Derivations of lattices

By G. SZÁSZ in Budapest

1. Introduction. A mapping $a \rightarrow a'$ of a ring R into itself is called a *derivation* of R if the equations

$$(a+b)' = a'+b', (ab)' = a'b+ab'$$

hold for any pair a, b of R. As a generalization of this definition it offers itself the following one: A mapping $a \rightarrow a'$ of an algebra A with two (arbitrary) binary operations $+, \cdot$ into itself is called a derivation of A if (1) and (2) are true for any elements a, b of A.

In this note we investigate the derivations of lattices with the aid of our earlier results in [2] concerning translations of lattices. For the concepts not defined here see [1] or [3].

2. Preliminaries. According to what have been said in the introduction we introduce the following

Definition 1. A single-valued mapping φ of a lattice L into itself is called a *derivation* of L if

(1) $\varphi(x - y) = \varphi(x) - \varphi(y)$ and $\varphi(x - y) = (\varphi(x) - y) - (x - \varphi(y))$

for every pair of elements x, y of L.

Examples:

1. In every lattice L, the identity mapping ι defined by $\iota(x)=x$ for each $x \in L$ is a derivation of L.

2. Let L be a lattice with least element o. Then the mapping ω defined by $\omega(x) = o$ for each $x \in L$ is a derivation of L.

3. To every neutral element n of a lattice L there corresponds a derivation generated by n, namely the mapping φ_n defined by $\varphi_n(x) = n - x$ for each $x \in L$.

In [2] we defined the translations of a lattice and established their basic properties. In studying the derivations we shall need the dual concept. Therefore we distinguish now join-translations and meet-translations as follows: Definition 2. A single-valued mapping λ of a lattice L into itself is called a *join-translation* if

(2)
$$\lambda(x - y) = \lambda(x) - y$$

and a meet-translation if

(3)

$$\lambda(x - y) = \lambda(x) - y$$

• for each pair of elements x, y of L.

It was shown in [2] that the only mapping of L into itself which is a join-translation as well as a meet-translation is the identity mapping of L.

For sake of completeness of this note we formulate all those results of [2] that will be applied here.

Proposition 1. Every meet-translation of a lattice L is an idempotent meetendomorphism (that is, a meet-endomorphism λ for which $\lambda(\lambda(x)) = \lambda(x)$ identically).

Proposition 2. The fixed elements of a meet-translation λ of a lattice L form an ideal I_{λ} of L and, for any two meet-translations λ_1 , λ_2 of L, $\lambda_1 \neq \lambda_2$ implies $I_{\lambda_1} \neq I_{\lambda_2}$.

Proposition 3. Any two meet-translations of a lattice are permutable.

Proposition 4. A lattice L is distributive if and only if every meet-translation of L is (not only a meet-endomorphism, but) an endomorphism of L.

3. Relations between the class of derivations and other classes of lattice mappings. Every derivation of a lattice L is a join-endomorphism of L, by definition; we show that it is a meet-endomorphism, too, by proving the

Theorem 1. Every derivation of a lattice L is a meet-translation of L.

Corollary 1. Every derivation of a lattice L is an idempotent endomorphism of L.

Corollary 2. The fixed elements of a derivation of a lattice L form an ideal of L and the ideal of fixed elements determines uniquely the derivation in question.

We reach to Theorem 1 by proving the following lemmas concerning any derivation φ of a lattice L:

Lemma 1. $\varphi(x) \leq x$ for any element x of L.

Lemma 2. $x \leq y$ implies $\varphi(x) \leq \varphi(y)$ $(x, y \in L)$.

Lemma 3. $x \leq y$ implies $\varphi(x) = x - \varphi(y)$ $(x, y \in L)$.

Proof. We have by (1)

$$\varphi(x) = \varphi(x - x) = (\varphi(x) - x) - (x - \varphi(x)),$$

i.e. $\varphi(x) = \varphi(x) - x$ for any element x of L which is equivalent to the assertion of Lemma 1.

If $x \leq y$, then (1) implies

$$\varphi(y) = \varphi(x \smile y) = \varphi(x) \smile \varphi(y),$$

i.e. $\varphi(x) \leq \varphi(y)$, as asserted in Lemma 2.

Let $x \leq y$ again. Then $\varphi(x) \leq x \leq y$ by Lemma 1. Consequently

$$\varphi(x) = \varphi(x - y) = (\varphi(x) - y) - (x - \varphi(y)) = \varphi(x) - (x - \varphi(y)),$$

i.e. $x - \varphi(y) \le \varphi(x)$. On the other hand, $\varphi(x) \le x$ by Lemma 1 and $\varphi(x) \le \varphi(y)$ by Lemma 2. Therefore

$$x \frown \varphi(y) \geq \varphi(x),$$

too, completing the proof of Lemma 3.

Applying Lemma 3 to the case x=u v, y=u we get

$$\varphi(u v) = u v \varphi(u) = \varphi(u) v$$

for any elements u, v of L (since $u - \varphi(u) = \varphi(u)$ by Lemma 1). Thus every derivation of L identically satisfies (3) and therefore it is a meet-translation of L, indeed.

Corollary 1 follows from Definition 1 and Proposition 1. Corollary 2 follows from Proposition 2. Thus Theorem 1 and the corollaries following it have been proved.

As a simple consequence of Lemma 3 we have also the

Corollary 3. Every derivation φ of a lattice L is of the form

(4)

$$\varphi(x) = c - x$$

with a suitably chosen $c \in L$ if and only if L has a greatest element.

Proof. If *i* is the greatest element of *L*, then $\varphi(x) = x - \varphi(i)$ for each $x \in L$, by Lemma 3. If, however, *L* has no greatest element, then the identity mapping of *L* cannot be represented in the form (4), because $c - x \neq x$ for x > c.

It is easy to see that the class of all derivations of a lattice L at least of two elements is a proper subclass of all endomorphisms of L. In fact, given an element c different from the least element (eventually existing) of L, the mapping $\gamma(x)$ define by

$$y(x) = c$$
 for each $x \in L$

is an endomorphism of L which is no derivation because there exists at least one

G. Szász

element d in L such that c > d and thus $\gamma(d) > d$. Hence Lemma 1 does not hold for this mapping γ .

Now we are going to give a fuller characterization of the derivations among the meet-translations and the endomorphisms.

Theorem 2. Let D, T, J, E denote the set of all derivations, meet-translations, join-endomorphisms and endomorphisms, respectively, of a lattice L. Then

 $D = T \cap J = T \cap E.$

In other words, a meet-translation of a lattice is a derivation if and only if it is a joinendomorphism (or equivalently, an endomorphism) of that lattice.

Corollary 4. Let I be an ideal of the lattice L and φ an endomorphism of L onto I such that $\varphi(x) = x$ for each $x \in I$. Then φ is a derivation of L.

Corollary 5. A lattice is distributive if and only if D=T.

Proof. $D \subseteq T$ by Theorem 1 and $D \subseteq J$ by Definition 1. Therefore $D \subseteq T \cap J$. On the other hand, the second equation (1) is identically satisfied by any meettranslation of a lattice. For, if φ is a meet-translation of the lattice L, then

 $\varphi(x - y) = \varphi(x) - y$ and $\varphi(x - y) = \varphi(y - x) = \varphi(y) - x = x - \varphi(y)$

for any elements x, y of L whence the second equation (1) trivially follows. This means that any mapping $\varphi \in T \cap J$ satisfies (1). Consequently, $T \cap J \subseteq D$. Thus the equation $D = T \cap J$ has been verified.

Let *M* denote the set of all meet-endomorphisms of *L*. Then, by Proposition 1, $T=T\cap M$. Hence $T\cap J=T\cap M\cap E=T\cap E$, completing the proof of Theorem 2.

Now, let φ be an endomorphism of L that satisfies the conditions in Corollary 4. Since I is, a fortiori, an ideal of the meet-semilattice L^{\frown} of L, the mapping φ is a translation of L^{\frown} by Theorem 2 of [3]. Hence, φ is (not only an endomorphism but) a meet-translation of L.

Corollary 5 is an immediate consequence of Theorem 2 and Proposition 4.

Remark. One can derive also immediately from Lemma 3 that every derivation is idempotent (by taking $x = \varphi(t)$ and y = t) and that the fixed elements form an ideal (by taking $x \le y = \varphi(y)$).

4. Basic properties of the multiplication of derivations. By the product $\rho\sigma$ of two mappings ρ and σ of a set S into itself we mean, as usual, the mapping π defined by $\pi(x) = \rho(\sigma(x))$ ($x \in S$).

Theorem 3. The set of all derivations of a given lattice forms a commutative sermigoup with respect to the multiplication of mappings.

Derivations of lattices

Proof. It is well-known that the multiplication of mappings is associative. Furthermore, any two derivations of a lattice are permutable by Theorem 1 and Proposition 3. Thus we have only to show that the product of any two derivations of a lattice is again a derivation of that lattice.

Let φ and ψ be arbitrary derivations, x and y arbitrary elements of a lattice L. Then, by the first equation (1) we have

$$\varphi\psi(x \smile y) = \varphi(\psi(x) \smile \psi(y)) = \varphi\psi(x) \smile \varphi\psi(y),$$

that is, $\varphi \psi$ is a join-endomorphism of L. Moreover, by both equations (1) we get

$$\varphi\psi(x - y) = \varphi((\psi(x) - y) - (x - \psi(y))) = \varphi(\psi(x) - y) - \varphi(x - \psi(y)),$$

whence, by the second equation (1),

(5)
$$\varphi\psi(x - y) = (\varphi\psi(x) - y) \cup (\psi(x) - \varphi(y)) \cup (\varphi(x) - \psi(y)) \cup (x - \varphi\psi(y)).$$

In order to prove the theorem we have to show that the right-hand side of (5) reduces to

$$(\varphi\psi(x) - y) - (x - \varphi\psi(y)).$$

We shall achieve this purpose by verifying the inequalities

- (6) $\psi(x) \varphi(y) \leq x \varphi \psi(y),$
- (7) $\varphi(x) \psi(y) \leq \varphi \psi(x) y.$

By Corollary 1, φ and ψ are endomorphisms of L. Therefore

$$\varphi\psi(x - y) = \varphi\psi(x) - \varphi\psi(y).$$

Combining this equation with (5) we see that

(8) $\psi(x) - \varphi(y) \leq \varphi \psi(x) - \varphi \psi(y).$

Since $\varphi \psi(x) \leq \psi(x) \leq x$ by Lemma 1, (8) implies (6). Inequality (7) can be derived similarly.

5. On the fixed ideal and the kernel of a derivation. By Theorem 1 and Proposition 2, the fixed elements of a derivation φ (that is, the elements x such that $\varphi(x) = x$) of a lattice L form an ideal of L. This ideal will be called the *fixed ideal* of φ and denoted by Fix φ .

Let L be a lattice with least element o. Then, by the *kernel* of φ we mean the set of all elements x of L such that $\varphi(x)=o$. The kernel of φ will be denoted by Ker φ .

We make some comments on the relations between the fixed ideal and the kernel of a derivation φ of a lattice L with least element o.

Remark 1. Fix $\varphi \cap \operatorname{Ker} \varphi = \{o\}$.

Remark 2. Fix $\varphi = \{o\}$ implies Ker $\varphi = L$.

Remark 3. If L has at least two elements, then Ker $\varphi = \{o\}$ implies Fix $\varphi \supset \{o\}$.

Remark 4. There exist lattices L with least element o such that Ker $\varphi \supset \{o\}$ and Fix $\varphi \supset \{o\}$.

Proof.

1. If $x \in \text{Fix } \varphi \cap \text{Ker } \varphi$, then $x = \varphi(x) = o$.

2. By Corollary 1, $\varphi(x) \in \text{Fix } \varphi$ for each $x \in L$. Thus, Fix $\varphi = \{o\}$ implies that $\varphi(x) = o$ for each $x \in L$.

3. If L has at least two elements, then there exists an element $c \in L$ such that $c \neq o$. Suppose Ker $\varphi = \{o\}$. Then $\varphi(c) \neq o$ and $\varphi(c) \in Fix \varphi$, by Corollary 1.

4. Consider the lattice of the diagram below where the arrow directed upward denotes an arbitrary chain (with or without a greatest element). Then the mapping

defined by $\varphi(x) = a - x$ is a derivation of the lattice for which Fix $\varphi = (a]$ and Ker $\varphi = (b]$.

References

- [1] G. BIRKHOFF, Lattice theory, Amer. Math. Soc. Coll. Publ. 25, third edition (New York, 1967).
- [2] K. Iséki, On endomorphism with fixed element on algebra, Proc. Japan Acad., 40 (1964), 403.

[3] G. SZÁSZ, Die Translationen der Halbverbände, Acta Sci. Math., 17 (1956), 165-169.

- [4] G. Szász, Translationen der Verbände, Acta Fac. Rer. Nat. Univ. Comenianae, 5 (1961), 53– 57.
- [5]. G. Szász, Introduction to lattice theory (Budapest, 1963).

(Received July 19, revised September 13, 1974)