Derivations of lattices

By G. SZASZ in Budapest

1. Introduction. A mapping a—a’ of a ring R into itself is called a derivation
of R if the equations

(a+bY =a +b, {(aby = a'b+ab’

hold for any pair a, b of R. As a generalization of this definition it offers itself the
following one: A mapping a—a’ of an algebra 4 with two (arbitrary) binary opera-
tions +, - into itself is called a derivation of A4 if (1) and (2) are true for any ele-
ments a, b of A.

In this note we investigate the derivations of lattices with the aid of our earlier
results in [2) concerning translations of lattices. For the concepts not defined here
see [1] or [3]. ' a

2. Preliminaries. According to what have been said in the introduction we
introduce the following

Definition 1. A single-valued mapping ¢ of a lattice L into itself is called
a derivation of L if

1) ey = 0M)—0() and @x~Y) = (@(X)~y)—(x~0())

for every pair of elements x, y of L.

Examples: _ :

1. In every lattice L, the identity mapping : defined by i1(x)=x for each x¢€L
is a derivation of L.

2. Let L be a lattice with least element 0. Then the mapping w defined by w(x)=0
for each x¢ L is a derivation of L.

3. To every neutral element # of a lattice L there corresponds a derivation gen-
erated by n, namely the mapping ¢, defined by ¢,(x)=n~x for each xcL.

In [2] we defined the translations of a lattice and established their basic prop-
erties. In studying the derivations we shall need the dual concept. Therefore we
distinguish now join-translations and meet-translations as follows:
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Definition 2. A single-valued mapping 2 of a lattice L into itself is called a
Jjoin-translation if

@) Alx—y) = Ax)—y
and a meet-translation if
3 A(x~p) = Mx)~y

for each pair of elements x, y of L.

1t was shown in [2] that the only mapping of L into itself which is a Jom-transla-
tion as well as a meet-translation is the identity mapping of L.

For sake of completeness of this note we formulate all those results of [2] that
will be applied here.

Proposition 1. Every meet-translation of a lattice L is an idempotent meet-
endomorphism (that is, a meet-endomorphism 2 for which 1(/(x))=4(x) identically).

Proposition 2. The fixed elements of a meet-translation 1 of a lattice L
form an ideal I, of L and, for any two meet-translations A, i of L, 2,52, implies
I, =1, .

~1 2

Proposition 3. Any two meet-translations of a lattice are permutable

Proposition 4. A4 lattice L is distributive if and only if every meet-translatton
of L is (not only a meet-endomorphism, but) an endomorphism of L.

3. Relations between the class of derivations and other classes of lattice mappings.
Every derivation of a lattice L is a join-endomorphism of L, by definition; we show
that it is a meet-endomorphism, too, by proving the

Theorem 1. Every derivation of a lattice L is a meet-transiation of L.

Corollary 1. Every derivation of a lattice L is an idempotent endomorphism
‘of L. '

Corollary 2. The fixed elements of a derivation of a lattice L form an ideal
of L and the ideal of fixed elements determines uniquely the derivation in question.

We reach to Theorem 1 by proving the following lemmas concerning any deriva-
tion ¢ of a lattice L:

Lemma 1. o(x)=x for any element x of L.
Lemma 2. x=y implies o(x)=¢(y) (x, ycL).
Lemma 3. x=y implies ¢ (x)=x~¢(») (x,y€L).
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Proof. We have by (1)
0() = 9(xAX) = (P()~X)—(x~0(x)),

ie. ¢(x)=¢(x) ~x for any element x of L which is equivalent to the assertion of
Lemma I. '
If x=y, then (1) implies
?(y) = e(x=y) = @(X)~0(»),

i.e. @(x)=¢@(y), as asserted in Lemma 2,
Let x=y again. Then ¢(x)=x=y by Lemma 1. Consequently

9(x) = e(x~y) = (PF)~V)—(x~p () = e(X)—(x~0 (),
ie. x~@(»)=¢(x). On the other hand, p(x)=x by Lemma 1 and p(x)=p(y) by
Lemma 2. Therefore
B X~ () = ¢(x),
too, completing the proof of Lemma 3.
Applying Lemma 3 to the case x=u.~v, y=u we get

O U~V) = Umv~0(1) = @)~V

for any elements u, v of L (since u~¢(u)=¢(u) by Lemma 1). Thus every deriva-
tion of L identically satisfies (3) and therefore it is a meet-translation of L, indeed.

Corollary 1 follows from Definition 1 and Proposition 1. Corollary 2 follows
from Proposition 2. Thus Theorem 1 and the corollaries following it have been
proved. -

As a simple consequence of Lemma 3 we have also the
Corollary 3 Every derivation ¢ of a lattice L is of the form
@ : P(x) = cmx
with a suitably chosen c€L if and only if L has a greatest elementl_

Proof. If i is the greatest element of L, then ¢ (x)=x~¢(i) for each x¢L,
by Lemma 3. If, however, L has no greatest element, then the. identity mapping of
L cannot be represented in the form (4), because ¢c~x=x for x=>c.

It is easy to see that the class of all derivations of a lattice L at least of two ele-
ments is a proper subclass of all endomorphisms of L. In fact, given an clement ¢
different from the least element (eventually existing) of L, the mapping y(x) de-
fine by '

y(x) = ¢ for each x€L

is an endomorphism of L which is no- derivation because there exists at least one -

7



152 G. Szasz

element d in L such that ¢>d and thus y(d)>d Hence Lemma 1 does not hold for
this mapping y. ’

Now we are going to give a fuller characterization of the derivations among
the meet-translations and the endomorphisms.

Theorem 2. Let D, T, J, E denote the set of all derivations, meet-translations,
Jjoin-endomorphisms and endomorphisms, respectively, of a lattice L. Then

D =TNJ = TNE.

In other words, a meet-translation of a lattice is a derivation if and only if it is a join-
endomorphism (or equivalently, an endomorphism) of that lattice. :

"Corollary 4. Let I be an ideal of the lattice L and ¢ an. endomorphism of L
onto I such that ¢ (x)=x for each x€l. Then ¢ is a derivation of L.

Corollary 5. A lattice is distributive if and only if D=T.

Proof. DS T by Theorem 1 and D J by Definition 1. Therefore DS TN J.
On the other hand, the second equation (1) is identically satisfied by any meet-
translation of a lattice. For; if ¢ is a meet-translation of the lattice L, then

p(x~y) = p(x)~y and @(x~y) = P(Y~X) = () ~X = X~ ()

for any elements x, y of L whence the second equation (1) trivially follows. This
means that any mapping ¢ €T J satisfies (1). Consequently, TﬂJ € D. Thus the
equation D=T1J has been verified.

Let M denote the set of all meet-endomorphisms of L. Then, by Proposition 1,
T=TNM. Hence TNJ=TNMNE=TNE, completing the proof of Theorem 2.

Now, let ¢ be an endomorphism of L that satisfies the conditions in Corollary 4.
Since I is, a fortiori, an ideal of the meet-semilattice L™ of L, the mapping ¢ is a
translation of L™ by Theorem 2 of [3]. Hence, ¢ is (not only an endomorphism but)
a meet-translation .of- L. :

Corollary 5 is an immediate consequence of Theorem 2 and. Proposition 4.

Remark. One can derive also immediately from Lemma 3 that every deriva-
tion is idempotent (by taking x=¢(r) and y=¢) and that the ﬁxed elements form
an ideal (by taking x=y=¢(})).

4. Basic properties of the muitiplication of derivations. By the product go
of two mappings ¢ and ¢ of a set S into itself we mean, as usual, the mappmg .4
defined by n(x)=¢(c(x)) (x€S).

Theorem 3. The set of all derivations of a given lattice forms a commutative
sermigoup with respect to the multiplication of mappings.
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Proof. It is well-known that the multipli_catioh'of' mappings is associative.
Furthermore, any two derivations of a lattice are permutab]e by Theorem 1 and
Proposition 3. Thus we have only to show that the product of any two derivations
of a lattice is again a derivation of that lattice.

Let ¢ and y be arbitrary derlvatlons x and y arbltrary elements of a lattice L.
Then, by the first equation (1) we have

oY (x—p) = oW (=Y () = oY () (),
that is, @y is a join-endomorphism of L. Moreover, by both equations (1) we get
PY(x~y) = o((¥ (X)‘f;y)v(x%l/!(y))) = (Y (D) ~y)—p(x~¥ (1)),
whence,.by the second equation (1),
5 P~ = (PP~ AY D~ (D)@ () ~Y D)) (x~ ¥ (7).

In order to prove the theorem we have to show that the right-hand side of (5) re-
duces to

(0¥ (X} ~)— (x~ PV ().
We shall achieve this purpose by verifying the inequalities '
© T Y@Ae0) = Xl (),
() P)~Y () = oY (xX)~y.

B'y' Corollary 1, ¢ and Y are endomorphismé of L. Therefore
PP (x~p) = oY ()@Y (3).

Combinihg this equation with (5) we see that -

(8) Y(X)~e () = oY (X)~p¥ ().

Since @y (x)=y(x)=x by Lemma 1, (8) implies (6). Inequality (7) can be derived.
similarly.

5. On the fixed ideal and the kernel of a derivation. By Theorem 1 and Proposi-
tion 2, the fixed elements of a derivation ¢ (that is, the elements x such that ¢ (x)=x)
of a lattice L form an ideal of L. This ideal will be called the fixed ideal of ¢ and
denoted by Fix ¢.

Let L be a lattice with least element o. Then, by the kernel of ¢ we mean the
set of all elements x of L such that @ (x)=o0. The kernel of ¢ w1ll be denoted by
Ker o.

We make some comments on the relations between the fixed ideal and the kernel
of a derivation ¢ of a lattice L with least element o.

Remark 1. Fix (pﬂKer o={o}.
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Remark 2. Fix ¢={o} implies Kerp=L.
Remark 3. If L has at least two elements, then Ker ¢ = {0} implies Fix ¢ > {0}

Remark 4. There exist lattices L with least element o such that Ker o> {o}
and Fix ¢ D {o}.

Proof.

1. If xeFix o NKer ¢, then x=¢(x)=0.

2. By Corollary 1, (p(x)Ele ¢ for each x€L. Thus, Fix o= {o} implies that

¢ (x)=o for each x€ L.

3. If L has at least two elements, then there exists an element c€ L such that
c#0. Suppose Ker ¢ ={0}. Then ¢(c)>0 and ¢(c)€Fix ¢, by Corollary 1.

4. Consider the lattice of the diagram below where the arrow directed upward
denotes an arbitrary chain (with or without a greatest element). Then the mapping

o

defined by ¢(x)=a~x is a denvatlon of the lattice tor which Fix ¢ =(a] and
Kerop= (b]
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