) J - J ( J A ) = iC, where C = 2 / ( l m (A)) J. 

Let 91 denote the least subspace of i j reducing both self-adjoint operators J A and 
J and containing the range of the self-adjoint operator C. By (1.3), either C ê O 
or C=sO, and so, by the Theorem of [7], p. 20, 91 c ( J ) H ( J A ) ) < = S 3 , ( J ) , hence 
91-1 D ^ ^ . / ) ) - 1 . In addition, it is clear that 91^ reduces both J and J A (and C) and 
that C|9 ' l -L=0. Thus, if 0=(Cx, x) = 2(lm (A)Jx, Jx), hence, since Im (A) is 
semi-definite, 

(2.3) Im (A)Jx = 0 for x Ç i K 

Next, note that P 0 ( / ) c ( $ > a ( J j ) L c 9 I 1 and that 9 t x © P0(J) 3 ( § / / ) © P0{J))X ^ 0 , 
the last inequality by (1.5). Let 

(2.4) 9)1 = 9 l x © P 0 ( J ) ( ^ 0 ) . 

It is clear that 991 reduces J. Also, if and yÇ_P0(J) then (JAx, y) = (Ax, Jy) = 0, 
so that, since 91 reduces J A, so also does ®î. Thus, 

(2.5) 9JI reduces J and JA. 

Further, 

(2.6) J(W) is dense in SR. 

In fact, otherwise, there would exist a vector .yÇ9JÎ, y^O, such that 0 = ( /v , y) = 
= (x, Jy) for all xÇSM. Hence y£P0(J) and hence y£.Mf]Pa(J), so y = 0, a contra-
diction. 

It now follows from (2.1), (2.3) and (2.6) that 

(2.7) AJx = J Ax for 

In view of (2.5) and (2.6), this implies that 9Ji is invariant under A. Finally, relations 
(1.1), (2.5) and (2.6) imply that 9)1 is also invariant under A*. Thus, 9JÎ reduces A 
and relations (2.1), (2.6) and (2.7) imply (1.7). 

3. Proof of Theorem 2. Since l $ s p ( F ) , the operator A =/(/+ V)(I- F )~ ' is 
bounded. Further it is easily verified that — ¿(£sp (A) and that F i s the Cayley trans-
form of A, that is 

(3.1) V = (A — /7) (A + /7) and A = / ( / + F ) ( 7 - V)~\ 



112 C. R . Putnam 

A straightforward calculation shows that A satisfies (1.1) if and only if V satisfies 
(1.2). Furthermore, (I— K)(Im (y4))(/— V*)=I— VV*, so that Í m ( / l ) s O or siO 
according as I— or ^ 0 ; in this connection, see [9], p. 357. 

In order to prove Theorem 2 one need only define A as in (3.1) and then apply 
Theorem 1 to A. Then the space 931 of Theorem 1 clearly reduces V while (1.7) 
implies (1.8) by the well-known properties of the Cayley transform. 

4. Remarks. It may be noted that the first part of (1.4), namely, that 1 not be 
in the spectrum of V, is essential in Theorem 2 for the validity of assertion (1.8). 
In fact, if J=I and if V denotes the unilateral shift, then, although l £ s p ( F ) (in 
fact, s p ( F ) is the unit disk {z: nevertheless, V is a contraction, V and / 
satisfy (1.2) and (1.5), and V is irreducible, so that, in particular, V has no unitary 
part ; cf. [3], p. 73. 

It is clear that if (1.1) holds and if J is non-singular, then A* is similar to A 
and hence A and A* have identical spectra. Further, condition (1.3) implies that 
the spectrum of A lies either in the upper half-plane or in the lower half-plane. Thus, 
if J is non-singular then (1.1) and (1.3) imply that the spectrum of A is real. Hence, 
for instance, if A is also normal it is necessarily self-adjoint. On the other hand, 
there exist non-singular self-adjoint operators J and dissipative operators A for 
which (1.1) holds and for which A is completely non-self-adjoint, that is, A has no 
reducing space on which it is self-adjoint. It follows from Theorem 1 that such an 
operator J is necessarily absolutely continuous. 

To obtain such a pair J and A, let A be the operator on § = L2(0, 1) defined by 

t 
(Ax)(t) = tx(t) + i f x(s)ds. 

o 

Then A is dissipative (see [9], p. 365). In addition, A is completely non-self-adjoint 
and is similar to the self-adjoint multiplication operator A0 = t on L2(0, 1). (This 
result is due to SAHNOVIC; see [9], pp. 368, 372.) Let T denote any non-singular 
operator T for which /l = 7 / l 0 r _ 1 . If T has the polar factorization T=PU where 
P is positive and U is unitary, then A = PUA0U*P-1 and A* = P~1UA0U*P= 
= P-2AP2, so that (1.1) holds with J=P~2. It follows f rom Theorem 1 that P 
hence also P, must be absolutely continuous. 

It is clear f rom the above argument that if T is non-singular with the polar 
factorization T=PU and if B is any self-adjoint operator then (1.1) holds with 
A = TBT~X and J=P~2. 

Concerning not necessarily bounded dissipative operators and, in particular, 
ones similar to self-adjoint operators, sée SZ.-NAGY and FOIA§ [9], Chapt. IX, §§ 4, 5, 
as well as their paper [8]. 
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