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In what follows we denote by H a complex Hilbert space and by B (H) the 
algebra of all bounded linear operators on H. A vector subspace KczH is called 
semi-closed if there is t£B(H) such that K=tH. An operator T: DT-*H (DTczH) 
is called semi-closed if its graph rT={(x, Tx)\x£DT) is a semi-closed subspace of 
H®H. If BaB(H), we shall denote by Lat (B) the set of all closed subspaces of 
H, invariant for B and by Lat1/2 (B) the set of all semi-closed subspaces of H invariant 
for B. For N€N, we denote 

fft"' = H@H® ... e H and £("> = { f l £ a ® ...@a\a£B}. 
n fold n fold 

We say that an algebra A(zB(H) is transitive if it is weakly closed in B(H) and 
Lat (A) = {(0), H). In [1], [2] (see [8] p. 138) there are given conditions for a transitive 
algebra to be equal to B{H). An algebra AaB(H) is called strongly transitive if 
it is weakly closed in B(H) and Lat1/2 (A) — {(0), H}. 

In [3], C. FOIA§ has proved that the only strongly transitive algebra is B(H). 
We say that an algebra AaB(H) is reductive if it is weakly closed and Lat (A) = 
= L a t (A*) (where A* = {a*\a£A}). 

In [4], [7] (see [8], p. 167) there are given conditions for a reductive algebra 
to be a von Neumann algebra. Finally, an algebra AaB{H) is called strongly reduc-
tive if it is weakly closed and Lat1/2 (A*) C Lat1/2 (A). In [9], D. VOICULESCU has proved 
that if A is a weakly closed algebra with spatial multiplicity S 3 and such that 
Lat1/2 04)=Lat1 / 2 (M), where M is the . von Neumann algebra generated by A (in 
particular A is strongly reductive), then A=M. Our corollary 1.3 generalizes this 
result. In § 2 we study reductive algebras which contain von Neumann algebras 
having property (P) of J. T. SCHWARTZ. 

Recall that a von Neumann algebra N has property (P), if for every t£B(H) 
the weakly closed convex hull of {u*tu\u£N, unitary} has non-void intersection 
with the commutant N' of N. 
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§ 1. Strongly reductive algebras 

1.1. L e m m a . (See [7]). Let A and M be weakly closed algebras such that 
AczM and Lat (/4(n)) = Lat (M(n)) for every K€N. Then A = M. 

The following theorem appears in literature in an implicite form: 

1.2. T h e o r e m . Let AczB{H) be a reductive algebra. We suppose that for any 
finite collection Tls ...,Tn of linear oparetors defined on one and the same dense 
subspace K<zH, the relation Kn+1 = {(x^, Txx, ..., Tnx)\xfK}fh&i 04(n+1)) implies 
that Xn+1€Lat (^*(n+1)). Then A is a von Neumann algebra. 

P r o o f . We shall prove by induction that the assumption of Lemma 1.1 is 
also satisfied if M is replaced by the von Neumann algebra M which A generates. 
In fact, by the reductivity of A we have Lat 04) = Lat (M ) . Suppose that for ksn, 
L a t ( ^ « ) = L a t ( M « ) a n d l e t L n + 1 € L a t ( ^ " + 1 > ) . Set Ln = {(x^ . . . , x„ + 1 ) iL n + 1 | x x =0} . 
As L„ can be considered an element of Lat (A(n)) the induction hypothesis implies 
that Z,„£Lat (Af (n+1)). Since ¥ is a von Neumann algebra, we have H(n+1)QLnf 
€Lat ( M ( n + 1 ) ) c L a t 04<n+1)). Therefore Ln+1QLn=(H^+1>eLn)f}Ln+1fLat (A(r,+1)). 
If (*!, . . . , xn+1)£L„+1QL„ and ^ = 0 , then x 2 = . . . = x „ + 1 = 0 . 

It follows that there exists a linear subspace K0<zH and linear operators r®, . . . , 
T° defined on K0 such that Ln+1QL„={(x, T*x ... T°x)\x£K0). 

For every i (l^i^n) we define on the dense subspace K=K0+K^ the operator 
Tj in the following way: 

TiX = T f x if xZKi, TiX,= 0 if x£Kf 
It is obvious that 

Ln+1QLn = {(x, T,x T„x)\xiK}e{K0®(0)@...®{0)) 

and that {x, T±x, ..., T„x)\x£K}£l.at (^ ( n + 1 )) . By the assumption of the theorem, 
{(A-, Tix, . . . , Tnx)\xfK}Qdi\ (A/ (n+1)), and by the reductivity of A, we have K0@ 
©(0)... ffi(0)(ELat (Af("+1>). It follows that Ln+1QLneLat M<"+1>. Therefore, Ln+1 = 
= ( L n + 1 e L „ ) © L n € L a t M C ^ ) . 

1.3. C o r o l l a r y . Let Ac.B(H) be an algebra such that A(2> is strongly reductive 
Then A is a von Neumann algebra. 

P r o o f . Let KczH be a dense subspace and T^.K^H (i'= 1, . . . ,« ) be linear 
operators such that Kn+1 = {(x, Txx, ..., T„x)\x^K}^\.at (A(n+i)). It is obvious that 
each Tt (1 si^ri) commutes with A on K. 

L e t p u be the projection of Hin+i) onto the first and i th component (/ = 1, . . . ,«) . 
Then 

PliKn+1 = {(x, 7 , .x) \xcK)dLat 1 / 2 (A<«)c Lat1/2(A*™). 
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Therefore each Tt (/"= 1 , . . . , « ) commutes with A* on K. It follows that Kn+1£ 
€Lat 

By Theorem 1.2 it follows that A is a von Neumann algebra. 

§ 2. Reductive algebras 

In [1] it is shown that if a reductive algebra A contains a m.a.s.a (maximal 
abelian self adjoint algebra), then A is a von Neumann algebra. In [2], a more general 
result is proved : if à reductive algebra A contains an abelian von Neumann algebra 
with finite commutant, then A is a von Neumann algebra. It is known that the 
commutative von Neumann algebras (and more generally type I von Neumann 
algebras) have property (P). 

Taking into account Theorem 2.2 below, it is likely that the answer to the 
following question is in the affirmative : 

2.1. Q u e s t i o n . If A is a reductive algebra which contains a von Neumann 
algebra N with property (P) and having finite commutant, then A is a von Neumann 
algebra. 

A partial answer to this question is given by 
2.2. T h e o r e m . Let AczB(H) be an algebra such that 1) A(2) is reductive; 2) A(2> 

contains a von Neumann algebra N(i> with property (P) and having finite commutant. 
Then A is a von Neumann algebra. 
In the proof of this theorem we need the following: 

2.3. L e m m a . Let Nc.B(H) be a von Neumann algebra with finite commutant. 
IfN™ has property (P), then every semi-closed, densely defined operator which commu-
tes with N is preclosed. 

P r o o f . Let T: DT-+H be a semi-closed, densely defined linear operator which 
commutes with N. Then the linear subspace TT={(x, Tx)\x£DT}c:H(2) is a semi-
closed subspace, invariant under N(2). Because N(2) has property (P), it follows 
(cf. [9], Théorème 2) that there exists an operator such that rT=Q(H™)= 
= g((ker 0 X ) . Hence for each x £ D r there exists a unique (y1(x), y2(x))£(ker Q)x 

such that (x, Tx) = Q(y1(x), y2{x)). Set A = {(x, x)£H(2)\x£H). 
We now define a linear operator Yon the dense linear subspace Dy=(A f ] D ^ ) + 

+ A-1 c#<2> as follows: 

Y(x,x) = (yx(x),y2(x)) for xeDT; Y(z,y) = 0 for (z,y)£Ax 

The operator Y is closed. Indeed, let {(xn, x„)-|-(zn, j„)}ngN be such that 
(xn ,xn) + ( z n , j „ ) - ( x , x ) + ( z , j ) (x£H, (z, y)£A±) and Y((xn, xn) + (zn, yn)) = 
= (>'i(*„)» (*„))-*(", u)€(kerQ)-!- as 
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Because of the continuity of Q, it follows that SCviOO, y2(xn))-~Q(u, 
Therefore (xn, 7 \ , ) —Q(u, v) and Q(u,v) = Q(y1(x),y2(x)). It follows that 
(H, u)=0>i(x), y2 (x)) and hence Y is closed. We will show that Y commutes with 
Ar(2). Since QdN^' we obtain that (ker Q)L is invariant under Af(2). Now for x£DT 

and a£N we have 

a(n(x, Tx) = (ax, Tax) = Q{yx(ax), y2(ax)). 

On the other hand: 

«<»(*, Tx) = aVQ(yi(x),y2(x)) = Q(ayi(x), ay2(x)). 

By the remark above (ay^x), oya(x))£(ker Q)L, and therefore (y^ax), y2(ax)) = 
= (ay1(x),ay2(x)). 

Since A is an invariant subspace under TV(2) and iV(a) is a von Neumann algebra, 
it follows that AL is invariant under iV(2). Therefore Y commutes with 7V(2). Let p2 

be the projection of / / ( 2 ) onto its 2nd component. It is obvious that Tx=p2QY(x, x). 
Sincep 2Q£N ( i > ' and y i s affiliated to TV(2) (which is a finite von Neumann algebra), 
we obtain (cf. [5] and also [6], Theorem XV, p. 119) that p2QY is preclosed and 
therefore T is preclosed. 

P r o o f of T h e o r e m 2.2. We shall verify the hypothesis of Theorem 1.2. 
Let KcH be a dense subspace, and 7\ , . . . , T„ linear operators defined on K and 
such that Kn+1={(x, Ttx, ..., Tnx)\xZK}£Lat 04 (n+1)). As in the proof of Corollary 
1.3, it follows that for every i (1 SiSri) the graph rT ={(x, Ttx)\xi:K} is semi-closed 
and therefore the operators Tt, 1 si^n, are semi-closed. 

By Lemma 2.3 the operators Tt ( l ^ i s n ) are preclosed. Let Tt be the closure 

of Tt (l^iSn), and K0= f) DTr Obviously, KaK0. Since /1(2) is reductive, f , 
i=i 

commutes with A*. Set An — {(x, x, ..., x)£Hw\x€.H} and define the operators T and 
T0 on the dense subspaces (Anr\Kt-a))+AxcH<-n) and AnK(n)+AxaH(n) respectively 
in the following way: 

T(x,x,...,x) = (TlX,...,Tnx) if (x, ...,x)eAnnK("\ 

T(Xl,...,Xn) = 0 if ( X l , ...,xn)£Al-
and 

T0(x, x, ...,x) = (TlX, ..., Tnx) if (x, ...,x)eAnnK<£\ 

T0(xi,...,xn) = 0 if ( X l , ...,xn)£Ax. 

Because An is invariant under A("\ and therefore under N(n>, it is easily seen 
that T and T0 are closed operators affiliated with the finite von Neumann algebra 
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N{">. Thus KaK0 implies that TcT0. According to [5] (see also [6], Theorem XV, 
p. 119) we obtain that T=T0. By the remark above T0 commutes with A*("\ and the-
refore T commutes with AH"\ But this means that A ; + 1 € L a t (Л* (п+1)). 

Added in proof. We remark that Lemma 2.3. holds without the assumption 
,,TV(2) has property (P)", so Theorem 2.2. can be improved: Let AŒB(H) be an 
algebra which contains a von Neumann algebra with finite commutant and such 
that A(2) is reductive. Then A is a von Neumann algebra. Proofs of these impro-
vements will appear elsewhere. 
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