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1. Definitions and theorems 

Let (X, si, fi) be a probability space, 

a sequence of sub-u-algebras of the a-algebra si, and suppose that si=sica=\/s/n. 

Furthermore, let N = { 0 , 1 , 2 , . . . } , N=NU{°°} , U{st^=U{X, s/n, p) («€N, 
I S ^ S « ) , and denote by | | / | | p the Lp(s/)-norm of the function f£L"{si). 

Using the notation of [1] we call a mapping r : A'—N a stopping time relative 
to the sequence A = { s / n , « £ N) if for every n f N we have { t = n } £ s f „ . 

Denote by the set of stopping times relative to A and for every introduce 
the class of sets 

stx\ = {A€j*:Af){x=n}esin (Vn6N)}. 

It is known that sfzczsfis a a-algebra, t is ^-measurable , and if r = « = c o n s t («€N) 
then six equals s/„ (see e.g. [1]). Moreover it is clear that for every t , their 
envelopes TVV and xAv also belong to 

For any stopping time x£^"denote by Ez the condtitional expectation operator 
relative to s f z , in particular E„ (n£ N) denotes the conditional expectation operator 
relative to s/„. It is known that is equal to the identity, and for every we 
have I{x=n}ET = I{x=n}En.» 

Let x^ST ( /£ , / ) be a system of stopping times labeled by the elements i of 
some set J of indices. Denote T=(xt, and let <P = {(pi, be a system of 
functions (PiZLPis/). The sequence T will be fixed throughout this paper. 

x) 1(A) denotes then indicator function of the set AC.X. 
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Using these notations we introduce the following generalization of the concept 
of orthogonality. 

D e f i n i t i o n . The system <P is called a T-orthogonal system (briefly J-OS) 
if for every i ^ j 

(1) E^rj{<Pi<Pj) = 0. 

If there exists a system of non empty sets A i £ (if-?) such that 

(2) Ex,(\q>\*) = I(Ad (i<LS), 

then $ is called a T-normed system. Systems which are T-orthogonal and T-normed 
are called T-orthogonal systems (T-ONS). 

We note that any system <P can be made T-normed by multiplication of its 
elements by appropriate functions. Namely, set 

(3) A, = {ErM\2) * 0} ('"€•), 

and = 0 on X\Ai and & = (2?i,(IVi|2))"1/2 on At. Then Xi is measurable, 
and by 

ETI(\Xt<Pi\2) = \Xi\2ETlM2) = /(AO 

{Xi<Pi'-i€>#} is a T-normed system. 
If Tj = 0 (if. J), then E^vtJ(q>i(pj) = J(pilpj dfi so in this case the above defini-

x 
tion reduce to that of usual ONS. 

In this note we will prove a generalization of Bessel's identity for T-ONS as 
follows: 

T h e o r e m 1. Let if J ) be a T=(zt, z'£./)-ONS, a finite subset 
of J , and xfST a stopping time such that I S T ; for every i f ^ . Then for any function 
f f L " (si) we have 

(4) inf {Ex(\f- 2 h < P i \ 2 ) : = Ex(\f\2)- 2 Ex{\ETt(m\2), 
its 0 '€^0 

and the infimum is attained for ¿.¡=EX (/(¡¡¡). 

In case zt = i:=0 (if J ) this identity reduces to the usual Bessel's identity. (4) 
immediately implies the following generalization of Bessel's inequality: 

C o r o l l a r y 1. The set 

•Js = {iiJ-.E^fa) * 0} 
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is at most countable and 

(5) 2 Ex(l^t/W) ^ Ex(\f\2). 
i i - f , 

Let us now introduce the following generalization of the concepts of Fourier 
coefficients and Fourier expansion. 

D e f i n i t i o n . Let <Z> = {<p(: i t J ) be a T-ONS. The function E ^ f v d ( i t J ) 
is called the i-th T-Fourier coefficient, and the series 

S [ / ] = 2 E.sfvdvi 
itSf 

the T-Fourier series, of the function / with respect to the system <P. 
The converse of Corollary 1 gives a generalization of Riesz—Fischer-theorem. 

T h e o r e m 2. Let $={</>,: be a T-ONS, J0={in: and xtST 
a stopping time with T^T,- (id J'). Furthermore, let /;6L2(si J be a sequence satisfying 
the conditions 

h = 0 (i:tJ\S0), 2 
A, 

Then there exists a (unique) funciion ftL2(si) such that 

(6) a) I(A{)A, = EZl(fcpd (/'€ J ) , b) Hm Et(|/- J cptf) = 0. 

The following concept is a generalization of the completeness relative to the 
space L2(si). 

D e f i n i t i o n . A system <P = {<pi\ ¡ C / } c I 2 ( ^ ) is T-complete (relative to the 
space if feL2(si), and £ t ( (/<?,•)=0 (it J ) imply / = 0 . 

From Theorems 1 and 2, and Corollary 1 it follows in a simple way the following: 

C o r o l l a r y 2. If $ is an T-complete T-ONS, then for every function ftL2(si) 
the relations 

(7) a) lim £t(|/- J £ t J / < p , > , „ | 2 ) = 0, b) Ex(\f\2) = 2 Ex(\Etl(fcpd\2) 
' „=o " i t s , 

hold; here Jf = {;„: n 6 N}. 

Statement a) means that the Fourier series of any function ftL2(si) with 
respect to an T-complete T-ONS converges in the "no rm" || • ||(rft>2)-=[EX(\ • l)T / 2 : 

to the function / . 
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2. Proofs 

First we recall some properties of the conditional expectations which we are 
going to use. 

Let x, vf_2T. Then 
- ( 8 ) { T < V } , {T = V} , 

.and if T v, then 

•(9) s/tczsiv and EzoEv = EvoEz = Ez, 
- "1 

-where o denotes the composition of functions. Moreover it is known that if X is 
$tz -measurable and if / and Xf f L1 (¿4) then 

<10) ET(Xf) = XEJ. ; 

We note that this equations also holds for any si -measurable / : [0, 
and ^ -measu rab l e X\ X—[0, (See e.g. [1], p. 7 and 9.) 

It follows from the above properties that for arbitrary stopping times 

.(11) EtoEv = E,oEx = £„„. 

Namely, let faLx{si). Then by (9) 

(12) 

Ex„f= /{t < v}EJ+I{x ^ v}EJ= I{% < v}Ez(Ezvvf) + I{x s v}E„v(Evf). 

Since by (10) 

I{x v } £ r v v / = V } £ V / = £ V ( / { T v}/) 

.and similarly for every function g f L 1 ( s / ) 

I{x s v}Ezwvg = Ez(I{x ^ v}g), 

¡therefore from (12) by (10) we have 

£tAV/ = Ez(I{x < v } £ „ v / ) + /{T ^ v } £ t v v ( £ v / X = 

= Et(Ev(I{x < v}f)) + Ez(I{x fe v}Evf) = (EzoE,)(I{x < v } / + / { r s v}/) = 

= № t o £ , ) / 

Simi lar ly , we get EVOEZ=EZAV. 
Further on we often refer to the following 

R e m a r k . Let ^, = {£r|(|^|2) ^ 0 } {if J ) . Then 

• (13) I(At)<Pi = <Pt 0XS). 
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From the definition of the conditional expectation and from that of sets A,-
it follows that 

0 = / £ t | ( M » ) 4 i = / | c p ^ d f i ; 
X\AT X\AT 

thus we have I(X\At) cpt=0. Hence we obtain 

<Pt = I(X\Adq>t + I(Adq>, = I(Adq>, (/€•/), 

and our statement is proved. 

P r o o f of T h e o r e m 1. Let Xi£L2(jtfr) (i€./0). Then by (10), taking into 
account the T-normedness of the system <Z>, we have 

/\XI(PI\2 d f i = E0(ERIQXI(PI\>)) = E ^ E ^ W I ? ) ) = E ^ I i A i ) ) < 
x 

. Hence it follows that for we have ~/.i(pi<iEi(si). Using the additivity 
of Ez we obtain 

i 

« := H \ f ~ 2 ¿i<P.\2) = E M - 2 Ez(Xjcpi + XJ(pi)+ 2 EMjcptVj). i € J>0 

Since by (11), (10), (1), and (2) 

Et(X,Xj<ptvj) = (Eto EttVti)№j9tVj) = E ^ X J j E ^ ^ V j ) ) = ET(XiXJI(Ai)SiJ), 

and 
Ezajvd = (EToET)atm = E ^ x m ) 

therefore by (13) 8 can be expressed as follows: 

5 = E M - 2 E^XJCAJEjf^ + XJCAJE^)) + 

+ 2 Et(/(AM|2) = E M + 2 E ^ i f i p d - h W ) - 2 Et{\Ett{f<ptf). 
'IF A I£S0 IZJ0 

Hence it is obvious that 8 is minimal if Xi=EZt(fip¡) and we have (4) as asserted. 
N 

P r o o f of T h e o r e m 2. Let SN= 2 ¿/„<Pi„> N 3 M > J V . Then by the above 
«=o 

Remark we have SN£L2(s/) (N£ N), and from (1) and (2) we obtain 

2 Et(XlkXil(Pilc<pt) = 

= 2 E i f a & E ^ t o M ) = 2 E ^ f l i A J ) . 

Hence 
lis* - SmIII = 2 f IAJ dfi^O (M, N — -). 
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From the last inequality it is clear that there exists a sequence (Nk, k f . N) such that 
SNk is convergent n-a.e. and / : = Hm SNkfL2(sst). Applying Fatou's theorem for 
the conditional expectation (see e.g. [1], p. 9) and taking the limit from (14) as M— 
we obtain 

ExQf— Siv|2) = QN '•= 2 Ez{\kJI(Ah)). inn** k=N+1 
Since 2 ! f l ^ i n l 2 ^ ^ 0 0 implies q n -»0 ^-a.e. as iV-»-oo5 the validity of statement 

n ¿t 
(6) b) for / follows. 

From Holder's inequality for the conditional expectation (see e.g. [1], p. 10) 
we get for any function g£L2(sf) 

(15) | E z ( f g ) - E z ( S N g ) \ s [Ez(\f-^|2)]1/2[^(|g|2)]1/2 - 0 

/i-a.e. as iV— 

If g = Xi<Pn where (s/z), we have 

ET(SNg) = 2(EzoE )(Xik(pikg) = 2 Ez(likXiEt (<pik<Pi)) = 
k=o k o 

_ jE^XtHAd) (if{io,--,iN}), 
~ [ 0 ( /$ {i'o, /JV}) 

and similarly 
Ez(fg) = Ez(7jEXi(f(pd)-

Hence using (15) we obtain that 

E(Xi(EXl(M) - kHAd)) = 0 (if J ) , 

whence choosing X; = sgn (ISTI(/<PI)-A;/04I))Z) (if J ) we get the desired equality (6) a). 

3. Examples 

In this section we indicate some examples for the concepts introduced before. 

1° Let n be the Lebesgue measure on X=[0 ,1 ) and sd the class of Lebesgue 
measurable subsets of X. For every «€ N define sin to be the a -algebra generated by 
the dyadic intervals [k2~B, (A:+l)2-"] (k=0, 1, 2, . . . , 2"-1). Then for any 
6 [k2-n, (A;+1)2""] and ffLx(s4) 

№+1)2-" 
(16) (E„f)(x) = 2 - " / fdii. 

*2~" 

2) s g n z = z / | z | (Z9* 0), and sgn 0 = 0 . 
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Denote by <P = {q>„: «ÇP = N \ { 0 } } the Rademacher system, i.e. define cp„(x) — 
= q>x(2"~1x) ( N £ P ) , where 

f 1 (0 s x < 1/2) 
i»i(*) = 1 _ 1 (1/2 ^ x < 1)' a n d <Pi ( x + l ) = <Pi(x) (V€R)-

Then 

(17) a ) cpn£L~(s*n), b) £ „ _ ! ( % ) = 0 ( H € P ) ; 

thus $ is an T-ONS, where T=(n-l, n£P). 
Equality (16) easily implies that the T-Fourier series of a function f£Ll(si) 

with respect to the system $ is the same as the Haar-Fourier series of / . 
In this example the Rademacher system can be replaced by any system 4> — 

= {<p„: « Ç N } c L 2 ( X , si, ¡i) consisting of independent functions having the property 

f<pndn = 0 (n€N). 
x 

2° It can be shown [4] that the polynomials Pk(-,co) which play an important 
role in papers [5] and [6] can also be obtained by T-Fourier expansions with 
respect to an appropriate system. 

3° For a fixed N f P denote by sin (/2=0, 1, . . . , N) the class of Lebesgue meas-
urable 2~N+"-periodic subsets of the set ^ = [ 0 , 1), and define <pn(x) = exp(2ni2N~nx) 
(x£X, n=0, 1, ...,N). It is not hard to prove that 4> = {<p„: n=0, 1, . . . , N } is a 
T=(n — l, n€{0, 1, . ., JV})-ONS, see [4]. 

Further examples can be found in [3] and [4]. 
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