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1. Introduction. Let § be a fixed separable, infinite dimensional complex Hilbert 
space and let i f ( § ) denote the algebra of all (bounded, linear) operators on 
In [3, Problem 7] HALMOS has asked for a characterization of the set of all operators . 
in J£?(§) which are uniform limits of nilpotent operators. In what follows we shall 
denote by iV(§) the set of all nilpotent operators on In the recent paper [5] HERRERO 
made a remarkable contribution to Halmos ' problem by showing that a normal 
operator is in the uni form closure N(<§) of 7V(§) if and only if its spectrum is con-
nected and contains the origin [5, Theorem 7]. In his paper Herrero asked whether 
the direct sum of a unilateral shift in £?(§>) and a normal operator on § whose 
spectrum coincides with the closed unit disk is in N(5)(BSy). In the present note 
we answer this question in the affirmative. Actually, we prove a more general result 
making a fur ther progress in the solution of Halmos ' question. 

Our main theorem can be stated as follows: 

T h e o r e m 1 . 1 . If T is a subnormal operator on whose approximate point 
spectrum is simply connected and contains the origin, then T is the uniform limit of 
nilpotent operators. 

The proof of the above theorem requires some auxiliary results and will be 
given in Section 2. In the final section of this paper we introduce a subclass of N(§>) 
which we call the class of pseudonilpotent operators and we study some of its prop-
erties. The main characteristic of these operators is that its nilpotent approximants 
are easy to determine. F rom this point of view, pseudonilpotent operators are perhaps 
more tractable than an arbitrary operator in 7V(§). 

2. Proof of Theorem 1.1. Throughout , for a given operator T in St?(§) we 
shall denote by o(T) the spectrum of T and by ot(T) the left spectrum of T (or 
approximate point spectrum of T). Furthermore, we denote by E(T) the essential 
spectrum of T and by Et(T) the left essential spectrum of T. (We recall that E(T) 
and E,(T) are the spectrum and the left spectrum, respectively of the image of T 
in the Calkin algebra.) Also, in what follows D will denote the closed unit disk of 
the complex plane. 
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T h e o r e m 2 . 1 . Let T be a subnormal operator in J§?(§) such that <j(T)aD 
and let M be a normal operator in J£?(§) such that a(M)=D. Then T® M£N(&(B9)). 

P r o o f . If T is a normal operator, then T®M is a normal operator whose 
spectrum is connected and contains the origin and hence the theorem follows f rom 
[5, Theorem 7]. Therefore, we may assume that T is not normal. Let ft be a complex 
Hilbert space and let N be a normal operator in i ? ( f t ) such that TV is a minimal 
normal extension of the subnormal operator T, i.e. §> is an invariant subspace of N 
such that 7V|§ = T and the smaller reducing subspace of TV containing § coincides 
with ft [2]. Since T is not normal it is easy to see that ft©§ is infinite dimensional. 
Thus, after an identification via a suitable unitary transformation, we can assume 
that ft = § © £ ) and that N can be represented by the 2 x 2 operator matrix 

N 

where R and S are in J ? ( § ) and 0 S is the zero operator on It also follows that 
a(N)ao(T) and hence o(N)czo{M). Now we observe that for every « = 1 , 2 , ... 

D = a(M) -A j=i 
n-J f 

An easy exercise in spectral theory shows that for every e > 0 and every « = 1 , 2, ... 
4 3n + l 

there exists a unitary transformation Ue n: £>— 2! ®S> s u c h that 

UF.nMUf -H L/=i 
•(M®N) ®M\ E. 

Therefore, since M^N(9)) (cf. [5, Theorem 7]), it follows that in order to prove 
that T®M£N(§>®§>) it suffices to establish the following assertion: For every 

(3n + l \ 
« = 2, 3, ... there exists and operator in N \ 2 © S whose distance to the operator 

T© 2 
) = 1 

^ 1 
n - j 

n ( . M ® N ) 

is less that —. To prove this fact, for « = 2, 3, ... , let « 

B„ 
1 — 1 f n - l 
— T© I 2 i 
n b = l 

i 

^ (M®N) - - (0S © 0S © T) 
n n J J ffi 0§ © 0 S ffi 0 S . 

1 
ffiCL we deduce that \\AB — Bn\\ ^ —, « = 

n 
Since A„-B„ = 2 ®-(T®O.ffiO ) 

= 2, 3, ... . Now we show that the operator Bn is the uniform limit of nilpotent 
operators. In fact, the operator Bn can be represented as the direct sum of a lower 

triangular « X » matrix whosey'-th diagonal term is ( T ® M ® S ) and the operator 
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,0g. Thus, in order to complete the proof of theorem (cf. [5, Theorem 5]) it remains 
to show that T@M® S € # ( § © § © § ) • To see this let's observe first that 

'S osiris 0e 

R T „ 1 
S®T = lim £-0 

S 

sR 
1, 

In view of the last remark, the fact that /V(§ © § © § ) is invariant under similarities 
and since 

N®M = 
s os 
R T 

@M 

is in A r ( § © § © § ) we conclude that S®T@M and hence T@M®S is in 
JV($ff iSff iS) , as desired. 

C o r o l l a r y 2 . 2 . Let U be a unilateral shift in H?(§) and let M be a normal 
operator in £(§) such that a(M)=D. Then 

The following lemma generalizes a result in [5]. 

L e m m a 2 .3 . Let T£N($)) and let S be an operator in the uniformly closed, 
inverse closed algebra generated by T. Then TSf_N($)). 

P r o o f . By hypothesis there exists a sequence {/„} of rational functions with 
poles off a(T) such that lim | |S— f„(T)\ \ = 0 . Also, there exists a sequence {Qk} in 

N(§>) such that lim \\T— 0 t | | = O . Now let kx be the first positive integer such that 

\\ fi(T) —fy(Qki)\\ 1; having defined k„, n^l let k„ + 1 be the first positive integer 

greater than k„ such that \\fn+1(T)-fn+1(Qk + 1 ) H — l — - . Letting Rn = Qk 
"+1 n+1 

( « = 1 , 2 , ...) it readily follows that lim | | T S - R n f „ ( R n ) | | = 0 . Since Rnfn(R„)£N(&) 

( « = 1, 2, ...) we conclude that TS£N(!o). 

P r o o f of t h e o r e m 1 .1 . Let T be a subnormal operator in 0£(§) such that 
<r,(T) is simply connected and contains the origin. It follows that cr(T) = al(T) — 
— E(T) = El(T). From [6] we deduce that, up to a small norm perturbation, T is 
unitarily equivalent to an operator of the form T © 7" where T' is any normal operator 
in J2?(§) such that a(T') = E{T') = a(T). Since, up to a small norm perturbation 
and a unitary equivalence, T' can be replaced in the above direct sum by a normal 
operator N in S£ (§) whose spectrum a(N) is "closed" to a(T) in the Hausdorff 
metric topology, and such that a (N) is simply connected, has smooth boundary 
and contains a(T) in it's interior, in order to complete the proof of the theorem it 
suffices to prove that T® § ) , for any normal operator N in § satisfying 
the properties described previously. Let q> be a homeomorphism f rom a(N) onto 
D such that <p(0) = 0, cp is analytic in the interior of o(N) and <p maps the boundary 
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of a(N) onto the boundary of D. (The existence of this function <p can be deduced 
f rom standard facts in the theory of conformal mappings.) Since u{N) is simply 
connected and q> is analytic on a(T) it follows that <p(T) is subnormal and o[q>(T)] = 
=q>[<j(T)} is contained in the interior of D. Employing the fact that <p(N) is normal 
and o[cp(N)]=D, f rom Theorem 2.1 we deduce that <p(T)®(p(N)£jV(§©§). Let 
\j/: D-*a(N) be the inverse function of <p. Since >)/(0)=0, there exists a continuous 
complex valued function rj on D which is analytic on the interior of D and satisfies 
^(X) = Xt](X), for every X^D. Observing that rj[<p(T)]©rj[(p(N)] is in the uniformly 
closed, inverse closed algebra generated by cp(T)®(p(N) and using L e m m a 2.3 we 
conclude that 

T®N(= H<p(T))®ittv(N)] = (p(T)r,[<p(T)]®(p(N)r,[(p(N)] = 

= [<p(T)®<p{N)]{ij[q,(T)]®tiMN)-ijl) 

is in N($) © §>), as asserted. 

R e m a r k 2 . 4 . Since the subset of elements with connected spectrum in any 
complex Banach algebras with identity is closed in the norm topology (cf. [8, Theo-
rem 3]) and the spectrum is an uppersemicontinuous function, it follows that every 
operator. T in N(§>) must satisfy 

(*) <y(T) and E(T) are connected and E(T) contains the origin. 

Let Q(T)={X£a(T): T—X is not a Fredholm operator of index zero}. From the 
continuity properties of the index function on the set of semi-Fredholm operators 
in JS?(§) we see that every operator T in N(§) must also satisfy 

(**) Q(T) = E,(T)nEr(T). 

(Recall that Er(T) is the conjugate set of E,(T*)). Conversely, we conjecture that 
if an operator Tin i f ( § ) satisfies conditions (*) and (**), then T£N(§>). The validity 
of this conjecture would imply of course that every quasinilpotent operator on § 
is in / / ( § ) , answering in the affirmative Problem 7 of [3]. 

Let QT(§>) be the set of all quasitriangular operators on i.e. T£QT(Sr>) if 
and only if there exists an increasing sequence {Pn} in i f (§) of finite rank projec-
tions tending strongly to the identity such that lim \\TPn-P„TP„\\ = 0 (cf. [3, Problem 

FI — OO 

4]). F rom the spectral characterization of quasitriangular operators given in [1] 
it readily follows that QT(§)flQT($)* = {r<Ei?(§): Q(T)----El(T)f)Er(T)}. Follow-
ing the same circle of ideas of the above comments, we conjecture that 
QT($))C\QT{$Z))* is the uniform closure of the set of all algebraic operators on 
(We recall that an operator T in i f (§) is called an algebraic operator if there exists 
a polynomial p such that p(T)=0.) The results of [4], [5] and those of the present 
paper give partial affirmative answers to the above conjectures. 
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It may also be worth noting that if the first conjecture were true, it would follow 
from the above mentioned theorem of [1] that every operator in which is not 
in N(9>) has a non-trivial invariant subspace, thereby reducing the invariant sub-
space problem to operators in N(io). 

3. Pseudonilpotent operators. In the rest of the paper it will be convenient 
to adopt the following terminology. Let , . . . , §„ be an orthogonal family of n 

n 
subspaces of § such that § = Then every T in J£?(§) can be represented, 

j=1 

n . . 
on the decomposition § = 2©£>/, by an nXn matrix of the form 

j=i 

T = 

Tu 

T21 

Tln 

Tin 

where Ttj is a bounded, linear transformation f rom into 1 s i , The 
operator in represented by the lower triangular matrix 

[ r n 0 ... 0 

r21 T22 0 ... 0 

will be called the lower triangular part of T with respect to the decomposition 
n 

§ = 2 © £>j • Similarly, the upper triangular part of T with respect to the decomposi-
y'=i 

n 
tion § = i s the operator in represented by the upper triangular matrix 

Tn T12. • Tln 

0 • T2„ 

. 0 0 . T ' •*• nit 

D e f i n i t i o n 3 . 1 . Let We say that J is a pseudonilpotent operator 
if for every e=-0. there exists a decomposition of § into the direct sum of a finite 
orthogonal family of subspaces , - . . , § „ such that the norm of the lower triangular 

n 
part of T with respect to the decomposition §>= 2 © ' s ' e s s than e. The set of all 

J=1 

pseudonilpotent operators in will be.denoted by J P ( § ) . 

R e m a r k 3 .2 . a) By interchanging the subspaces . . . , § „ in definition 3.1 
it is easy to see that an operator T is in P(§>) if and only if for every e=-0 there exists 
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a decomposition of § into the clircct sum of a finite orthogonal family of subspaces 
such that the norm of the upper triangular part of T with respect to this decomposi-
tion is less than e. 

b) F rom a) it readily follows that P(g>) = P(!$)*. 
c) From definition 3.1 and the fact that if TdN(§>), then there always exists a 

it 

decomposition § = 2 ® wit'1 respect to which the lower triangular part of T h a s 

norm zero, we see that the following inclusion formula holds: 

In the following two theorems we shall see that these inclusions are actually proper. 

T h e o r e m 3 .3 . Let A be a non-zero positive operator in if(£>) such that a (A) 
is connected. Then AÇN(&), but A ([ P($). 

P r o o f . From [5, Theorem 7] we deduce that A£N($>), thus it remains to show 
that A ( | P (§ ) . Let . . . , $„ be an orthogonal family of subspaces of § such that 

n 
§>= anc' let A be represented by 

[An A12... A,,, 

A = 

A. 

Aon... An 

A,.n ... A.. 

on the decomposition § - 2 © §./ • Let B and C be the operators in i f ($) defined by 
7=1 

B 

Au 0 0 
A21 A22 0 ... 0 

A„ ... A„ 

C = 

An 0 ... 0 
0 A22 0 . . . 0 

0 0 ... A„ 

It follows that A+C=B+B*. Since C is a positive operator we infer that 

Mil = sup (Ax, x) =S sup QA + C]x, x) = \\A + C\\ = 115+5*11 ^ 2| |5| | , 
11x11=1 11*11=1 

and hence ||5|| Observing that B is the lower triangular part of A with 
fi 

respect to the decomposition § = £ © §>j, and since the family , . . . , § „ is arbitrary 
7=1 

we conclude that A^P(9)). 

T h e o r e m 3 .4 . If K is a qmsinilpotent compact operator on 9), then KdP(§>). 

P r o o f . Let K be any quasinilpotent compact operator in i f ( § ) . Then there 
exists an increasing sequence {P„} in i f (§) of finite rank projections tending strongly 
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to the identity such that lira | |K—P„KP„ | |=0. From the upper semicontinuity of 

the spectrum, given s>-0 there exists a positive integer n0 such that if 
/7>/70, then o(P„KP„) is contained in the disk of center zero and radius e. Let 

so that \\K-PmK\\-<-E. Since P„§> is finite dimensional there exists a basis 
e,, ..., ek of P,„ on which the representing matrix of the operator PmK\Pm§ is 
in the upper triangular form. Observe that the diagonal elements of this matrix are 
in absolute value less than s. Letting S)j be the span of the vector eJt 1 -Mj^r-.k and 
defining §>k+i

:=§>QP1„§>, we deduce that the lower triangular part of A" with respect 
k +1 

to the decomposition § )= Z ®$>i has norm less than 3e. Since c is arbitrary we 
i 

conclude that K£P(§). 
As a consequence of the next theorem we shall see that there are operators in 

P(§>) which are not quasinilpotent. 
In the remainder of the paper {e„ ( « = 1 , 2 , ...)} will be a fixed orthononnal 

basis of .f>. A weighted shift S with positive weights a„ (« = 1, 2, ...) on the basis 
{e„} is defined by Sen=a.„e„+1 (77 = 1,2, ...). 

T h e o r e m 3 .5 . Let S be a weighted shift on the basis {e„} with positive weights 
a„ ( 7 7 = 1 , 2 , . . . ) such that for every e>0 there exists a positive integer k satisfying 
a„ / t<£, for 7 i= l , 2, ... . Then S£P(§). 

P r o o f . Let £ > 0 and let k be a positive integer greater than 1 such that oc,A<e, 
for 77=1, 2, ... . Furthermore, let §>j be the span of the vectors ej+ik (7=0, 1, 2, ...). 
Then §>j is infinite dimensional, 1 ^ j s k , and the representing matrix of S 011 the 

k 
decomposition § = 2 © has the form 

J=1 
0 0 Sk 

Si 0 0 
s = 0 • V 0 

0 0 . • Sk^ 0 
where, for l ^ j ^ k — 1 , the bounded, linear transformation Sj : is unitarily 
equivalent to a diagonal operator in SC (§) whose diagonal terms are a J + i k 

( /=0, 1,2, ...) and Sk: x is a bounded linear transformation unitarily equiv-
alent tp a weighted shift with weights an k . Thus H S J c e and hence S£P($>). There-
fore S£P(§>) and our assertion is established. 

C o r o l l a r y 3 .6 . There exists an operator in P(§>) whose spectrum coincides 
with D and hence is not quasinilpotent. 

P r o o f . Let S be the Kakutani shift 011 the basis {e„}, i.e. S is the weighted 
shift whose sequence of weights is described as follows: every other weight is one; 
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every other weight of the remaining weights is 1/2; every other weight of these weights 
is 1/4; etc. Fo r the sake of clarity we list the first few terms of the sequence of weights: 

1 ,1 /2 ,1 , 1/4, 1,1/2,-1,.1/8, 1,1/2, 1 , 1 / 4 , . . . . 

F r o m Theorem 3.5 it follows that S£P(9)) . On the other hand, as is well known, 
KAKUTANI proved that a(S) = D [7, p. 282]. 

In view of the results of this section and the comment made at the end of 
Section 2 it is natural to pose the folloving two questions. 

P r o b l e m 1. Is every quasinilpotent operator on § in /*(§)? 

P r o b l e m 2. Does every operator in P(9)) have a non-trivial invariant sub-
space? 

Addendum: The results proved in the present note were obtained in the Spr ing 
of 1973 and were communicated to several mathematicians interested in the subject 
during the Wabash International Conference on Banach spaces held in June 1973. 
After this paper was written C. Apostol, C. Foia§ and D . Voiculescu announced 
that they established the validity of the conjectures stated at the end of section 2. 
This announcement was recently communicated to the au thor by C. Apostol via a 
personal letter. 

Added in proof (May 5,1975). The results referred to in A d d e n d u m appeared in 
C. APOSTOL, C. FOIA§ and D. VOICULESCU, On the n o r m closure of nilpotents. I I , 
Rev. Roum. Math. Pures et Appl, 19 (1974), 549—577, a n d D. VOICULESCU, N o r m -
limits of algebraic operators, Rev. Roum. Math. Pures et Appl, 19 (1974) 371—378. 
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