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1. Let <P, ST, 0> respectively denote the set of all orthonormal systems q> = 
— {<Pn (*)}"> the set of orthonormal systems T= {r„(x)}~ consisting of trigonometric 
polynomials, and the set of orthonormal systems P= {P„(x)}~ consisting of algebraic 
polynomials, on the interval [0, 2n]. 

For any given set <?f of orthonormal systems H= {//„ on [0, In], a sequence 
{a„}~ of real numbers is said to be a convergence sequence over if for each Httf 

OO 
the series 2 a n ^ n ( x ) converges almost everywhere in [0,2jt]. 

71 = 1 

For any sequence of real numbers we define 

2* j 
I I K J M , *\\p = sup I f sup | 2 a„Hn{x)\" d x f 

Heje o Mmi^j^N !n=i+i , ' 
( 1 ^ 2 ; OsM^NSoo). 

It can be shown that 

(I) lim \\{an}l^\\p= ||{a„}0~, yV-» oo 

In [3] TANDORI proved the following 

T h e o r e m A. The sequence is a convergence sequence over $ if and 

In [1] LEINDLER proved two deep approximation theorems for orthonormal 
polynomials and using these he proved, roughly saying, that if a divergence theorem 
can be sated for a general orthogonal series then there exists a series of orthogonal 
polynomials for which the same divergence phenomenon holds. 

In the present paper we prove the analogues of Leindler's theorems for ortho-
gonal trigonometric polynomials. 

T h e o r e m 1. Let (p£ <t>. For any sequence of positive numbers and any 
sequence {JVt}~ of integers (0 = jV„<iVi<...) there exist a system T£ 9~ and a sequence 
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{Gt}~ of measurable subsets of [0, 2n] such that for any xfCGk and n satisfying 
Nk_1<n^Nk we have 

(2) Icpn(x)-(-1)4«Tn(x)\ ^ ek (jk(x) = 0 or 1), 

(3) n(Gk)^ek (k = 1 ,2 , . . . ) , 
and 
(4) max |r„(x)| ]/2{ sup |<p„(x)| +1) . 

T h e o r e m 2. Let (p£$. Let {a„}~ be a sequence of real numbers and {¿>„}~ 
a non-decreasing sequence of positive numbers. Suppose that {¿¡?k}T is a sequence 
of measurable subsets of[ 0, 2n], {yVt}~ is a given sequence of integers ( 0 = N 0 < N 1 < . . . ) , 
and s is a given positive number. If fi (Jmt^fk) = 2n if and for each there is a 
pair of integers vk(x), nk(x) such that Nk^vk(x)<[ik(x) and 

(5) 2 an(p„(x) 
nfc = v(x) + 1 

= bk, 

then there exists a TfST such that the inequality 

(6) 
Pkto 
2 anTn(x) n=vk(*)+l 

(1 —e)bk 

holds for infinitely many k almost everywhere in [0, 2n]. If the system <p is uniformly 
bounded then the system T can also be chosen uniformly bounded. 

Using Theorems 1 and 2 and results of TANDORI we prove the following 
theorems. 

T h e o r e m 3. If then the inequalities 

<7) ||{an}o", ¿Hip 5 IlKJlir, n p ^ 2 ~ r ||{a„}0~, ¿nip 
hold. 

T h e o r e m 4. The sequence {a„}~ is a convergence sequence over ST if and 
only / / 1H} 0 ~ , (l==p=s2). 

Finally, from Theorem A and Theorems 3, 4 we get immediately 

T h e o r e m 5. A sequence {a„}~ of reals is a convergence sequence over <P if 
and only if it is a convergence• sequence over Si. 

We remark that Theorems 3—5 hold true for & instead of ST, too. 
The author is indebted to Professors L . LEINDLER and K. TANDORI for their 

help and valuable suggestions during the preparation of this paper. 
2. We require the following lemmas. The proof of our first lemma is completely 

similar to that of one of LEINDLER'S lemmas ([1], p. 2 6 ) so we omit its proof. 
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L e m m a 1. Let be a system of measurable and bounded functions, 
and {Nk}£ a given sequence of integers (Q=N0<Nl~z...). If for each k (k = \, 2, ...) 
the system {^„(x)}^ i+1 is orthonormal in the interval [0,27i] then for every given 
sequence {sfc}~ of positive numbers there exist a system Tt3~ and a sequence 
measurable subsets of [0, 2n] such that for any x£CEk and Nk_1<nSNk 

(8) №n{x)-(-iy^>\Tn(x) < ek (jk(x) = 0 or 1), 

(9) <Jc= 1,2,...) 
and 
(10) max |r . (*) | S ]/2( sup №„(x)| + l ) ( « - 1 , 2 , . . . ) . 

L e m m a 2. (LEINDLER [1], p. 33) Let cp£<P. For every given sequence {sk}~ of 
positive numbers and any sequence of integers ( 0 = A R

0 - = ; A R
1 < . . . ) , there exist 

a normed system {ij/n (x)}~ of measurable and bounded functions and a sequence 
of measurable subsets of [0, 2n] such that, for every k (fc= 1, 2, ...), 

2k 
(11) / «W*) iM*) dx = 0 ( N k . ^ n ^ m ^ N k ) , 

o 
(12) \(pn{x)-^n{x)| <= ek on C j f k (Afe-i < n s Nk), 

(13) K ^ k ) S ek, 

(14) sup |i/o,(x)| =s sup \cp„(x)\. 

O n the basis o f a l emma of TANDORI [3], p. 222, and by (1) we get 

L e m m a 3. If \sps2 and then 

eJltoW, s I K , ^ IIK}o, ®\\2 
where Q is a positive absolute constant. 

L e m m a 4 . (TANDORI [3], p. 2 2 0 ) If L S M < I \ R < » then 

llK}o. *lls ^ HK}oM+1, + I I f | | 2 -

A partial result in the proof of TANDORI'S theorem ([2], p. 146) we use as 

L e m m a 5. Let {A }̂™ be a given sequence of integers (0=N0<N1<...). If 

(15) 2 l l K } j v r 1 + 1 ' = 
Jfe=0 

then there exist a system (p£<P and a sequence of stochastically independent 
subsets of[0, 2n] (every Ek is a union of intervals of finite number) such that for each k 

(16) n(Ek) =r a | | (a„}^+ l + 1 , $\\t (a is a positive constant), 

furthermore there exist integers vk = vk(x), ¡xk=fik(x) such that Nk^vk(x)<fik(x)^ 

G A 
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=Nk+1 and 

(17) 
til 

fkW 
2 "„(p„(x) 

n = v
k
( * ) + l 

1 for x£Ek. 

3. Proof of Theorem 1. Applying Lemma 2 to the system (p and the sequences 

j y j ^ and {Nk}o we get that there exist a normed system of measurable and bounded 

functions \j/ and a sequence {J^k}r of measurable sets such that (11) is fulfilled. By 

(12) and (13) we have that / i ( J f t ) < - j and if xeCjft then |<p„(x ) - i / /„ (x ) \< j 

( N k _ 1 < n ^ N k ; k— 1,2, ...). Now applying Lemma 1 with the system \J/ and the 
above mentioned sequences we obtain that there exist a system T and a sequence 

of measurable sets such that n (Ek) < ~ (see (9)) and if xfCEk then 

Nk; k = 1,2, . . . ; jk(x) as in (8)). 

Let Gk = JfkUEk (k = 1 ,2 , . . . ) . Collecting the above facts we immediately 
obtain (2) and (3). By (14) and (10) we have (4), too. 

4. Proof of Theorem 2. Let 

(18) sk = e / [ 2 ' ( i V * - i V ^ m a x I l , \aNk_l+1\, ..., |«„J}]. 

Applying Theorem 1 to the system cp and the sequence {£*}" a n d we get 
that there exist a system T and a sequence of measurable sets such that (2) 
and (3) are fulfilled. 

Let us choose a natural number v such that 2_(V+1)^Z>1 . If k ^ v and 
x£Jifk — Gk+1 then using (2), (5) and (18) we obtain 

b k ^ 
"kM 
2 ( - 1 )J"^anT„(x) 

N=VK(X)+1 
+ 

VkM 
2 an{<pn(x)-(-\yk^*)T„(x)) 

n = v
k
( * ) + l 

HkW 

• 2 onTn(x) n=vk(x) +1 + (/**W-vk(x))Bk+!max {|aVk(x)+ 1|, . . . , |a„k(x)|} =a 

+ ebk, 2 anTn{x) 
n=v

k
(jc) + l 

thus (6) holds. 
It remains to show that inequality (6) is fulfilled almost everywhere in [0, In], 

that is, to show that almost all x belong to the sets 3^k—Gk+1 for infinite many 
indexes k. Thus it is sufficient to prove that /¿(fim Gk)=0. But this follows from 

ft(Jim Gk) m n f U == 2 KGk) S 2 2 №k) = e/2»-1. \k—m ) k=m k—m k~m 
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If the system q> is uniformly bounded, then by (4) so is the system T too. 

5. Proof of Theorem 3. First of all we remark that since ST<z. <P, the first 
inequality (7) is evident. Furthermore by (1) it is enough to show that for every 
integer ,/V>0 the inequality 

(19) 

holds. 

i i — . I!{aX n P ^ 2 * Ufo}?, 9-\ 

Let q> = {(pn(x)}i£ $ be an arbitrary but fixed system. As the functions q>„(x) 

. Therefore, are square-integrable so are the function 8N(x) = max O^ic j^N 2 an<P„(x) n = i+l 
for an arbitrary e(>0) there exists a ¿ ' (>0) such that for every measurable set G 
with / i(G)< 8' we have 

(20) f s m d x s m » (\ s p s 2). 

For any i and j ( 0 s i < let 

(21) 5 = d(i, j, N, 8', e, K } ) = min {8'I2'+J, e/(8Nn max^ \an\)}-

By Theorem 1 there exist a system {Ti,Ui)(x)}x and a measurable set G(iJ> 
such that if then for any x£CG(iJ) 

(22) \<p„(x)-(- iyWT^(x)\ s 8 (j(x) = 0 or 1) 
and 

(23) n(GV'») == 8. 

If x6CG ( i ' J ) then by (22) we get 

2 
n = / + l 

and considering (21) we have 

2 anT^(x) n=i+l 
+à 2 k l n=/+1 

(24) 

where \ s p s 2 . 
2 an<Pn(x) «=/+1 

9 P - 1 2 annuj)(x) n=i +1 
+ (6/471)", 

Set Gn= U Using (21) and (23) we get 
0S/«= J-zN 

(25) ï(GN) S 2 M(G^>) ^ 2 2 t'ßi+1 = à'. 
OSi^jcN i—l j = 1 

If X£CGn, by (24), we have 

8Z(x) s ? " 1 max . . 0S/-=J-=AT 2 anT«<J\x) 
n=i+i 

4- (e/4n)p (1 =§ 2) 

8* 
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and considering (20) and (25) we get 

f Sfi(x)dx. = ( / + f)SfKx)dx =s 

in 

2P~1 f max 
P 

2 anT^(x) n=l'+l 

Hence we can see that 

( in 

sup f max 
<pí0\g OSi^j-zN 

( l ^ S 2). 

2 «„<?)„ (x) de j — 2 " | | { ű X ^ L + e . 

Considering that e was arbitrary small we have (19), thus our proof is complete. 

6. Proof of Theorem 4. By Theorem A and Theorem 3 the sufficiency is 
obvious. 

To prove the necessity we assume || {«„}", 3/~\\p = <*>. Applying Theorem 3 and 
Lemma 3 we have ||{an}", $| |

2
 = oo. 

By (1) and Lemma 4 we obtain that lim 00 for any M ; thus 00 
there exists a sequence {iVj^ (0 = iV0<iV1< ...) such that l|{tf„}iv£+1+1, # | | 2 = 1 for 
every k. 

For the sequence we can apply Lemma 5 and we get a system cpfP 
and a sequence {£•*}" of stochastically independent sets such that (16) is fulfilled 
and if xfEk then (17) holds. 

Considering (15), (16), and applying the second Borel-Cantelli lemma we get 
n(JimEk) = 2ft. 

Taking the system cp, the sequences {a„}r, b„ = 1 ( n = l , 2 , . . . ) , and choosing 
e—l/2, it follows from Theorem 2 that there exists a system TfST such that the 

inequality 2 anT„(x) 
n=vk(x) +1 

^ holds for infinitely many k, almost everywhere 

in [0, 2п]. This implies that the series 2 anT„(x) diverges almost everywhere in 
n=l 

[0, 2я]. 
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