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1. It is a well-known fact that every non-negative integer N has a unique re-
presentation of the form : ' '
(L.1) . N=a+aA+..+aqAd,

where the integers a; are selected from the sét {0, 1, ..., 4—1}, and 4 is an integer,
A=2. Furthermore, choosing a negative integer — A (4=2), we can represent every
integer N as a sum: .

(12) N=ay+ay(—A)+...+a,(—AF, 0=a,=4-1 (j=01,...,k=1),

where a; are integers. The representation (1.2) is also unique.

The number systems of negative base have some applications in the theory of
computations. ’ :

The following question seems to be interesting: Given a Gaussian integer 9, -
can we represent every Gaussian integer « in the form

(1.3) o= rg+r 3+ ...+

or not? Here r;€U, A.being a fixed complete residue system mod 3.
If the answer is affirmative, we say that (3, ) is a number system.
We shall investigate only the case A=A, where

(1.4) Ay = {0, 1, ..., N©®)—1),
and N(9) denotes the “norm”
N() = 3-8 = (Re 9)*+ (Im 9)°.

It is known that for 3= —1+1i, (3, Ay is a number system; see [1]
We prove:

Theorem 1. (9, U, is a number system if and only if
a) Red<0 and b) ImI=+1.

For 9= —A=i the representation of o in the form (1.3) is unique.
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Theorem 2. Let 3=—A+i, z an arbitrary complex number. Then

a_

(1.5) ' z=aq%¥4+ ... +a+ 3

+ 55+
where ajEQIO G=,1-1,..,0, =1, =2, ..).
We do not assert the uniqueness of the representation of z in the form (1.5).
2. Proof of Theorem 1. Necessity. Let 3=A4 +Bi. Then
WUy = {0,1, ..., A2+ B2—1}.

It is obvious that 2, must be a complete residue system mod & if (9, ) is a
number system. In the opposite case there is an « which is incongruent to k£ for
-every k in U, but from (1.3) a =ry(mod 3), €A, follows, and this is a contradiction.

Suppose that A=>0. We prove that a=(1 —4)+iB=1 —9 has no representation
of type (1.3). Suppose in the contrary that ‘

{2.1) o= ro+rd+... +r.9
Let _
0=a(l—8) = (1—AP+B' = A2+ B*—24 +1.

Since A=1, we have g€¥U,. From (2.1) we get
0 =ry+(r—r)d+ ... +(re—ri_) ¥ —r 9+
Hence g=r,mod 3, and by g€¥U,, r,cU, we get: g=r,. So
(ri—ro)8+ ...+ (ry—re_) ¥ —r 9+ = 0.
Hence it follows immediately that
ri—te=0,..,—re-,=0, r=0,

whence r,=r,_,=...=r;=ry=0. Therefore ¢=0, and so A=1, B=0. But it is
-obvious that §=1 is not a base of a number system. Similarly, 3=+i(4=0, B=+1)
is not a base of a number system, either.

Let now Im 9=B= +1. Let us take into account that B is a divisor of Im §*
(v=1, 2, ...). Hence, for an « of (1.3) we get:

Imae =r,Im3+... +r.ImI,
and so B|Im «. Consequently, (1.3) will not hold for a=i (B= £1).

Sufficiency. Let now 3= —A+i (A=1). Then U, is a complete residue system
mod 8 as it is well known. Let us take into account, that

Q2 P +249+A2+1 = 0.
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Let a=E+Fi be an arbitrary Gaussian integer. Taking D=F, C=E +AF, we get
2.3) ‘ «=C+DY. |
First we prove that every o has the form -
2.4 | o=U+VI+XP+YH$,
where U, V, X, Y are non-negative ihtegcrs. From (2.2) we have
—1= 84249+ 4.

Assuming that C<0 we can substitute C in (2.3) by

[C|-92+2A|C| -3+ 42|C|.

In the case D<0 we take a similar substitution, and get (2.4).
We shall use the following relation:

'(2'.5) A+1 = P+Q24—1) $+(4-1)29.

Let .

(2.6) o =do+d 9+ ... +d% (k=z=3), d=0 (j=0,..,k.
Let i ,

@.7) , Ctoy d) = dyrdy o dy

t(x, d) is a non-negative integer, #(¢, d)=0 only if «=0.
We take
dy = r0+tN(9) = r0+t(A2+1),

t=0, integer, 05r0§A2 From (2.5) we have

(2.8) dy = re+1(A241) = rg+t(A=1)294+1(24—1)92+193.

We take the rigﬁt hand side ‘of (2.8) into (2.6). Then

o= rot(d+1(A— 1) +(dy+1QA—1) P+ (dy + )P+, 3+ .. +d, 9% =

29) . = Ak ..+ dF O,
Since ' .
—t(A+1)2+t(A—1)2+t(2A—1)+t =0,
therefore o
t(a, d*)—d0+ +df _t(oc,d) df =0 (j=0,..,k).
Let

(2.10 o = df +df .9+ L+ dFgL

6 A
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We have
(2.11) o a= 9471 (rEUy),
t(ay, d%) = df +df + ... + dy.

It is obvious that (o, d*)<1(a, d), when ry0. For ry=0, t(oy, d*)=1(, d).
_ Now we write t(x, d)=t(x), 1(ey, d*)=1(%), .... We repeat the algorithm
2.9), 2.11): :

= 34rg, oy =0 4ry, ., ooy = o84, (rE€Up).

Then 1(e)=t(x)=... and #(x;)>1(x;4,) when r;>0. This process is terminated
- at the jth step if 2;=0. In this case we get '

a=ro+nd+..+r ¥ (e U).
Suppose that the process is not terminated. Then for a suitably large i

t(o) = t(%,q) = ... (20).
Hence '
o; = ai+19’ v Ojpp—1 = ai+k’_9

and, therefore, Fo; (k=1, 2, ...). This holds only if «;=0.
We proved the existence of the representation of « in the form (1.3).
Let us suppose now that there is an « wich has-two different representations:

o= r()+r1\9+...+rk\9k = SO+S19+...+Sk'\9k, l'i,SiEQ[(,.

Then O=(r0—so)+(r1—s1).9+'...—I-(rk—sk)S" and -therefore ro=s,mod 3; as ry,
50€ Ay we get ro=s,. Dividing by 9, we get -

O= (rl—Sl)+...+(rk—Sk)9k'1.
We repeat the argument. Finally we get:
f0=S0,r1=.§1,...,rk=Sk.

We have proved the theorem for 3= — A4 +i. '
Let now 9= —A—i. Using the theorem for §=—A+i, we get

a=ro+nd+..+n3 (reAy)
for every Gaussian integer & Hence '
o= ro+rd+ ... Fr9,

and so the theorem holds for 9= —A4—i, too.
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3. Proof of Theorem 2. Let z be an arbitrary complex number, z=x4iy. Let

3.1y A 9 = Uy +i¥.
We have .

k 3 -V - -
(3.2) 5 =z‘9ik - (x+ly)‘(9l1{k+l ) _ Ck';,?kl_*_uk'gkvkl,

where C,, D, are rational integers, |u,|<1, |v|<1. Let
Cy+iD;

u, + i,
g )

Sk

(33) Zy = 5k =

1t is obvious that d,—~0 (k— <), and so z,—~z. Since Ck-HDk is a Gaussian integer,
by Theorem 1 we have
(34 . Ci+iDy = G+ ... +a, t=tk).

First we prove that the sequence t()—k (k—l 2,. ) has an upper‘b'ound.
Indeed, from (3.4)
=a 9 4. +ao*9 k,

Hence
3.5 ARt taf =z _ G G
. A et af A 3 TG
and so .
*
* Qt —k K
(3.6) 0l = s |9I et gE =
1 1 A?
2 = _
]+ 184 + 4 [w, |9!2+ ]_lz|+16k|+|9|_1.

Hence it follows that
3.7 a9tk 4 .. +a,’f| =g,

c=\c(z) being a suitable positive constant.

Since .the representation of Gaussian integers in the form (1.3) is unique, and
the circle |w|=c contains only a finite set of Gaussian integers, therefore #(k)—k
has an upper bound. Let K be an integer, t—k=K. Then we can write z, as

: . (k) (k)
(3.8) ~ = ai? 9%+ .. +a">+—\,¢1+ a92 +.

where €U, (j=K, K—1, ..., 0, —1, ...). Let by €%, be an integer so that o=
=by for infinitely many k. Let Sy be the subset of those integers k satisfying o=

6*



!

260 I. Katai and J. Szab6: Canonical number systems for complex integers

=by. Suppose that Sy, ..., S;4; is constructed (S, 2...228,4,). Then there is a
b,€U,, such that for infinitely many k in S;,; a¥'=5,. Let S, be the set of these
k’s. S, has infinitely many elements. We repeat this argument for K, K—1, ... 0,
—1, ... Let ’ T

w = bK8K+ .+b0+%+

Let k,<k,<... be an infinite sequence, so that

ky€Sk_yrr (v=1,2,..).
Since :
Z = b 9%+ o+ by T gD 9 T

therefore lim z, = w.

y—=o0

Taking into account that klirg z,=z, we have w=z. Hence it follows that (3.9) is a

suitable representation of z.
We have proved Theorem 2. -
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