On the invariant subspace lattice $1+\omega^{*}$ (Corrigendum)

By DOMINGO A. HERRERO in Río Cuarto (Córdoba, Argentina)

The proofs of Theorems 1 and 2 of the author's paper [2] contain several errors, which come from implicitly assuming that if $\left\{b_{n}, \beta_{n}\right\}$ is a biorthogonal system with $\left\{\beta_{n}\right\}$ total, then the span of the b_{n} 's is dense. (This is false, even for Hilbert spaces; :see [3]). The author was unable to correct this point in Theorem 1; however, the proof given in that paper shows that the following weaker statement is actually true.

Theorem. Let \mathfrak{B} be a Banach algebra with identity and assume that Lat \mathfrak{B} (the lattice of closed left ideals of \mathfrak{B}) is the denumerable chain $\left\{\mathcal{M}_{n}\right\}_{n=0}^{\infty} \cup\{(0)\}$, where $\mathfrak{M}_{0}=\mathfrak{B}$ and $\operatorname{dim} \mathfrak{M}_{n} / \mathcal{M}_{n+1}=1$ for $n=0,1,2, \ldots$. Let t be an arbitrary element of $\mathfrak{M}_{1} \backslash \mathfrak{M}_{2}$; then t is quasinilpotent, \mathfrak{B} is a (necessarily commutative) algebra of formal power series in t, the Gelfand spectrum of \mathfrak{B} consists of a single point and $\mathfrak{M}_{n}=\operatorname{closure}\left(t^{n} \mathfrak{B}\right), n=0,1,2, \ldots . \quad$ Moreover, if $a=\sum_{n=0}^{\infty} c_{n} t^{n} \in \mathfrak{B}$, then there exist constants $\left\{C_{n}\right\}_{n=0}^{\infty}$ independent of a such that $\left|c_{n}\right| \leqq C_{n}\|a\|$.

In other words, \mathfrak{B} is the direct sum of a generalized Banach algebra of power series in the sense of S. Grabiner [1] and of \mathbf{C} (the constant terms!). The author wishes to thank Professor Sandy Grabiner, who indicated the errors contained in [2] and also provided the correct statement of Theorem 1 given above.

In Corollary 3, it is necessary to make the following change: Instead of " $t \neq 0$ ", we have to assume that " $t \neq \lambda e$ for all complex λ, where e denotes the identity of $\mathfrak{B}^{\prime \prime}$. (In fact, if $\lambda_{0} \neq 0$ is a root of the polynomial $p(z)$, then $p\left(\lambda_{0} e\right)=p\left(\lambda_{0}\right) e=0$, contradicting the thesis of the corollary.)

The result of Theorem 2 is correct, but the preliminary Lemma 5 needs several changes. Recall ($\left[3\right.$, Chapter IX]) that $\left\{b_{n}, \beta_{n}\right\}_{n=0}^{\infty}$ (b_{n} belongs to the complex Banach space \mathfrak{X} and β_{n} belongs to the dual space \mathfrak{X}^{*}) is a biorthogonal system if $\beta_{n}\left(b_{m}\right)=\delta_{n m}$ (Kronecker's delta); $\left\{b_{n}\right\}$ is a (normalized) Markushevich basis for \mathfrak{X} if the b_{n} 's are the first terms of a biorthogonal system such that $\left\{\beta_{n}\right\}$ is a total set of functionals in \mathfrak{X} and $\left\{b_{n}\right\}$ span a dense linear manifold of \mathfrak{X} (and $\left\|b_{n}\right\|=1$ for all n). For the existence and properties of Markushevich bases, the reader is referred to [3].

Replace Lemma 5 by the following

Lemma. Let $\left\{b_{n}\right\}_{n=0}^{\infty}$ be a normalized Markushevich basis for the complex Banach space $\mathfrak{\mathfrak { Z }}$ and let $\left\{\beta_{n}\right\} \subset \mathfrak{X}^{*}$ be chosen so that $\left\{b_{n}, \beta_{n}\right\}$ is a biorthogonal system. Let $0 \leqq \varepsilon_{n} \leqq\left(2\left\|\beta_{n}\right\|\right)^{-1}$ and let $\left\{b_{n}^{\prime}, \beta_{n}^{\prime}\right\}$ be a second biorthogonal system, with $\beta_{n}^{\prime}=$ $=\beta_{n}+\varepsilon_{n+1} \beta_{n+1}, n=0,1,2, \ldots$. Then $\left\{b_{n}^{\prime}\right\}$ is also a Markushevich basis for \mathfrak{X}.

Proof. Clearly, $\left\|\beta_{n}\right\| \geqq \beta_{n}\left(b_{n}\right)=1$, so that $0 \leqq \varepsilon_{n} \leqq 1 / 2$. That $\left\{\beta_{n}^{\prime}\right\}$ is total in \mathfrak{X} follows exactly as in [2, Lemma 5].

It only remains to show that the span of $\left\{b_{n}^{\prime}\right\}$ is dense in \mathscr{X}. By induction over n, it is not difficult to see that
$b_{n}^{\prime}=b_{n}-\varepsilon_{n} b_{n-1}+\varepsilon_{n} \varepsilon_{n-1} b_{n-2}-\ldots+(-1)^{n} \varepsilon_{n} \varepsilon_{n-1} \ldots \varepsilon_{2} \varepsilon_{1} b_{0} \quad\left(n=0,1,2, \ldots ; b_{-1}^{\prime}=0\right)$, so that b_{n} is a linear combination of $b_{0}^{\prime}, b_{1}^{\prime}, \ldots, b_{n}^{\prime}$, whence the result follows.

By using this result it is very easy to obtain a correct proof of Lemma 6 and Theorem 2.

After the article [2] was published, a second proof of Theorem 2 was obtained by H. Radjavi and P. Rosenthal in [4], by using a different argument.

References

[1] S. Grabiner, Derivations and automorphisms of Banach algebras of power series, Memoirs Amer. Math. Soc., 146 (Providence, Rhode Island, 1974).
[2] D. A. Herrero, On the invariant subspace lattice $1+\omega^{*}$, Acta Sci. Math., 35 (1973), 217-223.
[3] J. T. Marti, Introduction to the theory of bases, Springer-Verlag (Berlin-Heidelberg-New York, 1969).
[4] H. Radjavi and P. Rosenthal, On transitive and reductive operator algebras, Math. Ann., 209 (1974), 43—56.

