Characterization of some related semigroups
of universal algebras

By L. SZABO in Szeged

§ 1. Introduction’

In [3], B. JONssoN gave a necessary and sufficient condition for a group of
permutations of a set 4 to be the automorphism group of an (universal) algebra
whose base set is 4. In [2], G. GRATZER charactlerized those abstract semigroups
that are isomorphic to the endomorphism semigroup of some simple aigebra. These
results are often referred to as the solution of the concrete characterization problem
of automorphism groups of algebras and that of the abstract characterization problem
of endomorphism semigroups of simple algebras.

In this note we are going to solve the concrete characterization problems of

a) inverse semigroups of partial automorphisms of algebras (Theorem 1), and

b) semigroups of endomorphisms of simple algebras (Theorem 2)
in the above sense®).

Let us consider a set A4(|4]|=2), which will be fixed in the sequel. By a 1—1
partial transformation of 4 we mean a 1—1 mapping from a subset of A4 into 4. The
semigroup of all 1—1 partial transformations of A4, called in [1] the symmetric
inverse semigroup of A, will be denoted by I,. For any @€, let D(¢) be the domain
of ¢, and ¢ | B the restriction of ¢ to B, where BE A.

By the equalizer of any ¢, Y €I, we mean the set E(¢, }) defined by

E(p, V) = {ala€D(p)ND()) and ap = ay).
For any M& 1, and BE A, put
I'y(B) =N{E(p,¥)|p, Y eM and B S E(p, ¥)).

*) (Added May 23, 1974) The originally submitted version of the article contained also a
solution for the concrete characterization problem of semigroups of 1-—1 endomorphisms of al-
gebras. It was omitted as in the meantime the solution of this problem was published by J. JeZEx
in Coll. Math., 29 (1974), 61—69 (Theorem 2).

B. M. ScuHEIN kindly informed us that our Theorem 1 was obtained independently also by
D. A. BrepoiN in Saratov,
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Then Iy, is a closure operator and we may speak of a I',,-closed subset of 4. Note
that D(p) is a I'y-closed set for any @¢M, (indeed, E(p, p)=D(¢)), and thus
BZ D(¢) implies I'y;(B)E D(¢). Furthermore, if the identity transformation of A
belongs to M then a€l' () if and only if a€ D(¢) and a=ae for all pc M.

By a partial automorphism of an algebra (4, F) we mean an isomorphism of
a subalgebra of (4, F) into (4, F). The empty transformation 0: § ~8 is considered
to be partial automorphism if and only if (4, F) has no nullary operation. Aut,(4, F)
denotes the set of all partial automorphisms of (4, F).

We shall often write x instead of (x,, ..., x,) and, similarly, x¢ instead of
(%39, ..., x,¢) for any mapping ¢. Then, x7 stands for the set.of all components
of any xE A". Finally, v(f) denotes the arity of the operation f (i.e., f maps A”m
into A).

§ 2. Resuits

We start with two simple lemmias. ‘ ‘

Lemma 1. For any algebra (A, F ), the semigroup Aut,(A4, F) is an inverse sub-
semigroup of 1,. Furthermore, (B, F) (BES A) is a subalgebra of (A, F) if and-only if
Bisaly, p)-closed set.

Proof. The first statement is trivial. Suppose that (B, F) is a subalgebra of
(A, F). If B0 then let ¢ be the identity automorphism of (B, F). Clearly,
g€Aut,(4, F) and E(e, &)=B. Thus FAutp(A,F)(B):B‘ If B=0 then (4, F) has no
nullary operation, and thus the empty transformation O belongs to Aut,(4, F).
Then E(0,0)=9, which implies I’ Avt, (4, ,(®)=0. The converse follows from the
fact that (E(p, §), F) is a subalgebra "of (4, F) for any o, Y€ Aut,(4, F).

Lemma 2. Let M be an inverse subsemigroup of 1,; o€ M and BS D(¢p). Then
Iy (Be)=TI'y(B)g.

Proof. From the definition of I'y it follows that u€I', (B) (BS4) if and
only if for any ¢, 1€ M, BS D(6)(N\D(r) and ¢|B=1|B implies u¢ D(s)D(t) and
UG =ur. . ' ’

If o{Bp=t|Bg (s,7€M; BpSD(@)ND(x)) then @o|B=¢t|B, and thus
@0 | Ty (B)y=01|I'y(B), whence ¢ |I'y(B)p=1|I'y(B)¢. Hence, Iy (B)p STy (Bo).
Write Bp and ¢! instead of B and ¢, respectively. Then we get I'y (Bp)p~1CS
' gFM((Bq))qa‘l):FM(B), which implies Iy (Bp)S T, (B)o, Q.E.D.

For any MCI,, we say that ¢(€1,) belongs to M locally if for any finite set
BC D(¢p) there is a € M such that ¢ |B=4y|B.
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~ Theorem 1. Let M be an inverse subsemigroup of 1,, which contains the identity
transformation of A. The following two statements are equivalent:
I. There is an algebra (A, F) such that M=Aut,(4, F).
II. () I'y is an algebraic closure gperation,
(B) if for €14, D(p) is a I yy-closed set and ¢ belongs to M locally, then p € M,
(y) all 1—1 partial transformations ¢: {a} ~{b}, for which {a} and {b} are I'y-
closed sets, belong to M.

Proof. I=II. According to Lemma | we get («) and (y) immediately. Suppose
that @€l 4 satisfies the condition of (). Since D(p) is a I' Aut, (4, F) -closed set, by
Lemma 1, we have that (D((p), F) is a subalgebra of (4, F). If D(qo)?fﬂ (i.e., @=0),
then let f€F and x€A4"Y)(x7 S D(¢)). Then there exists a Y €Aut,(4, F) which
agrees with @ on x'U{f(x)}. Thus f(x)=f(xy)=f(x)y=f(x)p, whence
p€Aut,(4, F). If D(p)=0 (i.e., ¢=0), then by Lemma 1 (9, F) is a subalgebra of
(4, F). Therefore, (4, F) has no nullary operation, and thus OEAut (4, F).

II=I. We shall construct the desired algebra (4, F). For any x=(x4, ..., X,)€A"
(n=1,2,...) and u€l(x"), let £, ,: A"~A be defined by »

Joux@) = ug, for all ¢eM,

Feoul =01, i ¥ =, e, Y)EANXM.

From u€I',(x") it-follows that the definition of f, , is correct. Put F={f, ,|x€4";
n=1,2, ... and u€Ty(x )} UT ) (8). (The elements of I'y(8) are exactly the nullary
operatlons of (4, F)) We prove that M=Aut,(4, F).

Let peM, ¢#0. First we show that (D(y), F) is subalgebra of (4, F). It is
clear that [, (B) S D(e). Let f, ,€F and y€4*Ux), y1S D(g). If y=xi for some
YEM, then £ ,(¥)=f. ,(x¢)=uy. By Lemma 2, ucT'),(x") implies uf €I, (x "¢)=
=Ty (»"): But y'SD(p), and thus wel (y)ET(D(@)=D(p). If
y€4*Y=I\xM, then f, ,(»)=y,€D(¢). Hence, D(p) is closed under f,,. To
prove that ¢ is an isomorphism let f, ,€F and y€A4* Y=, 7S D(¢p). If y can be
written in the form xy (V€M) then £, ,(y0)=fx,.((V) 9)=F u(x(Y0)) =u (W)=
=) o=f. .00 o=f: . (MNe. If yeAY=I\xM, then ypcd’Y=\xM, and
thus f, ,(ye)= }ilqb—fx «(¥)@. It is evident that all elements of I’} (#) remain fixed
under ¢. If the empty transformation belongs to M, then I (0) 0, ie., (4, F)
has no nullary operation. Thus 0¢Aut,(4, F). .

Suppose that ¢€l,, @0, but ¢ ¢ M. If D(p) is not a I'y,-closed set, then
(D(g), F) is not a subalgebra of (4, F). To show this statement let €I, (D(¢))
and u¢ D(¢). Since Iy is an algebraic closure operator thus there is a finite set
BE D(¢) such that uérl, (B). Arrange the elements of B into a one-to-one sequence
x. Then f, ,(x)=u showing that D(¢) is not closed under fx .

10 A
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If D(y) is a I'y,~closed set then, by (f), there exists a finite set BE D(¢) such
that no element of M agrees with ¢ on B. If [D(p)!=2, then we can assume that
|B|=2. Arrange the elements of B into a one-to-one sequence x. Then fx,,z(x<p)=
=X, 07X 9 =fs,»,(X) 0. If |D(9)|=1, ie., ¢: {a} ~{b} for some a, b€ 4, then by
(), {b} is not a I'y,-closed set. Thus there is a u€I', ({b}) such that u=b. Further-
more, a cannot be written in the form a=by (Y €M) as, by Lemma 2, from a=>by
we get I, ({bp)=Tp({a}yY = ({a})y~r={a}y 2= {b}, which is a contradic-
tion. Thus f, ,(ap)=/f, ,(b)=u#b=ap=f, ,(a)o.

If 0¢M then, by (f), I',,®)=0, i.e., (4, F) has nullary operation. Thus
04 Aut,(4, F). . " " Q.ED.

For any M C1,, the inverse subsemigroup of I, generated by M is denoted
by M. Further, for any transformation semigroup S of A, the images of the
constant transformations of S will be referred to as the constants of S.

Theorem 2. For any transformation monoid S of A, the following two state-
ments are equivalent:
1. There exists a simple algebra (A, F) such that S=End (4, F).
11 (0) S=MUC, where M contains only 1—1 and C contains only constant trans-
Sformations, o
(B) if a 1—1 transformation @ of A belongs to M locally, then €M,
(y) the set of all constants of S is closed under any @€ M,
(6) all a€ A such that {a} is a I'y-closed set arc constants of S.

Proof. I=1l. (x) is trivial, (f) follows from Theorem 1, (y) is valid because
the product of homomorphisms is also a homomorphism, and (§) follows from
the fact that ({a}, F) is a subalgebra of (4, F) whenever {a} is a I'j -closed sub-
set in 4. ’

II=1. We construct the desired algebra (4, F). For any x=(x, ..., x,)€A"
(n=2,3,..) let f,: A"~ A be defined by

f.(x9) = x,0, for all @€,
Fe =y, i Y= e, Y EA™\XM.

Furthermore, for any a€ A4 such that g is not a constant of S and ucrl’ ];,({a}); let
hau: A~A be defined by

h,, . (ap) = up, for all pc M
by (x) = x, if x€AN\aM.

Let F be the set of all operations of form f, as wéll as h, ,. We shall prove that
S=End (4, F) and (4, F) is a simple algebra. ‘
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Let @€ S. If p€M, then to prove that ¢ commutes with all operations of F
* we may proceed similarly as we put it in the proof of Theorem 1. If @€C, i.e.,
¢: A—~{d} (dc€A), then ¢ commutes with any f, €F because f, is an idempotent
operation. Let A, ,€ F and x€A4. Then dc¢ A\aM because from ay=d(ecM) we
get a=diy~1and, by (y), this implies that a is a constant of .S, which is a contradiction.
Thus h,,,(x@)=h,,,(d)=d=h,,,(x)9.

Let ¢ be a transformation of 4 and ¢ ¢ S. If ¢ is one-to-one then, by (f), for
some n(=2) there exists an x€A" such that xpcA™\xM. Thus f.(xQ)=x,
#x,0=f(x)@. If ¢ is a constant transformation, ie., ¢: A—~{d} (d€A), then d
is not a constant of S, and thus, by (), we have I' ; ({d})# {d}. Therefore, for a
suitable uel' - ({d}) we get u=d. Then h, ,(dp)=h, (d)=uzd=h, (D)o. If ¢ is
neither 1—1 nor a constant transformation, then there are x;, x,, x; and x, in 4
with x57<x, such that x;0=x,¢ and xz3p=x,0. Put x=(x, X5, X3, Xx,). It is clear
that xp€A*\xM, and thus f,(xQ)=x,0 %= x,0 =f.(X)@.

Now we have to prove only that (4, F) is simple algebra. Let & be a congruence
relation of (4, F), and suppose that a=b(@) for some a, b€ A4, a¢b. We claim
that ¢=d(®) for all ¢,dcA. Put x=(¢,d, a,a) and y=(c, d, a, b). Since a and b
are distinct thus, y€ A*\xM, whence d=f,(x)=f.(y)=c(@) follows. Q.E.D. .

Remark. It can be shown without any difficulty that none of the conditions
(@), (B) and (y) in Theorem 1 is implied by the two others; a similar statement is
valid for the conditions (B), (y) and () in Theorem 3.
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