Canonical number systems for complex integers

By I. KÁTAI and J. SZABÓ in Budapest

1. It is a well-known fact that every non-negative integer N has a unique representation of the form

(1.1)
$$N = a_0 + a_1 A + \ldots + a_k A^k,$$

where the integers a_j are selected from the set $\{0, 1, ..., A-1\}$, and A is an integer, $A \ge 2$. Furthermore, choosing a negative integer -A ($A \ge 2$), we can represent every integer N as a sum:

(1.2)
$$N = a_0 + a_1(-A) + \dots + a_k(-A)^k, \quad 0 \le a_j \le A - 1$$
 $(j = 0, 1, \dots, k - 1),$

where a_i are integers. The representation (1.2) is also unique.

The number systems of negative base have some applications in the theory of computations.

The following question seems to be interesting: Given a Gaussian integer ϑ , can we represent every Gaussian integer α in the form

(1.3)
$$\alpha = r_0 + r_1 \vartheta + \ldots + r_k \vartheta^k$$

or not? Here $r_i \in \mathfrak{A}$, \mathfrak{A} being a fixed complete residue system mod ϑ .

If the answer is affirmative, we say that $(9, \mathfrak{A})$ is a number system.

We shall investigate only the case $\mathfrak{A} = \mathfrak{A}_0$ where

(1.4)
$$\mathfrak{A}_0 = \{0, 1, \dots, N(9) - 1\}$$

and N(9) denotes the "norm"

$$N(\vartheta) = \vartheta \cdot \overline{\vartheta} = (\operatorname{Re} \vartheta)^2 + (\operatorname{Im} \vartheta)^2.$$

It is known that for $\vartheta = -1 + i$, $(\vartheta, \mathfrak{A}_0)$ is a number system; see [1] We prove:

Theorem 1. $(9, \mathfrak{A}_0)$ is a number system if and only if

a) Re $\vartheta < 0$ and b) Im $\vartheta = \pm 1$.

For $\vartheta = -A \pm i$ the representation of α in the form (1.3) is unique.

I. Kátai and J. Szabó

Theorem 2. Let $\vartheta = -A \pm i$, z an arbitrary complex number. Then

(1.5)
$$z = a_{l} \vartheta^{l} + \ldots + a_{0} + \frac{a_{-1}}{\vartheta} + \frac{a_{-2}}{\vartheta^{2}} + \ldots,$$

where $a_j \in \mathfrak{A}_0$ (j = l, l - 1, ..., 0, -1, -2, ...).

We do not assert the uniqueness of the representation of z in the form (1.5).

2. Proof of Theorem 1. Necessity. Let $\vartheta = A + Bi$. Then

$$\mathfrak{A}_0 = \{0, 1, \dots, A^2 + B^2 - 1\}.$$

It is obvious that \mathfrak{A}_0 must be a complete residue system mod ϑ if $(\vartheta, \mathfrak{A}_0)$ is a number system. In the opposite case there is an α which is incongruent to k for every k in \mathfrak{A}_0 , but from (1.3) $\alpha \equiv r_0 \pmod{\vartheta}$, $r_0 \in \mathfrak{A}_0$ follows, and this is a contradiction.

Suppose that A > 0. We prove that $\alpha = (1 - A) + iB = 1 - \overline{9}$ has no representation of type (1.3). Suppose in the contrary that

(2.1)
$$\alpha = r_0 + r_1 \vartheta + \ldots + r_k \vartheta^k.$$

Let

$$\varrho = \alpha(1-\vartheta) = (1-A)^2 + B^2 = A^2 + B^2 - 2A + 1.$$

Since $A \ge 1$, we have $\varrho \in \mathfrak{A}_0$. From (2.1) we get

$$\varrho = r_0 + (r_1 - r_0) \vartheta + \dots + (r_k - r_{k-1}) \vartheta^k - r_k \vartheta^{k+1}.$$

Hence $\varrho \equiv r_0 \mod \vartheta$, and by $\varrho \in \mathfrak{A}_0$, $r_0 \in \mathfrak{A}_0$ we get: $\varrho = r_0$. So

$$(r_1 - r_0)\vartheta + \dots + (r_k - r_{k-1})\vartheta^k - r_k\vartheta^{k+1} = 0.$$

Hence it follows immediately that

$$r_1 - r_0 = 0, \ldots, r_k - r_{k-1} = 0, r_k = 0,$$

whence $r_k = r_{k-1} = ... = r_1 = r_0 = 0$. Therefore $\varrho = 0$, and so A = 1, B = 0. But it is obvious that $\vartheta = 1$ is not a base of a number system. Similarly, $\vartheta = \pm i (A = 0, B = \pm 1)$ is not a base of a number system, either.

Let now Im $9 = B \neq \pm 1$. Let us take into account that B is a divisor of Im 9^{ν} ($\nu = 1, 2, ...$). Hence, for an α of (1.3) we get:

$$\operatorname{Im} \alpha = r_1 \operatorname{Im} \vartheta + \ldots + r_k \operatorname{Im} \vartheta^k,$$

and so B|Im α . Consequently, (1.3) will not hold for $\alpha = i$ ($B \neq \pm 1$).

Sufficiency. Let now $\vartheta = -A + i$ $(A \ge 1)$. Then \mathfrak{A}_0 is a complete residue system mod ϑ as it is well known. Let us take into account, that

(2.2)
$$9^2 + 2A9 + A^2 + 1 = 0.$$

Let $\alpha = E + Fi$ be an arbitrary Gaussian integer. Taking D = F, C = E + AF, we get (2.3) $\alpha = C + D9$.

First we prove that every α has the form

(2.4)
$$\alpha = U + V9 + X9^2 + Y9^3,$$

where U, V, X, Y are non-negative integers. From (2.2) we have

$$-1 = \vartheta^2 + 2A\vartheta + A^2.$$

Assuming that C < 0 we can substitute C in (2.3) by

$$|C| \cdot \vartheta^2 + 2A|C| \cdot \vartheta + A^2|C|.$$

In the case D < 0 we take a similar substitution, and get (2.4).

We shall use the following relation:

(2.5)
$$A^{2}+1 = \vartheta^{3}+(2A-1)\vartheta^{2}+(A-1)^{2}\vartheta$$

(2.6) $\alpha = d_0 + d_1 \vartheta + \ldots + d_k \vartheta^k \quad (k \ge 3), \quad d_j \ge 0 \quad (j = 0, \ldots, k).$

Let

(2.7)
$$t(\alpha, d) = d_0 + d_1 + \ldots + d_k;$$

 $t(\alpha, d)$ is a non-negative integer, $t(\alpha, d) = 0$ only if $\alpha = 0$. We take

$$d_0 = r_0 + tN(9) = r_0 + t(A^2 + 1),$$

 $t \ge 0$, integer, $0 \le r_0 \le A^2$. From (2.5) we have

(2.8)
$$d_0 = r_0 + t(A^2 + 1) = r_0 + t(A - 1)^2 \vartheta + t(2A - 1)\vartheta^2 + t\vartheta^3.$$

We take the right hand side of (2.8) into (2.6). Then

$$\alpha = r_0 + (d_1 + t(A-1)^2)\vartheta + (d_2 + t(2A-1))\vartheta^2 + (d_3 + t)\vartheta^3 + d_4\vartheta^4 + \dots + d_k\vartheta^k = (2.9) = d_0^* + d_1^*\vartheta + \dots + d_k^*\vartheta^k.$$

Since

$$-t(A+1)^{2}+t(A-1)^{2}+t(2A-1)+t=0,$$

therefore

(2.10)
$$t(\alpha, d^*) = d_0^* + \dots + d_k^* = t(\alpha, d), \quad d_j^* \ge 0 \quad (j = 0, \dots, k).$$
$$a_1 = d_1^* + d_2^* \vartheta + \dots + d_k^* \vartheta^{k-1}.$$

6 · A

I. Kátai and J. Szabó

We have

(2.11) $\alpha = \alpha_1 \vartheta + r_0 \quad (r_0 \in \mathfrak{A}_0),$ $t(\alpha_1, d^*) = d_1^* + d_2^* + \dots + d_k^*.$

It is obvious that $t(\alpha_1, d^*) < t(\alpha, d)$, when $r_0 \neq 0$. For $r_0 = 0$, $t(\alpha_1, d^*) = t(\alpha, d)$.

Now we write $t(\alpha, d) = t(\alpha)$, $t(\alpha_1, d^*) = t(\alpha_1)$, We repeat the algorithm (2.9), (2.11):

$$\alpha = \alpha_1 \vartheta + r_0, \quad \alpha_1 = \alpha_2 \vartheta + r_1, \quad \dots, \quad \alpha_{j-1} = \alpha_j \vartheta + r_{j-1} \quad (r_i \in \mathfrak{A}_0).$$

Then $t(\alpha) \ge t(\alpha_1) \ge ...$ and $t(\alpha_i) > t(\alpha_{i+1})$ when $r_i \ne 0$. This process is terminated at the *j*th step if $\alpha_i = 0$. In this case we get

$$\alpha = r_0 + r_1 \vartheta + \ldots + r_{i-1} \vartheta^{j-1} \quad (r_i \in \mathfrak{A}_0).$$

Suppose that the process is not terminated. Then for a suitably large i

$$t(\alpha_i) = t(\alpha_{i+1}) = \dots (\neq 0).$$

$$\alpha_i = \alpha_{i+1}\vartheta, \dots \alpha_{i+k-1} = \alpha_{i+k}\vartheta$$

Hence

and, therefore,
$$\vartheta^k | \alpha_i \ (k=1, 2, ...)$$
. This holds only if $\alpha_i = 0$.

We proved the existence of the representation of α in the form (1.3).

Let us suppose now that there is an α wich has two different representations:

$$\mathbf{x} = r_0 + r_1 \vartheta + \ldots + r_k \vartheta^k = s_0 + s_1 \vartheta + \ldots + s_k \vartheta^k, \quad r_i, s_i \in \mathfrak{A}_0.$$

Then $0 = (r_0 - s_0) + (r_1 - s_1)\vartheta + \dots + (r_k - s_k)\vartheta^k$ and therefore $r_0 \equiv s_0 \mod \vartheta$; as r_0 , $s_0 \in \mathfrak{A}_0$ we get $r_0 = s_0$. Dividing by ϑ , we get

 $0 = (r_1 - s_1) + \ldots + (r_k - s_k) \vartheta^{k-1}.$

We repeat the argument. Finally we get:

$$r_0 = s_0, r_1 = s_1, \ldots, r_k = s_k.$$

We have proved the theorem for $\vartheta = -A + i$.

Let now $\vartheta = -A - i$. Using the theorem for $\vartheta = -A + i$, we get

$$\bar{\alpha} = r_0 + r_1 \bar{\vartheta} + \ldots + r_k \bar{\vartheta}^k \quad (r_i \in \mathfrak{A}_0)$$

for every Gaussian integer $\bar{\alpha}$. Hence

$$\alpha = r_0 + r_1 \vartheta + \ldots + r_k \vartheta^k,$$

and so the theorem holds for $\vartheta = -A - i$, too.

Canonical number systems for complex integers

3. Proof of Theorem 2. Let z be an arbitrary complex number, z=x+iy. Let

$$(3.1) \qquad \qquad \vartheta^k = U_k + i V_k.$$

We have

(3.2)
$$z = \frac{z \vartheta^k}{\vartheta^k} = \frac{(x+iy)(U_k+iV_k)}{\vartheta^k} = \frac{C_k + D_k i}{\vartheta^k} + \frac{u_k + v_k i}{\vartheta^k},$$

where C_k , D_k are rational integers, $|u_k| < 1$, $|v_k| < 1$. Let

(3.3)
$$z_k = \frac{C_k + iD_k}{9^k}, \quad \delta_k = \frac{u_k + iv_k}{9^k}.$$

It is obvious that $\delta_k \to 0$ $(k \to \infty)$, and so $z_k \to z$. Since $C_k + iD_k$ is a Gaussian integer, by Theorem 1 we have

(3.4)
$$C_k + iD_k = a_t^* \vartheta^t + \ldots + a_0^*, \quad t = t(k).$$

First we prove that the sequence t(k)-k (k=1, 2, ...) has an upper bound. Indeed, from (3.4)

$$z_k = a_t^* \vartheta^{t-k} + \ldots + a_0^* \vartheta^{-k}.$$

Hence

(3.5)
$$a_t^* \vartheta^{t-k} + \ldots + a_k^* = z_k - \frac{a_{k-1}^*}{\vartheta} - \ldots - \frac{a_0^*}{\vartheta^k},$$

and so

$$|a_t^* \vartheta^{t-k} + \ldots + a_k^*| \leq |z_k| + \frac{a_{k-1}^*}{|\vartheta|} + \ldots + \frac{a_0^*}{|\vartheta|^k} \leq$$

(3.6)

6*

$$|z| + |\delta_k| + A^2 \left(\frac{1}{|\vartheta|} + \frac{1}{|\vartheta|^2} + \ldots \right) \le |z| + |\delta_k| + \frac{A^2}{|\vartheta| - 1}.$$

Hence it follows that

$$|a_t^* \mathfrak{P}^{t-k} + \ldots + a_k^*| \leq c,$$

c = c(z) being a suitable positive constant.

Since the representation of Gaussian integers in the form (1.3) is unique, and the circle $|w| \leq c$ contains only a finite set of Gaussian integers, therefore t(k)-khas an upper bound. Let K be an integer, $t-k \leq K$. Then we can write z_k as

(3.8)
$$z_k = a_K^{(k)} \vartheta^K + \ldots + a_0^{(k)} + \frac{a_{-1}^{(k)}}{\vartheta} + \frac{a_{-2}^{(k)}}{\vartheta^2} + \ldots,$$

where $a_j^{(k)} \in \mathfrak{A}_0$ (j=K, K-1, ..., 0, -1, ...). Let $b_K \in \mathfrak{A}_0$ be an integer so that $a_K^{(k)} = b_K$ for infinitely many k. Let S_K be the subset of those integers k satisfying $a_K^{(k)} = b_K$

 $=b_k$. Suppose that S_K, \ldots, S_{l+1} is constructed $(S_k \supseteq \ldots \supseteq S_{l+1})$. Then there is a $b_l \in \mathfrak{A}_0$, such that for infinitely many k in $S_{l+1} a_l^{(k)} = b_l$. Let S_l be the set of these k's. S_l has infinitely many elements. We repeat this argument for $K, K-1, \ldots 0, -1, \ldots$ Let

$$w = b_K \mathfrak{I}^K + \ldots + b_0 + \frac{b_{-1}}{\mathfrak{I}} + \ldots$$

Let $k_1 < k_2 < \dots$ be an infinite sequence, so that

 $k_{v} \in S_{K-v+1}$ (v=1, 2, ...).

Since

$$z_k = b_K \vartheta^K + \ldots + b_{K-\nu+1} \vartheta^{K-\nu+1} + a_{K_{\nabla}\nu}^{(k_\nu)} \vartheta^{K-\nu} + \ldots$$

therefore

$$\lim_{w\to\infty} z_{k_v} = w.$$

Taking into account that $\lim_{k \to \infty} z_k = z$, we have w = z. Hence it follows that (3.9) is a suitable representation of z.

We have proved Theorem 2.

Reference

[1] D. E. KNUTH, The art of computer programming. Vol. 2, Addison-Wesley Publishing Company (London, 1971).

(Received December 28, 1974)