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1. Introduction. A mapping of a ring R in to itself is called a derivation 
of R if the equat ions 

{a + b)' = a +b', (ah)' = a'b + ab' 

hold for any pair a, b of R. As a generalization of this definition it offers itself the 
following one: A 'mapp ing a—a' of an algebra A with two (arbitrary) binary opera-
tions + , • in to itself is called a derivation of A if (1) and (2) are true fo r any ele-
ments a, b of A. 

In this note we investigate the derivations of lattices with the aid of our earlier 
results in [2] concerning translations of lattices. For the concepts not defined here 
see [1] or [3]. 

2. Preliminaries. According to what have been said in the introduction we 
introduce the following 

D e f i n i t i o n 1. A single-valued mapping <p of a lattice L into itself is called 
a derivation of L if 

(1) (p(x^y) = <p{x)^(p(y) and <p(x^y) = ((p(x)^y)^(x^q>(y)) 

for every pair of elements x, y of L. 

Examples: 
1. In every lattice L, the identity mapping i defined by t(x) = x for each x£L 

is a derivation of L. 
2. Let L be a lattice with least element o. Then the mapping a> defined by co(x) = o 

for each x£L is a derivation of L. 
3. T o every neutral element n of a lattice L there corresponds a derivation gen-

erated by n, namely the mapping (pn defined by q)„(x) = n^x for each x£L. 

In [2] we defined the translations of a lattice and established their basic prop-
erties. In studying the derivations we shall need the dual concept. Therefore we 
distinguish now join-translations and meet-translations as follows: 
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D e f i n i t i o n 2. A single-valued mapping X of a lattice L into itself is called a 
join-translation if 

• for each pair of elements x, y of L. 

It was shown in [2] that the only mapping of L into itself which is a join-transla-
tion as well as a meet-translation is the identity mapping of L. 

For sake of completeness of this note we formulate all those results of [2] that 
will be applied here. 

P r o p o s i t i o n 1. Every meet-translation of a lattice L is an idempotent meet-
endomorphism (that is, a meet-endomorphism X for which A(A(*)) = A(;c) identically). 

P r o p o s i t i o n 2. The fixed elements of a meet-translation X of a lattice L 
form an ideal Ix of L and, for any two meet-translations Xx, A, of L, X1riX2 implies 

P r o p o s i t i o n 3. Any two meet-translations of a lattice are permutable. 

P r o p o s i t i o n 4. A lattice L is distributive if and only if every meet-translation 
of L is (not only a meet-endomorphism, but) an endomorphism of L. 

3. Relations between the class of derivations and other classes of lattice mappings. 
Every derivation of a lattice L is a join-endomorphism of L, by definition; we show 
that it is a meet-endomorphism, too, by proving the 

T h e o r e m 1. Every derivation of a lattice L is a meet-translation of L. 

C o r o l l a r y 1. Every derivation of a lattice L is an idempotent endomorphism 

C o r o l l a r y 2. The fixed elements of a derivation of a lattice L form an ideal 
of L and the ideal of fixed elements determines uniquely the derivation in question. 

We reach to Theorem 1 by proving the following lemmas concerning any deriva-
tion <p of a lattice L : 

L e m m a 1. <p(x)^x for any element x of L. 

L e m m a 2. xSy implies (p(x)^cp(y) (x,y£L). 

L e m m a 3. x^y implies (p(x)=x^<p(y) (x,y£L). 

X(x^y) = X(x)^y 

(3) X(x^y) = X(x)^y 

of L. 
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P r o o f . We have by (1) 

<p{x) = (p(x^x) = ((p (x)s~,x)^(xs-,(p(x)), 

i.e. (p(x) = (p(x)^x for any element x of L which is equivalent to the assertion of 
Lemma 1. 

If x ^ y , then (1) implies 

<P(y) = <P(x^y) = <p(x)^(p(y), 

i.e. (p(x)^<p(y), as asserted in Lemma2. 
Let x ^ y again. Then ( p ( x ) ^ x ^ y by Lemma 1. Consequently 

<p(x) = <p{x^y) = (<p (x)^y)^(x^,q>(yj) = (p(x)^(x^(p(y)), 

i.e. x^(p{y)^<p(x) . On the other hand, <p(x)Sx by Lemma 1 and (p(x)^(p(y) by 
Lemma 2. Therefore 

X^(p(y) ^ (p(X), 

too, completing the proof of Lemma 3. 
Applying Lemma 3 to the case x=u^v, y=u we get 

( p ( u ^ v ) = u^v^(p{u) = (p(u)^v 

for any elements u, v of L (since u^(p(u) = cp(u) by Lemma 1). Thus every deriva-
tion of L identically satisfies (3) and therefore it is a meet-translation of L, indeed. 

Corollary 1 follows from. Definition 1 and Proposition 1. Corollary 2 follows 
f rom Proposition 2. Thus Theorem 1 and the corollaries following it have been 
proved. 

As a simple consequence of Lemma 3 we have also the 

C o r o l l a r y 3. Every derivation <p of a lattice L is of the form 

(4) <p(x) = c^x 

with a suitably chosen c£L if and only if L has a greatest element. 

P r o o f . If i is the greatest element of L, then cp(x) = x^xp(i) for each xdL, 
by Lemma 3. If, however, L has no greatest element, then the. identity mapping of 
L cannot be represented in the form (4), because c^x^x for x > c . 

It is easy to see that the class of all derivations of a lattice L at least of two ele-
ments is a proper subclass of all endomorphisms of L. In fact, given an element c 
different f rom the least element (eventually existing) o f L, the mapping y (x) de-
fine by 

y(x) = c for each x£L 

is an endomorphism of L which is no derivation because there exists at least one 
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element d in L such that od and thus y(d)>d. Hence Lemma 1 does not hold for 
this mapping y. ' 

Now we are going to give a fuller characterization of the derivations among 
the meet-translations and the endomorphisms. 

T h e o r e m 2. Let D, T, J, E denote the set of all derivations, meet-translations, 
join-endomorphisms and endomorphisms, respectively, of a lattice L. Then 

D = TC\J = Tt\E. 

In other words, a meet-translation of a lattice is a derivation if and only if it is a join-
endomorphism (or equivalently, an endomorphism) of that lattice. 

C o r o l l a r y 4. Let I be an ideal of the lattice L and <p an. endomorphism of L 
onto I such that (p (x) = x for each x£l. Then q> is a derivation of L. 

C o r o l l a r y 5. A lattice is distributive if and only if D — T. 

P r o o f . DQT by t h e o r e m 1 and DQJ by Definition 1. Therefore D^TPiJ. 
On the other hand, the second equation (1) is identically satisfied by any meet-

translation of a lattice. For, if <p is a meet-translation of the lattice L, then 

(p{x^y) — q>(x)^y and <p(x^-,y) = (p(y^x) = <p(y)^x = x^.(p(y) 

for any elements x, y of L whence the second equation (1) trivially follows. This 
means that any mapping tpGTDJ satisfies (1). Consequently, T O J ^ D . Thus the 
equation D=T(~)J has been verified. 

Let M denote the set of all meet-endomorphisms of L. Then, by Proposition 1, 
T=T(~)M. Hence Tf]J=Tr\Mf]E=TC]E, completing the proof of Theorem 2. 

Now, let (p be an endomorphism of L that satisfies the conditions in Corollary 4. 
Since I is, a fortiori, an ideal of the meet-semilattice L " of L, the mapping cp is a 
translation of L" by Theorem 2 of [3]. Hence, cp is (not only an endomorphism but) 
a meet-translation of L. 

Corollary 5 is an immediate consequence of Theorem 2 and Proposition 4. 

R e m a r k . One,can derive also immediately f rom Lemma 3 that every deriva-
tion is idempotent (by taking x=(p(t) and y=t) and that the fixed elements f o r m 
an ideal (by taking x^y = cp(y)). 

4. Basic properties of the multiplication of derivations. By the product ga 
of two mappings Q and a of a set S into itself we mean, as usual, the mapping n 
defined by n(x)=e ( f f (*)) (x € S). ' 

T h e o r e m 3. The set of all derivations of a given lattice forms a commutative 
sermigoup with respect to the multiplication of mappings. 
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P r o o f . I t is well-known that the multiplication of mappings is associative. 
Furthermore, any two derivations of a lattice are permutable by Theorem 1 and 
Proposition 3. Thus we have only to show that the product of any two derivations 
of a lattice is again a derivation of that lattice. 

Let tp and i// be arbitrary derivations, x and y arbitrary elements of a lattice L. 
Then, by the first equation (1) we have 

(p\p (X w = <?O(x)wiK>0) = <pit/(x)^(pil/(y), 

that is, (pip is a join-endomorphism of L. Moreover, by both equations (1) we get 

whence,-by the second equation (1), 

(5) (P4>(X^Y) = { ( P I J ' ( X ) ^ Y ) ^ ( I J ( X ) ^ ( P ( Y ) ) ^ ( ( P ( X ) ^ ( Y J ) ^ ( X ^ , ( P I L / ( Y ) ) . 

In order to prove the theorem we have to show that the right-hand side of (5) re-
duces to 

We shall achieve this purpose by verifying the inequalities 

(6) \p(x)^<p(y) S x^(p\//(y), 

(7) (p(x)^\p(y) S (p\p{x)^y. 

By Corollary 1, q> and ty are endomorphisms of L. Therefore 

(p\jj{x^y) = q>\p(x)^(p\ji(y). 

Combining this equation with (5) we see that 

(8) 4>(x)^(p(y) 35 (p\j/(x)^(p\j/(y). 

Since (pip(x)^ip (X) = b y Lemma 1, (8) implies (6). Inequality (7) can be derived 
similarly. 

5. On the fixed ideal and the kernel of a derivation. By Theorem 1 and Proposi-
tion 2, the fixed elements of a derivation q> (that is, the elements x such that <p (x) = x) 
of a lattice L form an ideal of L. This ideal will be called the fixed ideal of (p and 
denoted by Fix (p. 

Let L be a lattice with least element o. Then, by the kernel of cp we mean the 
set of all elements x of L such that (p(x)=o. The kernel of cp will be denoted by 
Ker<p. 

We make some comments on the relations between the fixed ideal and the kernel 
of a derivation cp of a lattice L with least element o. 

R e m a r k 1. Fix <p f lKer <p = {o}. 
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R e m a r k 2. Fix<p={o} implies Ker<p=L. 

R e m a r k 3. If L has at least two elements, then Ker cp~{o) implies Fix cp z> {o}. 

R e m a r k 4. There exist lattices L with least element o such that Ke r cp 3 {o} 
and Fix (p D {o}. 

P r o o f . 
1. If x € F i x ( p f l K e r (p, then x=<p(x)=o. 
2. By Corollary 1, cp (x)£Fix cp f o r each x£L. Thus, Fix cp = {<?} implies tha t 

<p(x)~o fo r each x £ L . 
3. If L has at least two elements, then there exists an element c£L such tha t 

ct^o. Suppose Ker q> = {o}. Then <p(c)^o and cp(c)PFix (p, by Corollary 1. 
4. Consider the lattice of the diagram below where the a r row directed upward 

denotes an arbi trary chain (with or without a greatest element). Then the mapp ing 

defined by (p(x)—a^x is a derivation of the lattice for which Fix cp ~ (a] and 
Ker r/>=(6]. 
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