Canonical number systems for complex integers

By I. KÁTAI and J. SZABÓ in Budapest

1. It is a well-known fact that every non-negative integer N has a unique representation of the form

$$
\begin{equation*}
N=a_{0}+a_{1} A+\ldots+a_{k} A^{k} \tag{1.1}
\end{equation*}
$$

where the integers a_{j} are selected from the set $\{0,1, \ldots, A-1\}$, and A is an integer, $A \geqq 2$. Furthermore, choosing a negative integer $-A(A \geqq 2)$, we can represent every integer N as a sum:

$$
\begin{equation*}
N=a_{0}+a_{1}(-A)+\ldots+a_{k}(-A)^{k}, \quad 0 \leqq a_{j} \leqq A-1 . \quad(j=0,1, \ldots, k-1) \tag{1.2}
\end{equation*}
$$

where a_{j} are integers. The representation (1.2) is also unique.
The number systems of negative base have some applications in the theory of computations.

The following question seems to be interesting: Given a Gaussian integer ϑ, can we represent every Gaussian integer α in the form

$$
\begin{equation*}
\alpha=r_{0}+r_{1} \vartheta+\ldots+r_{k} \vartheta^{k} \tag{1.3}
\end{equation*}
$$

or not? Here $r_{j} \in \mathfrak{H}, \mathfrak{A}$. being a fixed complete residue system $\bmod \vartheta$.
If the answer is affirmative, we say that $(\vartheta, \mathfrak{Q})$ is a number system.
We shall investigate only the case $\mathfrak{A l}=\mathfrak{H}_{0}$ where

$$
\begin{equation*}
\mathfrak{N}_{0}=\{0,1, \ldots, N(\vartheta)-1\}, \tag{1.4}
\end{equation*}
$$

and $N(\vartheta)$ denotes the "norm"

$$
N(\vartheta)=\vartheta \cdot \bar{\vartheta}=(\operatorname{Re} \vartheta)^{2}+(\operatorname{Im} \vartheta)^{2}
$$

It is known that for $\vartheta=-1+i,\left(\vartheta, \mathfrak{2 l}_{0}\right)$ is a number system; see [1]
We prove:
Theorem 1. $\left(\vartheta, \mathfrak{N}_{0}\right)$ is a number system if and only if
a) $\operatorname{Re} \vartheta<0$ and
b) $\operatorname{Im} \vartheta= \pm 1$.

For $\vartheta=-A \pm i$ the representation of α in the form (1.3) is unique.

Theorem 2. Let $\vartheta=-A \pm i, z$ an arbitrary complex number. Then

$$
\begin{equation*}
z=a_{l} \vartheta^{l}+\ldots+a_{0}+\frac{a_{-1}}{\vartheta}+\frac{a_{-2}}{\vartheta^{2}}+\ldots \tag{1.5}
\end{equation*}
$$

where $a_{j} \in \mathfrak{V}_{0}(j=l, l-1, \ldots, 0,-1,-2, \ldots)$.
We do not assert the uniqueness of the representation of z in the form (1.5).
2. Proof of Theorem 1. Necessity. Let $9=A+B i$. Then

$$
\mathfrak{H}_{0}=\left\{0,1, \ldots, A^{2}+B^{2}-1\right\} .
$$

It is obvious that \mathfrak{H}_{0} must be a complete residue system $\bmod \vartheta$ if $\left(\vartheta, \mathfrak{N}_{0}\right)$ is a number system. In the opposite case there is an α which is incongruent to k for every k in \mathfrak{A}_{0}, but from $(1.3) \alpha \equiv r_{0}(\bmod \vartheta), r_{0} \in \mathfrak{N}_{0}$ follows, and this is a contradiction.

Suppose that $A>0$. We prove that $\alpha=(1-A)+i B=1-\bar{\vartheta}$ has no representation of type (1.3). Suppose in the contrary that

$$
\begin{equation*}
\alpha=r_{0}+r_{1} \vartheta+\ldots+r_{k} \vartheta^{k} \tag{2.1}
\end{equation*}
$$

Let

$$
\varrho=\alpha(1-\vartheta)=(1-A)^{2}+B^{2}=A^{2}+B^{2}-2 A+1 .
$$

Since $A \geqq 1$, we have $\varrho \in \mathfrak{A}_{0}$. From (2.1) we get

$$
\varrho=r_{0}+\left(r_{1}-r_{0}\right) \vartheta+\ldots+\left(r_{k}-r_{k-1}\right) \vartheta^{k}-r_{k} \vartheta^{k+1}
$$

Hence $\varrho \equiv r_{0} \bmod \vartheta$, and by $\varrho \in \mathfrak{A}_{0}, r_{0} \in \mathfrak{A}_{0}$ we get: $\varrho=r_{0}$. So

$$
\left(r_{1}-r_{0}\right) \vartheta+\ldots+\left(r_{k}-r_{k-1}\right) \vartheta^{k}-r_{k} \vartheta^{k+1}=0 .
$$

Hence it follows immediately that

$$
r_{1}-r_{0}=0, \ldots, r_{k}-r_{k-1}=0, \quad r_{k}=0
$$

whence $r_{k}=r_{k-1}=\ldots=r_{1}=r_{0}=0$. Therefore $\varrho=0$, and so $A=1, B=0$. But it is obvious that $\vartheta=1$ is not a base of a number system. Similarly, $\vartheta= \pm i(A=0, B= \pm 1)$ is not a base of a number system, either.

Let now $\operatorname{Im} \vartheta=B \neq \pm 1$. Let us take into account that B is a divisor of $\operatorname{Im} \vartheta^{\nu}$ ($v=1,2, \ldots$). Hence, for an α of (1.3) we get:

$$
\operatorname{Im} \alpha=r_{1} \operatorname{Im} \vartheta+\ldots+r_{k} \operatorname{Im} \vartheta^{k}
$$

and so $B \mid \operatorname{Im} \alpha$. Consequently, (1.3) will not hold for $\alpha=i(B \neq \pm 1)$.
Sufficiency. Let now $\vartheta=-A+i(A \geqq 1)$. Then \mathfrak{A}_{0} is a complete residue system $\bmod \vartheta$ as it is well known. Let us take into account, that

$$
\begin{equation*}
\vartheta^{2}+2 A \vartheta+A^{2}+1=0 \tag{2.2}
\end{equation*}
$$

Let $\alpha=E+F i$ be an arbitrary Gaussian integer. Taking $D=F, C=E+A F$, we get

$$
\begin{equation*}
\alpha=C+D \vartheta . \tag{2.3}
\end{equation*}
$$

First we prove that every α has the form

$$
\begin{equation*}
\alpha=U+V \vartheta+X \vartheta^{2}+Y \vartheta^{3}, \tag{2.4}
\end{equation*}
$$

where U, V, X, Y are non-negative integers. From (2.2) we have

$$
-1=\vartheta^{2}+2 A \vartheta+A^{2}
$$

Assuming that $C<0$ we can substitute C in (2.3) by

$$
|C| \cdot \vartheta^{2}+2 A|C| \cdot \vartheta+A^{2}|C| .
$$

In the case $D<0$. we take a similar substitution, and get (2.4).
We shall use the following relation:

$$
\begin{equation*}
A^{2}+1=\vartheta^{3}+(2 A-1) \vartheta^{2}+(A-1)^{2} \vartheta \tag{2.5}
\end{equation*}
$$

Let

$$
\begin{equation*}
\alpha=d_{0}+d_{1} \vartheta+\ldots+d_{k} \vartheta^{k} \quad(k \geqq 3), \quad d_{j} \geqq 0 \quad(j=0, \ldots, k) . \tag{2.6}
\end{equation*}
$$

Let

$$
\begin{equation*}
t(\alpha, d)=d_{0}+d_{1}+\ldots+d_{k} \tag{2.7}
\end{equation*}
$$

$t(\alpha, d)$ is a non-negative integer, $t(\alpha, d)=0$ only if $\alpha=0$.
We take

$$
d_{0}=r_{0}+t N(\vartheta)=\dot{r}_{0}+t\left(A^{2}+1\right)
$$

$t \geqq 0$, integer, $0 \leqq r_{0} \leqq A^{2}$. From (2.5) we have

$$
\begin{equation*}
d_{0}=r_{0}+t\left(A^{2}+1\right)=r_{0}+t(A-1)^{2} \vartheta+t(2 A-1) \vartheta^{2}+t \vartheta^{3} . \tag{2.8}
\end{equation*}
$$

We take the right hand side of (2.8) into (2.6). Then

$$
\begin{gather*}
\alpha=r_{0}+\left(d_{1}+t(A-1)^{2}\right) \vartheta+\left(d_{2}+t(2 A-1)\right) \vartheta^{2}+\left(d_{3}+t\right) \vartheta^{3}+d_{4} \vartheta^{4}+\ldots+d_{k} \vartheta^{k}= \\
=d_{0}^{*}+d_{1}^{*} \vartheta+\ldots+d_{k}^{*} \vartheta^{k} . \tag{2.9}
\end{gather*}
$$

Since

$$
-t(A+1)^{2}+t(A-1)^{2}+t(2 A-1)+t=0,
$$

therefore

$$
t\left(\alpha, d^{*}\right)=d_{0}^{*}+\ldots+d_{k}^{*}=t(\alpha, d), \quad d_{j}^{*} \geqq 0 \quad(j=0, \ldots, k)
$$

Let

$$
\begin{equation*}
\alpha_{1}=d_{1}^{*}+d_{2}^{*} \vartheta+\ldots+d_{k}^{*} g^{k-1} \tag{2.10}
\end{equation*}
$$

6 A

We have

$$
\begin{gather*}
\alpha=\alpha_{1} \vartheta+r_{0} \quad\left(r_{0} \in \mathfrak{Y}_{0}\right), \tag{2.11}\\
t\left(\alpha_{1}, d^{*}\right)=d_{1}^{*}+d_{2}^{*}+\ldots+d_{k}^{*} .
\end{gather*}
$$

It is obvious that $t\left(\alpha_{1}, d^{*}\right)<t(\alpha, d)$, when $r_{0} \neq 0$. For $r_{0}=0, t\left(\alpha_{1}, d^{*}\right)=t(\alpha, d)$.
Now we write $t(\alpha, d)=t(\alpha), t\left(\alpha_{1}, d^{*}\right)=t\left(\alpha_{1}\right), \ldots$ We repeat the algorithm (2.9), (2.11):

$$
\alpha=\alpha_{1} \vartheta+r_{0}, \quad \alpha_{1}=\alpha_{2} \vartheta+r_{1}, \quad \ldots, \quad \alpha_{j-1}=\alpha_{j} \vartheta+r_{j-1} \quad\left(r_{i} \in \mathfrak{H}_{0}\right) .
$$

Then $t(\alpha) \geqq t\left(\alpha_{1}\right) \geqq \ldots$ and $t\left(\alpha_{i}\right)>t\left(\alpha_{i+1}\right)$ when $r_{i} \neq 0$. This process is terminated at the j th step if $\alpha_{j}=0$. In this case we get

$$
\alpha=r_{0}+r_{1} \vartheta+\ldots+r_{j-1} \vartheta^{j-1} \quad\left(r_{i} \in \mathfrak{H}_{0}\right)
$$

Suppose that the process is not terminated. Then for a suitably large i

Hence

$$
t\left(\alpha_{i}\right)=t\left(\alpha_{i+1}\right)=\ldots(\neq 0)
$$

$$
\alpha_{i}=\alpha_{i+1} \vartheta, \ldots \alpha_{i+k-1}=\alpha_{i+k} \vartheta
$$

and, therefore, $\vartheta^{k} \mid \alpha_{i}(k=1,2, \ldots)$. This holds only if $\alpha_{i}=0$.
We proved the existence of the representation of α in the form (1.3).
Let us suppose now that there is an α wich has two different representations:

$$
\alpha=r_{0}+r_{1} \vartheta+\ldots+r_{k} \vartheta^{k}=s_{0}+s_{1} \vartheta+\ldots+s_{k} \vartheta^{k}, \quad r_{i}, s_{i} \in \mathfrak{N}_{0}
$$

Then $0=\left(r_{0}-s_{0}\right)+\left(r_{1}-s_{1}\right) \vartheta+\ldots+\left(r_{k}-s_{k}\right) \vartheta^{k}$ and therefore $r_{0} \doteq s_{0} \bmod \vartheta$; as r_{0}, $s_{0} \in \mathfrak{Z}_{0}$ we get $r_{0}=s_{0}$. Dividing by ϑ, we get

$$
0=\left(r_{1}-s_{1}\right)+\ldots+\left(r_{k}-s_{k}\right) \vartheta^{k-1}
$$

We repeat the argument. Finally we get:

$$
\dot{r_{0}}=s_{0}, r_{1}=s_{1}, \ldots, r_{k}=s_{k}
$$

We have proved the theorem for $\vartheta=-A+i$.
Let now $\vartheta=-A-i$. Using the theorem for $\bar{\vartheta}=-A+i$, we get

$$
\bar{\alpha}=r_{0}+r_{1} \bar{\vartheta}+\ldots+r_{k} \bar{\vartheta}^{k} \quad\left(r_{i} \in \mathfrak{A}_{0}\right)
$$

for every Gaussian integer $\bar{\alpha}$. Hence

$$
\alpha=r_{0}+r_{1} \vartheta+\ldots+r_{k} \vartheta^{k}
$$

and so the theorem holds for $\vartheta=-A-i$, too.
3. Proof of Theorem 2. Let z be an arbitrary complex number, $z=x+i y$. Let

$$
\begin{equation*}
\vartheta^{k}=U_{k}+i V_{k} \tag{3.1}
\end{equation*}
$$

We have

$$
\begin{equation*}
z=\frac{z \vartheta^{k}}{\vartheta^{k}}=\frac{(x+i y)\left(U_{k}+i V_{k}\right)}{\vartheta^{k}}=\frac{C_{k}+D_{k} i}{\vartheta^{k}}+\frac{u_{k}+v_{k} i}{\vartheta^{k}} \tag{3.2}
\end{equation*}
$$

where C_{k}, D_{k} are rational integers, $\left|u_{k}\right|<1,\left|v_{k}\right|<1$. Let

$$
\begin{equation*}
z_{k}=\frac{C_{k}+i D_{k}}{\vartheta^{k}}, \quad \delta_{k}=\frac{u_{k}+i v_{k}}{\vartheta^{k}} \tag{3.3}
\end{equation*}
$$

It is obvious that $\delta_{k} \rightarrow 0(k \rightarrow \infty)$, and so $z_{k} \rightarrow z$. Since $C_{k}+i D_{k}$ is a Gaussian integer, by Theorem 1 we have

$$
\begin{equation*}
C_{k}+i D_{k}=a_{i}^{*} \vartheta^{t}+\ldots+a_{0}^{*}, \quad t=t(k) \tag{3.4}
\end{equation*}
$$

First we prove that the sequence $t(k)-k(k=1,2, \ldots)$ has an upper bound. Indeed, from (3.4)

$$
z_{k}=a_{t}^{*} \vartheta^{t-k}+\ldots+a_{0}^{*} \vartheta^{-k}
$$

Hence

$$
\begin{equation*}
a_{t}^{*} \vartheta^{i-k}+\ldots+a_{k}^{*}=z_{k}-\frac{a_{k-1}^{*}}{\vartheta}-\ldots-\frac{a_{0}^{*}}{\vartheta^{k}} \tag{3.5}
\end{equation*}
$$

and so

$$
\begin{gather*}
\left|a_{\imath}^{*} \vartheta^{t-k}+\ldots+a_{k}^{*}\right| \leqq\left|z_{k}\right|+\frac{a_{k-1}^{*}}{|\vartheta|}+\ldots+\frac{a_{0}^{*}}{|\vartheta|^{k}} \leqq \\
|z|+\left|\delta_{k}\right|+A^{2}\left(\frac{1}{|\vartheta|}+\frac{1}{|\vartheta|^{2}}+\ldots\right) \leqq|z|+\left|\delta_{k}\right|+\frac{A^{2}}{|\vartheta|-1} \tag{3.6}
\end{gather*}
$$

Hence it follows that

$$
\begin{equation*}
\left|a_{t}^{*} \vartheta^{t-k}+\ldots+a_{k}^{*}\right| \leqq c \tag{3.7}
\end{equation*}
$$

$c=c(z)$ being a suitable positive constant.
Since the representation of Gaussian integers in the form (1.3) is unique, and the circle $|w| \leqq c$ contains only a finite set of Gaussian integers, therefore $t(k)-k$ has an upper bound. Let K be an integer, $t-k \leqq K$. Then we can write z_{k} as

$$
\begin{equation*}
z_{k}=a_{K}^{(k)} \vartheta^{K}+\ldots+a_{0}^{(k)}+\frac{a_{-1}^{(k)}}{\vartheta}+\frac{a_{-2}^{(k)}}{\vartheta^{2}}+\ldots \tag{3.8}
\end{equation*}
$$

where $a_{j}^{(k)} \in \mathfrak{H}_{0}(j=K, K-1, \ldots, 0,-1, \ldots)$. Let $b_{K} \in \mathfrak{H}_{0}$ be an integer so that $a_{K}^{(k)}=$ $=b_{K}$ for infinitely many k. Let S_{K} be the subset of those integers k satisfying $a_{K}^{(k)}=$
$=b_{k}$. Suppose that S_{K}, \ldots, S_{l+1} is constructed $\left(S_{k} \supseteqq \ldots \supseteq S_{l+1}\right)$. Then there is a $b_{l} \in \mathfrak{P}_{0}$, such that for infinitely many k in $S_{i+1} a_{l}^{(k)}=h_{l}$. Let S_{l} be the set of these $k^{\prime} s$. S_{1} has infinitely many elements. We repeat this argument for $K, K-1, \ldots 0$, $-1, \ldots$. Let

$$
w=b_{K} \vartheta^{K}+\ldots+b_{0}+\frac{b_{-1}}{\vartheta}+\ldots
$$

Let $k_{1}<k_{2}<\ldots$ be an infinite sequence, so that

$$
k_{v} \in S_{K-v+1} \quad(v=1,2, \ldots)
$$

Since

$$
z_{k}=b_{K} \vartheta^{K}+\ldots+b_{K-v+1} \vartheta^{K-v+1}+a_{K \div v}^{\left(k_{v}\right)} \vartheta^{K-v}+\ldots,
$$

therefore

$$
\lim _{v \rightarrow \infty} z_{k_{v}}=w .
$$

Taking into account that $\lim _{k \rightarrow \infty} z_{k}=z$, we have $w=z$. Hence it follows that (3.9) is a suitable representation of z.

We have proved Theorem 2.

Reference

[1] D. E. Knuth, The art of computer programming. Vol. 2, Addison-Wesley Publishing Company (London, 1971).

