On the invariant subspace lattice $1 + \omega^*$ (Corrigendum)

By DOMINGO A. HERRERO in Río Cuarto (Córdoba, Argentina)

The proofs of Theorems 1 and 2 of the author's paper [2] contain several errors, which come from implicitly assuming that if $\{b_n, \beta_n\}$ is a biorthogonal system with $\{\beta_n\}$ total, then the span of the b_n 's is dense. (This is false, even for Hilbert spaces; see [3]). The author was unable to correct this point in Theorem 1; however, the proof given in that paper shows that the following weaker statement is actually true.

Theorem. Let \mathfrak{B} be a Banach algebra with identity and assume that Lat \mathfrak{B} (the lattice of closed left ideals of \mathfrak{B}) is the denumerable chain $\{\mathfrak{M}_n\}_{n=0}^{\infty} \cup \{(0)\}$, where $\mathfrak{M}_0 = \mathfrak{B}$ and dim $\mathfrak{M}_n/\mathfrak{M}_{n+1} = 1$ for $n = 0, 1, 2, \ldots$. Let t be an arbitrary element of $\mathfrak{M}_1 \setminus \mathfrak{M}_2$; then t is quasinilpotent, \mathfrak{B} is a (necessarily commutative) algebra of formal power series in t, the Gelfand spectrum of \mathfrak{B} consists of a single point and $\mathfrak{M}_n = \text{closure}(t^n\mathfrak{B}), n = 0, 1, 2, \ldots$. Moreover, if $a = \sum_{n=0}^{\infty} c_n t^n \in \mathfrak{B}$, then there exist constants $\{C_n\}_{n=0}^{\infty}$ independent of a such that $|c_n| \leq C_n ||a||$.

In other words, \mathfrak{B} is the direct sum of a generalized Banach algebra of power series in the sense of S. GRABINER [1] and of C (the constant terms!). The author wishes to thank Professor SANDY GRABINER, who indicated the errors contained in [2] and also provided the correct statement of Theorem 1 given above.

In Corollary 3, it is necessary to make the following change: Instead of " $t \neq 0$ ", we have to assume that " $t \neq \lambda e$ for all complex λ , where e denotes the identity of \mathfrak{B} ". (In fact, if $\lambda_0 \neq 0$ is a root of the polynomial p(z), then $p(\lambda_0 e) = p(\lambda_0)e = 0$, contradicting the thesis of the corollary.)

The result of Theorem 2 is correct, but the preliminary Lemma 5 needs several changes. Recall ([3, Chapter IX]) that $\{b_n, \beta_n\}_{n=0}^{\infty}$ (b_n belongs to the complex Banach space \mathfrak{X} and β_n belongs to the dual space \mathfrak{X}^*) is a biorthogonal system if $\beta_n(b_m) = \delta_{nm}$ (Kronecker's delta); $\{b_n\}$ is a (normalized) Markushevich basis for \mathfrak{X} if the b_n 's are the first terms of a biorthogonal system such that $\{\beta_n\}$ is a total set of functionals in \mathfrak{X} and $\{b_n\}$ span a dense linear manifold of \mathfrak{X} (and $||b_n|| = 1$ for all n). For the existence and properties of Markushevich bases, the reader is referred to [3].

Replace Lemma 5 by the following

Lemma. Let $\{b_n\}_{n=0}^{\infty}$ be a normalized Markushevich basis for the complex Banach space \mathfrak{X} and let $\{\beta_n\} \subset \mathfrak{X}^*$ be chosen so that $\{b_n, \beta_n\}$ is a biorthogonal system. Let $0 \leq \varepsilon_n \leq (2 ||\beta_n||)^{-1}$ and let $\{b'_n, \beta'_n\}$ be a second biorthogonal system, with $\beta'_n = = \beta_n + \varepsilon_{n+1}\beta_{n+1}$, n=0, 1, 2, ... Then $\{b'_n\}$ is also a Markushevich basis for \mathfrak{X} .

Proof. Clearly, $\|\beta_n\| \ge \beta_n(b_n) = 1$, so that $0 \le \varepsilon_n \le 1/2$. That $\{\beta'_n\}$ is total in \mathfrak{X} follows exactly as in [2, Lemma 5].

It only remains to show that the span of $\{b'_n\}$ is dense in \mathscr{X} . By induction over *n*, it is not difficult to see that

 $b'_n = b_n - \varepsilon_n b_{n-1} + \varepsilon_n \varepsilon_{n-1} b_{n-2} - \dots + (-1)^n \varepsilon_n \varepsilon_{n-1} \dots \varepsilon_2 \varepsilon_1 b_0 \qquad (n = 0, 1, 2, \dots; b_{-1} = 0),$ so that b_n is a linear combination of b'_0, b'_1, \dots, b'_n , whence the result follows.

By using this result it is very easy to obtain a correct proof of Lemma 6 and Theorem 2.

After the article [2] was published, a second proof of Theorem 2 was obtained by H. RADJAVI and P. ROSENTHAL in [4], by using a different argument.

References

- S. GRABINER, Derivations and automorphisms of Banach algebras of power series, Memoirs Amer. Math. Soc., 146 (Providence, Rhode Island, 1974).
- [2] D. A. HERRERO, On the invariant subspace lattice $1 + \omega^*$, Acta Sci. Math., 35 (1973), 217–223.
- [3] J. T. MARTI, Introduction to the theory of bases, Springer-Verlag (Berlin-Heidelberg-New York, 1969).
- [4] H. RADJAVI and P. ROSENTHAL, On transitive and reductive operator algebras, Math. Ann., 209 (1974), 43-56.

DEPARTAMENTO DE MATEMÁTICAS UNIVERSIDAD NACIONAL RÍO CUARTO, CÓRDOBA, ARGENTINA

(Received April 2, 1975)