On a generalization of the concept of orthogonality

By F. SCHIPP in Budapest
To Professor K. Tandori on his 50th birthday

1. Definitions and theorems

Let (X, \mathscr{A}, μ) be a probability space,

$$
\mathscr{A}_{0}=\{X, \emptyset\} \subset \mathscr{A}_{1} \subset \ldots \subset \mathscr{A}_{n} \subset \ldots
$$

a sequence of sub- σ-algebras of the σ-algebra \mathscr{A}, and suppose that $\mathscr{A}=\mathscr{A}_{\infty}=\bigvee_{n} \mathscr{A}_{n}$.
Furthermore, let $\mathbf{N}=\{0,1,2, \ldots\}, \overline{\mathbf{N}}=\mathbf{N} \cup\{\infty\}, L^{p}\left(\mathscr{A}_{n}\right)=L^{p}\left(X, \mathscr{A}_{n}, \mu\right)(n \in \mathbf{N}$, $1 \leqq p \leqq \infty$), and denote by $\|f\|_{p}$ the $L^{p}(\mathscr{A})$-norm of the function $f \in L^{p}(\mathscr{A})$.

Using the notation of [1] we call a mapping $\tau: X \rightarrow \mathbf{N}$ a stopping time relative to the sequence $\mathbf{A}=\left(\mathscr{A}_{n}, n \in \mathbf{N}\right)$ if for every $n \in \mathbf{N}$ we have $\{\tau=n\} \in \mathscr{A}_{n}$.

Denote by \mathscr{T} the set of stopping times relative to \mathbf{A} and for every $\tau \in \mathscr{T}$ introduce the class of sets

$$
\mathscr{A}_{\tau}:=\left\{A \in \mathscr{A}: A \cap\{\tau=n\} \in \mathscr{A}_{n}(\forall n \in \mathbf{N})\right\} .
$$

It is known that $\mathscr{A}_{\tau} \subset \mathscr{A}$ is a σ-algebra, τ is \mathscr{A}_{τ}-measurable, and if $\tau=n=$ const ($n \in \mathrm{~N}$) then \mathscr{A}_{τ} equals \mathscr{A}_{n} (see e.g. [1]). Moreover it is clear that for every $\tau, v \in \mathscr{T}$ their envelopes $\tau \vee v$ and $\tau \wedge v$ also belong to \mathscr{T}.

For any stopping time $\tau \in \mathscr{T}$ denote by E_{τ} the condtitional expectation operator relative to \mathscr{A}_{τ}, in particular $E_{n}(n \in \overline{\mathbf{N}})$ denotes the conditional expectation operator relative to \mathscr{A}_{n}. It is known that E_{∞} is equal to the identity, and for every $\tau \in \mathscr{T}$ we have $I\{\tau=n\} E_{\tau}=I\{\tau=n\} E_{n} .{ }^{1)}$

Let $\tau_{i} \in \mathscr{T}(i \in \mathscr{F})$ be a system of stopping times labeled by the elements i of some set \mathscr{I} of indices. Denote $T=\left(\tau_{i}, i \in \mathscr{I}\right)$, and let $\Phi=\left\{\varphi_{i}, i \in \mathscr{I}\right)$ be a system of functions $\varphi_{i} \in L^{2}(\mathscr{A})$. The sequence T will be fixed throughout this paper.
$\left.{ }^{1}\right) I(A)$ denotes then indicator function of the set $A \subset X$.

Using these notations we introduce the following generalization of the concept of orthogonality.

Definition. The system Φ is called a T-orthogonal system (briefly T-OS) if for every $i, j \in \mathscr{I}, i \neq j$

$$
\begin{equation*}
E_{\tau_{i} \nu \tau_{j}}\left(\varphi_{i} \bar{\varphi}_{j}\right)=0 . \tag{1}
\end{equation*}
$$

If there exists a system of non empty sets $A_{i} \in \mathscr{A}_{\tau_{i}}(i \in \mathscr{I})$ such that

$$
\begin{equation*}
E_{\tau_{i}}\left(|\varphi|^{2}\right)=I\left(A_{i}\right) \quad(i \in \mathscr{I}) \tag{2}
\end{equation*}
$$

then Φ is called a T-normed system. Systems which are T-orthogonal and T-normed are called T-orthogonal systems (T-ONS).

We note that any system Φ can be made T-normed by multiplication of its elements by appropriate functions. Namely, set

$$
\begin{equation*}
A_{i}=\left\{E_{\tau_{i}}\left(\left|\varphi_{i}\right|^{2}\right) \neq 0\right\} \quad(i \in \mathscr{I}), \tag{3}
\end{equation*}
$$

and $\chi_{i}=0$ on $X \backslash A_{i}$ and $\chi_{i}=\left(E_{\tau_{i}}\left(\left|\varphi_{i}\right|^{2}\right)\right)^{-1 / 2}$ on A_{i}. Then χ_{i} is $\mathscr{A}_{\tau_{i}}$ measurable, and by

$$
E_{\tau_{i}}\left(\left|\chi_{i} \varphi_{i}\right|^{2}\right)=\left|\chi_{i}\right|^{2} E_{\tau_{i}}\left(\left|\varphi_{i}\right|^{2}\right)=I\left(A_{i}\right)
$$

$\left\{\chi_{i} \varphi_{i}: i \in \mathscr{I}\right\}$ is a T-normed system.
If $\tau_{i}=0(i \in \mathscr{I})$, then $E_{\tau_{i} v \tau_{j}}\left(\varphi_{i} \bar{\varphi}_{j}\right)=\int_{\boldsymbol{X}} \varphi_{i} \bar{\varphi}_{j} d \mu$ so in this case the above definition reduce to that of usual ONS.

In this note we will prove a generalization of Bessel's identity for T-ONS as follows:

Theorem 1. Let $\Phi=\left\{\varphi_{i}: i \in \mathscr{I}\right\}$ be a $T=\left(\tau_{i}, i \in \mathscr{I}\right)$-ONS, \mathscr{F}_{0} a finite subset of \mathscr{I}, and $\tau \in \mathscr{T}$ a stopping time such that $\tau \leqq \tau_{i}$ for every $i \in \mathscr{I}$. Then for any function $f \in L^{2}(\mathscr{A})$ we have

$$
\begin{equation*}
\inf \left\{E_{\tau}\left(\left|f-\sum_{i \in \mathscr{\mathscr { G }}_{0}} \lambda_{i} \varphi_{i}\right|^{2}\right): \lambda_{i} \in L^{2}\left(\mathscr{A}_{\tau_{i}}\right)\right\}=E_{\mathfrak{\imath}}\left(|f|^{2}\right)-\sum_{i \in \mathscr{\mathscr { G }}_{0}} E_{\tau}\left(\left|E_{\tau_{i}}\left(f \bar{\varphi}_{i}\right)\right|^{2}\right) \tag{4}
\end{equation*}
$$

and the infimum is attained for $\lambda_{i}=E_{\tau_{i}}\left(f \bar{\varphi}_{i}\right)$.
In case $\tau_{i}=\tau=0(i \in \mathscr{I})$ this identity reduces to the usual Bessel's identity. (4) immediately implies the following generalization of Bessel's inequality:

Corollary 1. The set

$$
\mathscr{I}_{f}=\left\{i \in \mathscr{I}: E_{\tau}\left(f \bar{\varphi}_{i}\right) \neq 0\right\}
$$

is at most countable and

$$
\begin{equation*}
\sum_{i \in \mathscr{S}_{j}} E_{\tau}\left(\left|E_{\tau_{i}}\left(f \bar{\varphi}_{i}\right)\right|^{2}\right) \leqq E_{\tau}\left(|f|^{2}\right) . \tag{5}
\end{equation*}
$$

Let us now introduce the following generalization of the concepts of Fourier coefficients and Fourier expansion.

Definition. Let $\Phi=\left\{\varphi_{i}: i \in \mathscr{I}\right\}$ be a T-ONS. The function $E_{\tau_{i}}\left(f \bar{\varphi}_{i}\right)(i \in \mathscr{I})$. is called the i-th T-Fourier coefficient, and the series

$$
S[f]=\sum_{i \in \mathcal{G}_{f}} E_{\tau_{i}}\left(f \bar{\varphi}_{i}\right) \varphi_{i}
$$

the T-Fourier series, of the function f with respect to the system Φ.
The converse of Corollary 1 gives a generalization of Riesz-Fischer-theorem.
Theorem 2. Let $\Phi=\left\{\varphi_{i}: i \in \mathscr{I}\right\}$ be a T-ONS, $\mathscr{I}_{0}=\left\{i_{n}: n \in \mathbf{N}\right\} \subset \mathscr{I}$, and $\tau \in \mathscr{T}$ a stopping time with $\tau \leqq \tau_{i}(i \in \mathscr{I})$. Furthermore, let $\lambda_{i} \in L^{2}\left(\mathscr{A}_{\tau_{i}}\right)$ be a sequence satisfying the conditions

$$
\lambda_{i}=0 \quad\left(i \in \mathscr{I} \backslash \mathscr{I}_{0}\right), \quad \sum_{i \in \mathscr{S}_{0}} \int_{A_{i}}\left|\lambda_{i}\right|^{2} d \mu<\infty .
$$

Then there exists a (unique) function $f \in L^{2}(\mathscr{A})$ such that
a) $I\left(A_{i}\right) \lambda_{i}=E_{\tau_{i}}\left(f \vec{\varphi}_{i}\right) \quad(i \in \mathscr{I})$,
b) $\lim _{N \rightarrow \infty} E_{\tau}\left(\left|f-\sum_{n=0}^{N} \lambda_{i_{n}} \varphi_{i_{n}}\right|^{2}\right)=0$.

The following concept is a generalization of the completeness relative to the space $L^{2}(\mathscr{A})$.

Definition. A system $\Phi=\left\{\varphi_{i}: i \in \mathscr{I}\right\} \subset L^{2}(\mathscr{A})$ is T-complete (relative to the space $\left.L^{2}(\mathscr{A})\right)$ if $f \in L^{2}(\mathscr{A})$, and $E_{\tau_{i}}\left(f \varphi_{i}\right)=0(i \in \mathscr{I})$ imply $f=0$.

From Theorems 1 and 2, and Corollary 1 it follows in a simple way the following
Corollary 2. If Φ is an T-complete T-ONS, then for every function $f \in L^{2}(\mathscr{A})$ the relations

$$
\begin{equation*}
\text { a) } \lim _{N \rightarrow \infty} E_{\tau}\left(\left|f-\sum_{n=0}^{N} E_{\tau_{i_{n}}}\left(f \bar{\varphi}_{i_{n}}\right) \varphi_{i_{n}}\right|^{2}\right)=0, \quad \text { b) } E_{\tau}\left(|f|^{2}\right)=\sum_{i \in \mathscr{S}_{j}} E_{\tau}\left(\left|E_{\tau_{i}}\left(f \bar{\varphi}_{i}\right)\right|^{2}\right) \tag{7}
\end{equation*}
$$

hold; here $\mathscr{I}_{f}=\left\{i_{n}: n \in \mathbf{N}\right\}$.
Statement a) means that the Fourier series of any function $f \in L^{2}(\mathscr{A})$ with respect to an T-complete T-ONS converges in the "norm" $\|\cdot\|_{\left(\alpha_{\tau}, 2\right)}=\left[E_{\tau}(|\cdot|)^{2}\right]^{1 / 2}$ to the function f.

2. Proofs

First we recall some properties of the conditional expectations which we are going to use.

Let $\tau, v \in \mathscr{T}$. Then

$$
\begin{equation*}
\{\tau<v\}, \quad\{\tau=v\}, \quad\{\tau \leqq v\} \in \mathscr{A}_{\tau} \cap \mathscr{A}_{v} \tag{8}
\end{equation*}
$$

.and if $\tau \leqq \nu$, then

$$
\begin{equation*}
\mathscr{A}_{\tau} \subset \mathscr{A}_{v} \text { and } E_{\tau} \circ E_{v}=E_{v} \circ E_{\tau}=E_{\tau}, \tag{9}
\end{equation*}
$$

where \circ denotes the composition of functions. Moreover it is known that if $\bar{\lambda}$ is \mathscr{A}_{τ}-measurable and if f and $\lambda f \in L^{1}(\mathscr{A})$ then

$$
\begin{equation*}
E_{\tau}(\lambda f)=\lambda E_{\mathrm{r}} f . ; \tag{10}
\end{equation*}
$$

We note that this equations also holds for any \mathscr{A}-measurable $f: X \rightarrow[0, \infty]$ and \mathscr{A}_{τ}-measurable $\lambda: X \rightarrow[0, \infty]$. (See e.g. [1], p. 7 and 9 .)

It follows from the above properties that for arbitrary stopping times $\tau, v \in \mathscr{T}$

$$
\begin{equation*}
E_{\tau} \circ E_{v}=E_{v} \circ E_{\tau}=E_{\tau \wedge \nu} . \tag{11}
\end{equation*}
$$

Namely, let $f \in L^{1}(\mathscr{A})$. Then by (9)

$$
\begin{equation*}
E_{\tau \imath v} f=I\{\tau<v\} E_{\tau} f+I\{\tau \geqq v\} E_{v} f=I\{\tau<v\} E_{\tau}\left(E_{\tau v v} f\right)+I\{\tau \geqq v\} E_{\tau v v}\left(E_{v} f\right) . \tag{12}
\end{equation*}
$$

Since by (10)

$$
I\{\tau<v\} E_{\mathrm{rvv}} f=I\{\tau<v\} E_{v} f=E_{v}(I\{\tau<v\} f)
$$

and similarly for every function $g \in L^{1}(\mathscr{A})$

$$
I\{\tau \geqq v\} E_{\tau v v} g=E_{\mathfrak{r}}(I\{\tau \geqq v\} g),
$$

itherefore from (12) by (10) we have

$$
\begin{gathered}
E_{\tau \wedge v} f=E_{\tau}\left(I\{\tau<v\} E_{\tau v} f\right)+I\{\tau \geqq v\} E_{\mathrm{rv} v}\left(E_{v} f\right)_{\imath}= \\
=E_{\tau}\left(E_{v}(I\{\tau<v\} f)\right)+E_{\mathrm{t}}\left(I\{\tau \geqq v\} E_{v} f\right)=\left(E_{\tau} \circ E_{v}\right)(I\{\tau<v\} f+I\{\tau \geqq v\} f)= \\
=\left(E_{\tau} \circ E_{v}\right) f .
\end{gathered}
$$

:Similarly, we get $E_{\vee} \circ E_{\tau}=E_{\tau \wedge \nu}$.
Further on we often refer to the following
Remark. Let $\dot{\varphi}_{i} \in L^{2}(\mathscr{A}), A_{i}=\left\{E_{r_{i}}\left(\left|\varphi_{i}\right|^{2}\right) \neq 0\right\}(i \in \mathscr{I})$. Then

$$
\begin{equation*}
I\left(A_{i}\right) \varphi_{i}=\varphi_{i} \quad(i \in \mathscr{I}) \tag{13}
\end{equation*}
$$

From the definition of the conditional expectation and from that of sets A_{i} it follows that

$$
0=\int_{x \backslash A_{i}} E_{\tau_{i}}\left(\left|\varphi_{i}\right|^{2}\right) d \mu=\int_{x \backslash A_{i}}\left|\varphi_{i}\right|^{2} d \mu ;
$$

thus we have $I\left(X \backslash A_{i}\right) \varphi_{i}=0$. Hence we obtain

$$
\varphi_{i}=I\left(X \backslash A_{i}\right) \varphi_{i}+I\left(A_{i}\right) \varphi_{i}=I\left(A_{i}\right) \varphi_{i} \quad(i \in \mathscr{I})
$$

and our statement is proved.
Proof of Theorem 1. Let $\lambda_{i} \in L^{2}\left(\mathscr{A}_{\tau_{i}}\right)\left(i \in \mathscr{F}_{0}\right)$. Then by (10), taking into account the T-normedness of the system Φ, we have

$$
\int_{x}\left|\lambda_{i} \varphi_{i}\right|^{2} d \mu=E_{0}\left(E_{\tau_{i}}\left(\left|\lambda_{i} \varphi_{i}\right|^{2}\right)\right)=E_{0}\left(\left|\lambda_{t}\right|^{2} E_{\tau_{i}}\left(\left|\varphi_{l}\right|^{2}\right)\right)=E_{0}\left(\left|\lambda_{i}\right|^{2} I\left(A_{i}\right)\right)<\infty
$$

Hence it follows that for $\lambda_{i} \in L^{2}\left(\mathscr{A}_{\tau_{i}}\right)$ we have $\lambda_{i} \varphi_{i} \in L^{2}(\mathscr{A})$. Using the additivity of E_{τ} we obtain

$$
\delta:=E_{\tau}\left(\left|f-\sum_{i \in \mathscr{F}_{0}} \lambda_{i} \varphi_{i}\right|^{2}\right)=E_{\mathrm{r}}\left(|f|^{2}\right)-\sum_{i \in \mathscr{Y}_{0}} E_{\imath}\left(\lambda_{i} f \bar{\varphi}_{i}+\lambda_{i} f \varphi_{i}\right)+\sum_{i, j \in \mathcal{F}_{0}} E_{\imath}\left(\lambda_{i} \lambda_{j} \varphi_{i} \bar{\varphi}_{j}\right) .
$$

Since by (11), (10), (1), and (2)

$$
E_{\tau}\left(\lambda_{i} \bar{\lambda}_{j} \varphi_{i} \bar{\varphi}_{j}\right)=\left(E_{\tau} \circ E_{\tau_{i} v \tau}\right)\left(\lambda_{i} \lambda_{j} \varphi_{i} \bar{\varphi}_{j}\right)=E_{\tau}\left(\lambda_{i} \bar{\lambda}_{j} E_{\tau_{i} v_{j} j}\left(\varphi_{i} \bar{\varphi}_{j}\right)\right)=E_{\tau}\left(\lambda_{i} \bar{\lambda}_{j} I\left(A_{i}\right) \delta_{i j}\right),
$$

and

$$
E_{\tau}\left(\bar{\lambda}_{i} f \bar{\varphi}_{i}\right)=\left(E_{\tau} \circ E_{\tau_{i}}\right)\left(\bar{\lambda}_{i} f \bar{\varphi}_{i}\right)=E_{\tau}\left(\bar{\lambda}_{i} E_{\tau_{i}}\left(f \bar{\varphi}_{i}\right)\right)
$$

therefore by (13) δ can be expressed as follows:

$$
\begin{gathered}
\left.\delta=E_{\imath}\left(|f|^{2}\right)-\sum_{i \in \mathscr{S}_{0}} E_{\imath}\left(\lambda_{i} I\left(A_{i}\right) \overline{E_{\tau_{i}}\left(f \bar{\varphi}_{i}\right.}\right)+\bar{\lambda}_{i} I\left(A_{i}\right) E_{\tau_{i}}\left(f \bar{\varphi}_{i}\right)\right)+ \\
+\sum_{i \in \mathscr{G}_{0}} E_{\imath}\left(I\left(A_{i}\right)\left|\lambda_{i}\right|^{2}\right)=E_{\tau}\left(|f|^{2}\right)+\sum_{i \in \mathscr{S}_{0}} E_{\imath}\left(\left|E_{\tau_{i}}\left(f \bar{\varphi}_{i}\right)-\lambda_{i} I\left(A_{i}\right)\right|^{2}\right)-\sum_{i \in \mathscr{S}_{0}} E_{\imath}\left(\left|E_{\tau_{i}}\left(f \bar{\varphi}_{i}\right)\right|^{2}\right) .
\end{gathered}
$$

Hence it is obvious that δ is minimal if $\lambda_{i}=E_{\tau_{i}}\left(f \bar{\varphi}_{i}\right)$ and we have (4) as asserted. Proof of Theorem 2. Let $S_{N}=\sum_{n=0}^{N} \lambda_{i_{n}} \varphi_{i_{n}}, N \ni M>N$. Then by the above Remark we have $S_{N} \in L^{2}(\mathscr{A})(N \in \mathbf{N})$, and from (1) and (2) we obtain

$$
\begin{gather*}
E_{\imath}\left(\left|S_{M}-S_{N}\right|^{2}\right)=\sum_{N<k, l \leqq M} E_{\imath}\left(\lambda_{i_{k}} \lambda_{i_{\imath}} \varphi_{i_{k}} \bar{\varphi}_{i_{l}}\right)= \\
=\sum_{N<k, l \leqq M} E_{\imath}\left(\lambda_{i_{k}} \lambda_{i_{l}} E_{\tau_{i_{k}} \vee \tau_{i_{l}}}\left(\varphi_{i_{k}} \bar{\varphi}_{i_{l}}\right)\right)=\sum_{N<k \leqq M} E_{\tau}\left(\left|\lambda_{i_{k}}\right|^{2} I\left(A_{i_{k}}\right)\right) . \tag{14}
\end{gather*}
$$

Hence

$$
\left\|S_{N}-S_{M}\right\|_{2}^{2}=\sum_{N<k \equiv M} \int_{A_{i_{k}}}\left|\lambda_{i_{k}}\right|^{2} d \mu \rightarrow 0 \quad(M, N \rightarrow \infty)
$$

From the last inequality it is clear that there exists a sequence ($N_{k}, k \in \mathbf{N}$) such that $S_{N_{k}}$ is convergent μ-a.e. and $f:=\lim _{k \rightarrow \infty} S_{N_{k}} \in L^{2}(\mathscr{A})$. Applying Fatou's theorem for the conditional expectation (see e.g. [1], p. 9) and taking the limit from (14) as $M \rightarrow \infty$ we obtain

$$
E_{\imath}\left(\left|f-S_{N}\right|^{2}\right) \leqq \varrho_{N}:=\sum_{k=N+1}^{\infty} E_{\imath}\left(\left|\lambda_{i_{k}}\right|^{2} I\left(A_{i_{k}}\right)\right)
$$

Since $\sum_{n} \int_{A_{i_{n}}}\left|\lambda_{i_{n}}\right|^{2} d \mu<\infty$ implies $\varrho_{N} \rightarrow 0 \mu$-a.e. as $N \rightarrow \infty$, the validity of statement (6) b) for f follows.

From Hölder's inequality for the conditional expectation (see e.g. [1], p. 10) we get for any function $g \in L^{2}(\mathscr{A})$.

$$
\begin{equation*}
\left|E_{\tau}(f \bar{g})-E_{\imath}\left(S_{N} \bar{g}\right)\right| \leqq\left[E_{\imath}\left(\left|f-S_{N}\right|^{2}\right)\right]^{1 / 2}\left[E_{\tau}\left(|g|^{2}\right)\right]^{1 / 2} \rightarrow 0 \tag{15}
\end{equation*}
$$

μ-a.e. as $N \rightarrow \infty$.
If $g=\bar{\chi}_{i} \varphi_{i}$, where $\chi_{i} \in L^{\infty}\left(\mathscr{A}_{\tau_{i}}\right)$, we have

$$
\begin{gathered}
E_{\tau}\left(S_{N} \bar{g}\right)=\sum_{k=0}^{N}\left(E_{\tau} \circ E_{\tau_{i_{k}} \tau_{i}}\right)\left(\lambda_{i_{k}} \varphi_{i_{k}} \bar{g}\right)=\sum_{k=0}^{N} E_{\tau}\left(\lambda_{i_{k}} \chi_{i} E_{\tau_{i_{k}} \vee \tau_{i}}\left(\varphi_{i_{k}} \bar{\varphi}_{i}\right)\right)= \\
= \begin{cases}E_{\tau}\left(\lambda_{i} \chi_{i} I\left(A_{i}\right)\right) & \left(i \in\left\{i_{0}, \ldots, i_{N}\right\}\right), \\
0 & \left(i \notin\left\{i_{0}, \ldots, i_{N}\right\}\right)\end{cases}
\end{gathered}
$$

and similarly

$$
E_{\tau}(f \bar{g})=E_{\tau}\left(\chi_{i} E_{\tau_{i}}\left(f \bar{\varphi}_{i}\right)\right)
$$

Hence using (15) we obtain that

$$
E_{\tau}\left(\chi_{i}\left(E_{\tau_{i}}\left(f \bar{\varphi}_{i}\right)-\lambda_{i} I\left(A_{i}\right)\right)\right)=0 \quad(i \in \mathscr{I})
$$

whence choosing $\chi_{i}=\operatorname{sgn}\left(E_{\tau_{i}}\left(f \bar{\varphi}_{i}\right)-\lambda_{i} I\left(A_{i}\right)\right)^{2)}(i \in \mathscr{I})$ we get the desired equality (6) a).

3. Examples

In this section we indicate some examples for the concepts introduced before.
1° Let μ be the Lebesgue measure on $X=[0,1)$ and \mathscr{A} the class of Lebesgue measurable subsets of X. For every $n \in \mathbf{N}$ define \mathscr{A}_{n} to be the σ-algebra generated by the dyadic intervals $\left[k 2^{-n},(k+1) 2^{-n}\right]\left(k=0,1,2, \ldots, 2^{n-1}\right)$. Then for any $x \in$ $\in\left[k 2^{-n},(k+1) 2^{-n}\right]$ and $f \in L^{1}(\mathscr{A})$

$$
\begin{equation*}
\left(E_{n} f\right)(x)=2^{-n} \int_{k 2^{-n}}^{(k+1) 2^{-n}} f d \mu \tag{16}
\end{equation*}
$$

$\left.{ }^{2}\right) \operatorname{sgn} z=z \||z|(z \neq 0)$, and $\operatorname{sgn} 0=0$.

Denote by $\Phi=\left\{\varphi_{n}: n \in \mathbf{P}=\mathbf{N} \backslash\{0\}\right\}$ the Rademacher system, i.e. define $\varphi_{n}(x)=$ $=\varphi_{1}\left(2^{n-1} x\right)(n \in \mathbf{P})$, where

Then

$$
\varphi_{1}(x)=\left\{\begin{array}{rl}
1 & (0 \leqq x<1 / 2) \\
-1 & (1 / 2 \leqq x<1)
\end{array}, \quad \text { and } \quad \varphi_{1}(x+1)=\varphi_{1}(x) \quad(x \in \mathbf{R})\right.
$$

$$
\begin{equation*}
\text { a) } \varphi_{n} \in L^{\infty}\left(\mathscr{A}_{n}\right), \quad \text { b) } E_{n-1}\left(\varphi_{n}\right)=0 \quad(n \in \mathbf{P}) \tag{17}
\end{equation*}
$$

thus Φ is an T-ONS, where $T=(n-1, n \in \mathbf{P})$.
Equality (16) easily implies that the T-Fourier series of a function $f \in L^{1}(\mathscr{A})$ with respect to the system Φ is the same as the Haar-Fourier series of f.

In this example the Rademacher system can be replaced by any system $\Phi=$ $=\left\{\varphi_{n}: n \in \mathbf{N}\right\} \subset L^{2}(X, \mathscr{A}, \mu)$ consisting of independent functions having the property

$$
\int_{X} \varphi_{n} d \mu=0 \quad(\mathrm{n} \in \mathbf{N})
$$

2° It can be shown [4] that the polynomials $P_{k}(\cdot, \omega)$ which play an important role in papers [5] and [6] can also be obtained by T-Fourier expansions with respect to an appropriate system.
3° For a fixed $N \in \mathbf{P}$ denote by $\mathscr{A}_{n}(n=0,1, \ldots, N)$ the class of Lebesgue measurable 2^{-N+n}-periodic subsets of the set $X=[0,1)$, and define $\varphi_{n}(x)=\exp \left(2 \pi i 2^{N-n} x\right)$ $(x \in X, n=0,1, \ldots, N)$. It is not hard to prove that $\Phi=\left\{\varphi_{n}: n=0,1, \ldots, \mathrm{~N}\right\}$ is a $T=(n-1, n \in\{0,1, \ldots, N\})$-ONS, see [4].

Further examples can be found in [3] and [4].

References

[1] J. Neveu, Martingales à temps discret, Masson et Cie (Paris, 1972).
[2] A. Zygmund, Trigonometric series (Cambridge, 1959).
[3] F. Schipp, On L^{p}-norm convergence of series with respect to product systems, Analysis Math. (to appear).
[4] F. Schipp, On a.e. convergence of expansion with respect to certain product systems, Analysis Math. (to appear).
[5] P. Billard, Sur la convergence presque partout des séries de Fourier-Walsh des fonctions de l'espace $L^{2}(0,1)$, Studia Math., 28 (1967), 363-388.
[6] R. A. Hunt, Almost everywhere convergence of Walsh-Fourier series of L^{2} functions, Proc. Internat. Congress Math., Nice, 1970, Vol. 2, Gauthier-Villars (Paris, 1971), 655-661.

