An identity for Laguerre polynomials

By L. B. RÉDEI in Umeå (Sweden)
Dedicated to my loved father, Professor László Rédei, on the occasion of his seventy-fifth birthday.

We shall prove the following representation for Laguerre polynomials:

$$
\begin{equation*}
L_{n}(x)=(-1)^{n} \frac{e^{x}}{n!}\left(x \frac{d^{2}}{d x^{2}}+\frac{d}{d x}\right)^{n} e^{-x} . \tag{1}
\end{equation*}
$$

(We use the same convention for $L_{n}(x)$ as in reference [1].) This representation for $L_{n}(x)$ is an analogue of the well known representation for Hermite polynomials:

$$
\dot{H}_{n}(x)=(-1)^{n} e^{x^{2}}\left(\frac{d}{d x}\right)^{n} e^{-x^{2}}
$$

In spite of its simple and potentially useful form, we have not been able to find formula (1) in any of the standard texts.

Proof. Using the standard representation

$$
\begin{equation*}
L_{n}(x)=\frac{1}{n!} e^{x}\left(\frac{d}{d x}\right)^{n}\left(x^{n} e^{-x}\right) \tag{2}
\end{equation*}
$$

we can put equation (1) into the equivalent form

$$
\begin{equation*}
A_{n}(x)=(-1)^{n}\left(\frac{d}{d x}\right)^{n}\left(x^{n} e^{-x}\right) \tag{3}
\end{equation*}
$$

$A_{n}(x)$ being defined by

$$
A_{n}(x)=\left(x \frac{d^{2}}{d x^{2}}+\frac{d}{d x}\right)^{n} e^{-x}
$$

We proceed by induction. Equation (3) is obviously true for $n=0$ and for $n=1$. We assume it to be true for n. It then follows that

$$
\begin{gathered}
A_{n+1}(x)=\left(x \frac{d^{2}}{d x^{2}}+\frac{d}{d x}\right)\left((-1)^{n}\left(\frac{d}{d x}\right)^{n}\left(x^{n} e^{-x}\right)\right)= \\
=(-1)^{n}\left(x \frac{d^{n+2}}{d x^{n+2}}\left(x^{n} e^{-x}\right)+\frac{d^{n+1}}{d x^{n+1}}\left(x^{n} e^{-x}\right)\right)
\end{gathered}
$$

We use, for the first term in the right hand side of this equation, the identity

$$
\left(\frac{d}{d x}\right)^{n}(x f(x))=n \frac{d^{n-1}}{d x^{n-1}} f(x)+x \frac{d^{n}}{d x^{n}} f(x)
$$

valid for any smooth function $f(x)$, to obtain that

$$
A_{n+1}(x)=(-1)^{n}\left[\frac{d^{n+2}}{d x^{n+2}}\left(x^{n+1} e^{-x}\right)-(n+1) \frac{d^{n+1}}{d x^{n+1}}\left(x^{n} e^{-x}\right)\right]
$$

Since

$$
\frac{d}{d x}\left(x^{n+1} e^{-x}\right)=(n+1) x^{n} e^{-x}-x^{n+1} e^{-x}
$$

it follows that

$$
A_{n+1}(x)=(-1)^{n+1}\left(\frac{d}{d x}\right)^{n+1}\left(x^{n+1} e^{-x}\right)
$$

Q.E.D.

Reference

[1] Bateman Manuscript Project, Higher Transcendental Functions, vol. II (New York, 1953).
DEPT. OF THEORETICAL PHYSICS
UNIVERSITY OF UMEÅ

