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1. Definitions and theorems

Let (X, o7, 1) be a probability space,
o, = {X, 0lcAc...cH,C...

a sequence of sub-g-algebras of the g-algebra &, and suppose that /=<, =V ,.

Furthermore, let N={0, 1,2, ...}, N=NU{c}, LP(&)=L?(X, o,, n) (nEN,
1=p=-<), and denote by || ||, the L°(«#)-norm of the function f¢L"(<).
Using the notation of [1] we call a mapping t: X—+N a stopping time relative
to the sequence A=(s,, n€N) if for every néN we have {t=n}€,.
Denote by 7 the set of stopping times relative to A and for every 1€ introduce
the class of sets
A, ={Acd: AN {t=n}c o, (VnEN)}.

It is known that of,C o is a o -algebra, 7 is &7, -measurable, and if t =n=const (n€N)
then o, equals &, (see e.g. [1]). Moreover it is clear that for every 7, v€J their
envelopes tVv and TAv also belong to 7.

For any stopping time 1€ denote by E, the condtitional expectation operator
relative to &, in particular E, (n¢N) denotes the conditional expectation operator
relative to &7,. It is known that E_, is equal to the identity, and for every t€J we
have I{t=n}E,=I{r=n}E, "V

Let 7,67 (i€.#) be a system of stopping times labeled by the elements i of
some set # of indices. Denote T=(t;, i€.#), and let &= {¢p;, i€F) be a system of
functions ¢;€L?(2f). The sequence 7" will be fixed throughout this paper.

1 I(4) denotes then indicator function of the set ACX.
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Using these notations we introduce the following generalization of the concept
of orthogonality.

Definition. The system @ is called a T-orthogonal system (briefly T-OS)
if for every 7, j€ £, i#j

(1) Er;vrj((pi(ﬁj) = 0'

If there exists a system of non empty sets A€, (i€ ) such that

%) E.(loP) = I(4) (i€ #),

then @ is called a T-normed system. Systems which are T-orthogonal and T-normed
are called T-orthogonal systems (T-ONS).

We note that any system @ can be made T-normed by multiplication of its
elements by appropriate functions..Namely, set

3) A; = {E. (o) = 0} (i€ ),

and 7,=0 on X\ 4; and y,=(E,(j¢)%) " on 4;. Then y, is &/, measurable,

and by
Er;(]Xi(piF) = P E;, (0:?) = 1(4)

{x;9:;:i€¢F} is a T-normed system.
If ©;=0 (i€.#), then E,..,(¢:#)= [ ¢:$;du so in this case the above defini-
X .

tion reduce to that of usual ONS.
In this note we will prove a generalization of Bessel’s identity for 7-ONS as

follows:

Theorem 1. Let &={¢;:icF} be a T=(1;, i€ F)-ONS, S, a finite subset
of 4, and 1€T a stopping time such that 1=1; for every i€ #. Then for any funciion
JEL2(A) we have

(4) lnf {E:(|f—i€ZJ' Ai(pilz):lieLz(&/ﬂ)} = Er('flz)_ig E.,(IE,'(f(ﬁi)lz),
and tlhe infimum is attained for A, =E, (/).

In case 1;=7t=0 (i€.#) this identity reduces to the usual Bessel’s identity. (4)
immediately implies the following generalization of Bessel’s inequality:

Corollary 1. The set
Iy ={ic S E(fo) = O}
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is at most countable and

(5) 2 E‘I(]E‘r,' (f(ﬁi)lz) = Er(lflz)

ii%,

Let us now introduce the following generalization of the concepts of Fourier
coefficients and Fourier expansion.

Definition. Let ¢={p;: i€} be a T-ONS. The function E (/@) (icS)
is called the i-th T-Fourier coefficient, and the series

S[fl= 2 E.(fo)e:
léff

the T-Fourier series, of the function f with respect to the system &.
The converse of Corollary 1 gives a generalization of Riesz—Fischer-theorem.

Theorem 2. Let &={p;:icf} be a T-ONS, S={i,: neN}c S, and 1€¢T
a stopping time with 1=1; (i€ £). Furthermore, let ;€ L* (.szf,‘) be a sequence satisfying
the conditions

=0 ((€F\ ), 2, f A2 dp < oo

i€, 4,
Then there exists a (unique) function f€ L2(sf) such that
: N
6 a) I(d)di = E,(f@) (icS), b) lim E.(|f- Z") 24, 05,]7) = 0.
The following concept is a generalization of the completeness relative to the
space L2(). -

Definition. 4 system &={¢;: i¢F}CL?() is T-complete (relative to the
space L*()) if fcL*(«/), and E, (fp)=0 (i€.#) imply f=0.
From Theorems 1 and 2, and Corollary 1 it follows in a simple way the following:

Corollary 2. If @ is an T-complete T-ONS, then for every function f€ L*(sf)
the relations

M @ Jm B/~ ZE, (B0 =0 B EUP = 3 E(EURN)
hold; here #,={i,: ncN}.

Statement a) means that the Fourier series of any function f€L?(/) with
respect to an T-complete T-ONS converges in the “norm” | -||(d“2)=[E,(|- DEje
to the function f.
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2. Proofs

First we recall some properties of the conditional expectations which we are
.going to use. . ‘

Let 7, v€J. Then
(8) fr<v}, {r=v}, {r=v}eo N,
.and if t=v, then
{(9) A.ch, and E,oF,=E,oFE, =E,

, ~

‘where o denotes the composition of functions. Moreover it is known that if A is
& -measurable and if f and Af€L!(«/) then

{10) E.(M) = AE.f. |

We note that this equations also holds for any . -measurable f: X —[0, =]
and &f -measurable A: X—~[0, «]. (See e.g. [I], p. 7 and 9.)
It follows from the above properties that for arbitrary stopping times t, v€J

(11) EocE,= E,0oE,=E,,.
Namely, let f€L*(«f). Then by (9)
(12)
E.,.f=I{t <VE f+1{t =z v}E,f = I{t < v}E(E.../)+I{t = V}E,,,(E,f).
Since by (10) ; |

I{t < V}E.,f = I{t < W} E.f = E(I{t < }f)
:and similarly for every function g€ L'(«)
- I{t = W E,.,,g = E(I{r = v}g),
itherefore from (12) by (10) we have
Eunf = E({t <V Eo ) +I{t = WE(E,f) =
= E(EI{t < W)+ E({t = WEf) = (B0 E)I{t < }f+I{z = v}f) =
= (E,0E).

:Similarly, we get E,0 E,.=E,,,.
Further on we often refer to the following

Remark. Let ¢;€ L*(), A;={E.(@i)#=0} (icF). Then

«(13) I(4)p: = @1 (i€ F).
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From the definition of the conditional expectation and from that of sets 4,
it follows that

= [E(odu= [ lof du;

X\A . XN\ A4,

thus we have I(X\4;) ¢;=0. Hence we obtain

o= IX\4)oi+1(4)o; = I(4) o, (i€F),
and our statement is proved.

Proof of Theorem 1. Let 4,€L*(,) ({€4). Then by (10), taking into
account the 7-normedness of the system &, we have

f [l du = Eo(Er,(Mi(sz)) = EO(IAIIZEf"(le!z)) = Eo(|)~x|21 (Ai)) < o,
X

. Hence it follows that for 4,€L*(«#.) we have 4,9,€L*(«). Using the additivity
of E, we obtain

6= E(|f- 2 Aol = E(f1®) - 2 Eifoi+rifo)+ 2 E(hd;0.6).
) icsy ics, 5, j€Fy
Since by (11), (10), (1), and (2)

Et(li}:j(pi(p.j) = (ErOEr,vr,) (}411%5;) = Et('lisznvrj(q’l@j)) = Et(AIZjI(Ai)aij)'
and '

E, (4 f3) = (E.0E)(.f9) = E(LE.(fp))

therefore by (13) 6 can be expressed as follows:
8= E(fP)= 2 E(LIA)E o)+ LI4) E,(f8) +
+ Z E(I(A)IA]) = E(f l2)+ E (1 Ex, (f3) — “(A.)Iz)— Z E(IE,(f@)P).
Hence it is obvious that § is minimal if };=E, ( f @;) and we have (4) as asserted.

‘ Proof of Theorem 2. Let Sy= Zl,ngo," N>3M > N. Then by the above
Remark we have Sy€ L%(&) (N¢N), and from (1) and (2) we obtain

E(Su—-SvP = 2 E(4,0:.0) =
N<kisM !

‘= Et(}'iklh Et,kvt“ (qoik (-ﬁi,)) = N<%;M Ef(lj‘iklzl(Aik))'

N<k,I1=M

(14)

Hence
ISv—Suli= 3 [Ifdu~0 (M N~o)
N<k=M A‘k . .



284 ' - F. Schipp

\

From the last inequality it is clear that there exists a sequence (¥, k€N) such that
Sy, 1s convergent pu-a.e. and f:=,1£r§° SNkELZ(d). Applying Fatou’s theorem for
the conditional expectation (see e.g. [1], p. 9) and taking the limit from (14) as M —
we obtain

E(f-SPSovi= 3 E(WFIA)

| e

Since 2 f |A;, |2 du<eo implies gy—0 p-a.e. as N—oo, the validity of statement
n A‘" .

(6) b) for f follows.

From Hélder’s inequality for the conditional expeétation (see e.g. [1], p. 10)
we get for any function g€ L?(s/).

(15) IE(f8) — E(Sy®)| = [E f— SyPIM[E. (eI —~ 0
u-a.e. as N—»_oo_.

If g=7ipi;, where y;€ L=(s,), we have

N N
Et(SNg) = k;; (EtoEnkvn) ()“ik ¢ikg) = k;(; Ez(lik XiEr,kvtg((pik (px)) =

_ {Er(AIXiI(Al)) (16{109 crey iN}),
10 (@6 {ios -5 in})
E‘t (fg) = Et (Xl Eri (f(ﬁl))
Hence using (15) we obtain that
E(0:(E,(fG)—4I(4)) =0 (i€ 5),
whence choosing y;=sgn (En (f@)—4,1(4,))? (i€ F) we get the desired equality (6) a).

and similarly

3. Examples

In this section we indicate some examples for the concepts introduced before.

1° Let pu be the Lebesgue measure on X=[0, 1) and &/ the class of Lebesgue
measurable subsets of X. For every n¢N define o7, to be the o-algebra generated by
the dyadic intervals [k27", (k+1)27"] (k=0,1,2,...,2°""). Then for any x¢
€[k2", (k+1)27"] and feL'()
*+1)2-"

(16) ‘ ENH@=2" [ fdu

k2~n

%) sgn z=2/|z| (z520), and sgn 0=0.
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Denote by &= {(p,, neP= N\{O}} the Rademacher system, i.e. define ¢,(x)=
=@, (2" 1x) (nc€P), where

1 O=x=<1/2) -
¢1(x) = {_1 (1/2 =x < 1)’ aﬂd ¢1(x+1) = (pl(x) (VER)

Then
(17) v a) @n€ L”(.SJ,,), b) En—l((pn) =0 (nEP)9

thus @ is an 7-ONS, where T=(n—1, ncP).

Equality (16) easily implies that the T-Fourier series of a function feL'(s/)
with respect to the system @ is the same as the Haar-Fourier series of f.

In this example the Rademacher system can be replaced by any system @==
={¢,: neN}c L*(X, &, p) consisting of independent functions having the property

[ oadup =0 (meN).
X

2° It can be shown [4] that the polynomials P,( -, @) which play an important
role in papers [5] and [6] can also be obtained by 7-Fourier expansmns with
respect to an approprlate system.

3° Fora ﬁxed NEP denote by &, (n=0, 1, ..., N) the class of Lebesgue meas-
urable 2~¥+"_periodic subsets of the set X=[0, 1), and define @,(x) =exp(2mi2¥~"x)
(x€X,n=0,1,...,N). It is not hard to prove that &={¢p,:n=0,1,...,N} is a
T=(m-1,ne{0,1,..., N})-ONS, see [4].

Further examples can be found in [3] and [4].
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