On orthogonal trigonometric polynomials

By I. SZALAY in Szeged
Dedicated to Professor K. Tandori on his 50th birthday

1. Let $\Phi, \mathscr{T}, \mathscr{P}$ respectively denote the set of all orthonormal systems $\varphi=$ $=\left\{\varphi_{n}(x)\right\}_{1}^{\infty}$, the set of orthonormal systems $T=\left\{T_{n}(x)\right\}_{1}^{\infty}$ consisting of trigonometric polynomials, and the set of orthonormal systems $P=\left\{P_{n}(x)\right\}_{1}^{\infty}$ consisting of algebraic polynomials, on the interval $[0,2 \pi]$.

For any given set \mathscr{H} of orthonormal systems $H=\left\{H_{n}(x)\right\}_{1}^{\infty}$ on $[0,2 \pi]$, a sequence $\left\{a_{n}\right\}_{1}^{\infty}$ of real numbers is said to be a convergence sequence over \mathscr{H} if for each $H \in \mathscr{H}$ the series $\sum_{n=1}^{\infty} a_{n} H_{n}(x)$ converges almost everywhere in $[0,2 \pi]$.

For any sequence $\left\{a_{n}\right\}_{1}^{\infty}$ of real numbers we define

$$
\left\|\left\{a_{n}\right\}_{M}^{N}, \mathscr{H}\right\|_{p}=\sup _{H \in \mathscr{P}}\left(\int_{0}^{2 \pi} \sup _{M \leqq i<j<N}\left|\sum_{n=i+1}^{j} a_{n} H_{n}(x)\right|^{p} d x\right)^{1 / p}
$$

($1 \leqq p \leqq 2 ; 0 \leqq M<N \leqq \infty$).
It can be shown that

$$
\begin{equation*}
\lim _{N \rightarrow \infty}\left\|\left\{a_{n}\right\}_{0}^{N}, \mathscr{H}\right\|_{p}=\left\|\left\{a_{n}\right\}_{0}^{\infty}, \mathscr{H}\right\|_{p} . \tag{1}
\end{equation*}
$$

In [3] Tandori proved the following
Theorem A. The sequence $\left\{a_{n}\right\}_{1}^{\infty}$ is a convergence sequence over Φ if and only if $\left\|\left\{a_{n}\right\}_{1}^{\infty}, \Phi\right\|_{p}<\infty(1 \leqq p \leqq 2)$.

In [1] Leindler proved two deep approximation theorems for orthonormal polynomials and using these he proved, roughly saying, that if a divergence theorem can be sated for a general orthogonal series then there exists a series of orthogonal polynomials for which the same divergence phenomenon holds.

In the present paper we prove the analogues of Leindler's theorems for orthogonal trigonometric polynomials.

Theorem 1. Let $\varphi \in \Phi$. For any sequence $\left\{\varepsilon_{k}\right\}_{1}^{\infty}$ of positive numbers and any sequence $\left\{N_{k}\right\}_{0}^{\infty}$ of integers $\left(0=N_{0}<N_{1}<\ldots\right)$ there exist a system $T \in \mathscr{T}$ and a sequence
$\left\{G_{k}\right\}_{1}^{\infty}$ of measurable subsets of $[0,2 \pi]$ such that for any $x \in \mathbf{C} G_{k}$ and n satisfying $N_{k-1}<n \leqq N_{k}$ we have

$$
\begin{equation*}
\left|\varphi_{n}(x)-(-1)^{j_{k}(x)} T_{n}(x)\right| \leqq \varepsilon_{k} \quad\left(j_{k}(x)=0 \text { or } 1\right), \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\mu\left(G_{k}\right) \leqq \varepsilon_{k} \quad(k=1,2, \ldots), \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\max _{x \in[0,2 \pi]}\left|T_{n}(x)\right| \leqq \sqrt{2}\left(\sup _{0<x<2 \pi}\left|\varphi_{n}(x)\right|+1\right) . \tag{4}
\end{equation*}
$$

Theorem 2. Let $\varphi \in \Phi$. Let $\left\{a_{n}\right\}_{1}^{\infty}$ be a sequence of real numbers and $\left\{b_{n}\right\}_{1}^{\infty}$ a non-decreasing sequence of positive numbers. Suppose that $\left\{\mathscr{H}_{k}\right\}_{1}^{\infty}$ is a sequence of measurable subsets of $[0,2 \pi],\left\{N_{k}\right\}_{0}^{\infty}$ is a given sequence of integers ($0=N_{0}<N_{1}<\ldots$), and ε is a given positive number. If $\mu\left(\lim _{k} \mathscr{H}_{k}\right)=2 \pi$ if and for each $x \in \mathscr{H}_{k}$ there is a pair of integers $v_{k}(x), \mu_{k}(x)$ such that $N_{k} \leqq v_{k}(x)<\mu_{k}(x) \leqq N_{k+1}$ and

$$
\begin{equation*}
\left|n_{n_{k}=v(x)+1}^{\mu_{k}(x)} a_{n} \varphi_{n}(x)\right| \geqq b_{k}, \tag{5}
\end{equation*}
$$

then there exists a $T \in \mathscr{T}$ such that the inequality

$$
\begin{equation*}
\left|\sum_{n=v_{k}(x)+1}^{\mu_{k}(x)} a_{n} T_{n}(x)\right| \geqq(1-\varepsilon) b_{k} \tag{6}
\end{equation*}
$$

holds for infinitely many k almost everywhere in $[0,2 \pi]$. If the system φ is uniformly bounded then the system T can also be chosen uniformly bounded.

Using Theorems 1 and 2 and results of Tandori we prove the following theorems.

Theorem 3. If $1 \leqq p \leqq 2$ then the inequalities

$$
\begin{equation*}
\left\|\left\{a_{n}\right\}_{0}^{\infty}, \mathscr{T}\right\|_{p} \leqq\left\|\left\{a_{n}\right\}\right\|_{0}^{\infty}, \Phi\left\|_{p} \leqq 2^{1-\frac{1}{p}}\right\|\left\{a_{n}\right\}_{0}^{\infty}, \mathscr{T} \|_{p} \tag{7}
\end{equation*}
$$

hold.
Theorem 4. The sequence $\left\{a_{n}\right\}_{1}^{\infty}$ is a convergence sequence over \mathscr{T} if and only if $\left\|\left\{a_{n}\right\}_{0}^{\infty}, \mathscr{T}\right\|_{p}<\infty(1 \leqq p \leqq 2)$.

Finally, from Theorem A and Theorems 3, 4 we get immediately
Theorem 5. A sequence $\left\{a_{n}\right\}_{1}^{\infty}$ of reals is a convergence sequence over Φ if and only if it is a convergence sequence over \mathscr{T}.

We remark that Theorems 3-5 hold true for \mathscr{P} instead of \mathscr{T}, too.
The author is indebted to Professors L. Leindler and K. Tandori for their help and valuable suggestions during the preparation of this paper.
2. We require the following lemmas. The proof of our first lemma is completely similar to that of one of Leindere's lemmas ([1], p. 26) so we omit its proof.

Lemma 1. Let $\left\{\psi_{n}(x)\right\}_{1}^{\infty}$ be a system of measurable and bounded functions, and $\left\{N_{k}\right\}_{0}^{\infty}$ a given sequence of integers $\left(0=N_{0}<N_{1}<\ldots\right)$. If for each $k(k=1,2, \ldots)$ the system $\left\{\psi_{n}(x)\right\}_{N_{k-1}+1}^{N_{k}}$ is orthonormal in the interval $[0,2 \pi]$ then for every given sequence $\left\{\varepsilon_{k}\right\}_{1}^{\infty}$ of positive numbers there exist a system $T \in \mathscr{T}$ and a sequence $\left\{E_{k}\right\}_{1}^{\infty}$ measurable subsets of $[0,2 \pi]$ such that for any $x \in \mathbf{C} E_{k}$ and $N_{k-1}<n \leqq N_{k}$

$$
\begin{gather*}
\left|\psi_{n}(x)-(-1)^{j_{k}(x)}\right| T_{n}(x)<\varepsilon_{k} \quad\left(j_{k}(x)=0 \text { or } 1\right) \tag{8}\\
\mu\left(E_{k}\right) \leqq \varepsilon_{k} \quad(k=1,2, \ldots) \tag{9}
\end{gather*}
$$

$$
\begin{equation*}
\max _{x \in[0,2 \pi]}\left|T_{n}(x)\right| \leqq \sqrt{2}\left(\sup _{0<x<2 \pi}\left|\psi_{n}(x)\right|+1\right) \quad(n=1,2, \ldots) . \tag{10}
\end{equation*}
$$

Lemma 2. (Leindler [1], p. 33) Let $\varphi \in \Phi$. For every given sequence $\left\{\varepsilon_{k}\right\}_{1}^{\infty}$ of positive numbers and any sequence $\left\{N_{k}\right\}_{0}^{\infty}$ of integers $\left(0=N_{0}<N_{1}<\ldots\right)$, there exist a normed system $\left\{\psi_{n}(x)\right\}_{1}^{\infty}$ of measurable and bounded functions and a sequence $\left\{\mathscr{H}_{k}\right\}_{1}^{\infty}$ of measurable subsets of $[0,2 \pi]$ such that, for every $k(k=1,2, \ldots)$,

$$
\begin{gather*}
\int_{0}^{2 \pi} \psi_{n}(x) \psi_{m}(x) d x=0 \quad\left(N_{k-1}<n<m \leqq N_{k}\right), \tag{11}\\
\left|\varphi_{n}(x)-\psi_{n}(x)\right|<\varepsilon_{k} \quad \text { on } \quad \mathbf{C} \mathscr{H}_{k} \quad\left(N_{k-1}<n \leqq N_{k}\right), \tag{12}\\
\mu\left(\mathscr{H}_{k}\right) \leqq \varepsilon_{k}, \tag{13}\\
\sup _{0<x<2 \pi}\left|\psi_{n}(x)\right| \leqq \sup _{0<x<2 \pi}\left|\varphi_{n}(x)\right| .
\end{gather*}
$$

On the basis of a lemma of Tandori [3], p. 222, and by (1) we get
Lemma 3. If $1 \leqq p \leqq 2$ and $1 \leqq N \leqq \infty$ then

$$
\varrho\left\|\left\{a_{n}\right\}_{0}^{N}, \Phi\right\|_{2} \leqq\left\|\left\{a_{n}\right\}_{0}^{N}, \Phi\right\|_{p} \leqq\left\|\left\{a_{n}\right\}_{0}^{N}, \Phi\right\|_{2}
$$

where ϱ is a positive absolute constant.
Lemma 4. (Tandori [3], p. 220) If $1 \leqq M<N<\infty$ then

$$
\left\|\left\{a_{n}\right\}_{0}^{N}, \Phi\right\|_{2} \leqq\left\|\left\{a_{n}\right\}_{0}^{M+1}, \Phi\right\|_{2}+\left\|\left\{a_{n}\right\}_{M}^{N}, \Phi\right\|_{2} .
$$

A partial result in the proof of Tandori's theorem ([2], p. 146) we use as
Lemma 5. Let $\left\{N_{k}\right\}_{0}^{\infty}$ be a given sequence of integers $\left(0=N_{0}<N_{1}<\ldots\right)$. If

$$
\begin{equation*}
\sum_{k=0}^{\infty}\left\|\left\{a_{n}\right\} N_{k}^{k+1} N_{1}, \Phi\right\|_{2}^{2}=\infty \tag{15}
\end{equation*}
$$

then there exist a system $\varphi \in \Phi$ and a sequence $\left\{E_{k}\right\}_{1}^{\infty}$ of stochastically independent subsets of $[0,2 \pi]$ (every E_{k} is a union of intervals of finite number) such that for each k

$$
\begin{equation*}
\mu\left(E_{k}\right) \geqq \alpha\left\|\left\{a_{n}\right\}_{N_{k}}^{N_{k+1}+1}, \Phi\right\|_{2}^{2} \text { (} \alpha \text { is a positive constant) }, \tag{16}
\end{equation*}
$$

furthermore there exist integers $v_{k}=v_{k}(x), \mu_{k}=\mu_{k}(x)$ such that $N_{k} \leqq v_{k}(x)<\mu_{k}(x) \leqq$
$\leqq N_{k+1}$ and
(17)

$$
\left|\sum_{n=v_{k}(x)+1}^{\mu_{k}(x)} a_{n} \varphi_{n}(x)\right| \geqq 1 \quad \text { for } \quad x \in E_{k}
$$

3. Proof of Theorem 1. Applying Lemma 2 to the system φ and the sequences $\left\{\frac{\dot{\varepsilon}_{k}}{2}\right\}_{1}^{\infty}$ and $\left\{N_{k}\right\}_{0}^{\infty}$ we get that there exist a normed system of measurable and bounded functions ψ and a sequence $\left\{\mathscr{H}_{k}\right\}_{1}^{\infty}$ of measurable sets such that (11) is fulfilled. By (12) and (13) we have that $\mu\left(\mathscr{H}_{k}\right)<\frac{\varepsilon_{k}}{2}$ and if $x \in \mathbf{C} \mathscr{H}_{h}$ then $\left|\varphi_{n}(x)-\psi_{n}(x)\right|<\frac{\varepsilon_{k}}{2}$ $\left(N_{k-1}<n \leqq N_{k} ; k=1,2, \ldots\right)$. Now applying Lemma 1 with the system ψ and the above mentioned sequences we obtain that there exist a system T and a sequence $\left\{E_{k}\right\}_{1}^{\infty}$ of measurable sets such that $\mu\left(E_{k}\right)<\frac{\varepsilon_{k}}{2}$ (see (9)) and if $x \in \mathbf{C} E_{k}$ then

$$
\left|\psi_{n}(x)-(-1)^{j_{k}(x)} T_{n}(x)\right|<\frac{\varepsilon_{k}}{2} \quad\left(N_{k-1}<n \leqq N_{k} ; k=1,2, \ldots ; j_{k}(x)\right. \text { as in (8)) }
$$

Let $G_{k}=\mathscr{H}_{k} \cup E_{k}(k=1,2, \ldots)$. Collecting the above facts we immediately obtain (2) and (3). By (14) and (10) we have (4), too.
4. Proof of Theorem 2. Let

$$
\begin{equation*}
\varepsilon_{k}=\varepsilon /\left[2^{k}\left(N_{k}-N_{k-1}\right) \max \left\{1,\left|a_{N_{k-1}+1}\right|, \ldots,\left|a_{N_{k}}\right|\right\}\right] \tag{18}
\end{equation*}
$$

Applying Theorem 1 to the system φ and the sequence $\left\{\varepsilon_{k}\right\}_{1}^{\infty}$ and $\left\{N_{k}\right\}_{0}^{\infty}$ we get that there exist a system T and a sequence of measurable sets $\left\{G_{k}\right\}_{1}^{\infty}$ such that (2) and (3) are fulfilled.

Let us choose a natural number v such that $2^{-(v+1)} \leqq b_{1}$. If $k \geqq v$ and $x \in \mathscr{H}_{k}-G_{k+1}$ then using (2), (5) and (18) we obtain

$$
\begin{aligned}
& b_{k} \leqq\left|\sum_{n=v_{k}(x)+1}^{\mu_{k}(x)}(-1)^{j_{k+1}(x)} a_{n} T_{n}(x)\right|+\left|\sum_{n=v_{k}(x)+1}^{\mu_{k}(x)} a_{n}\left(\varphi_{n}(x)-(-1)^{j_{k+1}(x)} T_{n}(x)\right)\right| \leqq \\
& \leqq\left|\sum_{n=v_{k}(x)+1}^{\mu_{k}(x)} a_{n} T_{n}(x)\right|+\left(\mu_{k}(x)-v_{k}(x)\right) \varepsilon_{k+1} \max \left\{\left|a_{v_{k}}(x)+1\right|, \ldots,\left|a_{\mu_{k}}(x)\right|\right\} \leqq \\
& \leqq\left|\sum_{n=v_{k}(x)+1}^{\mu_{k}(x)} a_{n} T_{n}(x)\right|+\varepsilon b_{k},
\end{aligned}
$$

thus (6) holds.
It remains to show that inequality (6) is fulfilled almost everywhere in $[0,2 \pi]$, that is, to show that almost all x belong to the sets $\mathscr{H}_{k}-G_{k+1}$ for infinite many indexes k. Thus it is sufficient to prove that $\mu\left(\lim _{k} G_{k}\right)=0$. But this follows from

$$
\mu\left(\lim _{k} G_{k}\right) \leqq \mu\left(\bigcup_{k=m}^{\infty} G_{k}\right) \leqq \sum_{k=m}^{\infty} \mu\left(G_{k}\right) \leqq \sum_{k=m}^{\infty} \varepsilon_{k} \leqq \sum_{k=m}^{\infty}\left(\varepsilon / 2^{k}\right)=\varepsilon / 2^{m-1}
$$

If the system φ is uniformly bounded, then by (4) so is the system T too.
5. Proof of Theorem 3. First of all we remark that since $\mathscr{T} \subset \Phi$, the first inequality (7) is evident. Furthermore by (1) it is enough to show that for every integer $N>0$ the inequality

$$
\begin{equation*}
\left\|\left\{a_{n}\right\}_{0}^{N}, \Phi\right\|_{p} \leqq 2^{1-\frac{1}{p}}\left\|\left\{a_{n}\right\}_{0}^{N}, \mathscr{T}\right\|_{p} \tag{19}
\end{equation*}
$$

holds.
Let $\varphi=\left\{\varphi_{n}(x)\right\}_{1}^{\infty} \in \Phi$ be an arbitrary but fixed system. As the functions $\varphi_{n}(x)$ are square-integrable so are the function $\delta_{N}(x)=\max _{0 \leqq i<j<N}\left|\sum_{n=i+1}^{j} a_{n} \varphi_{n}(x)\right|$. Therefore, for an arbitrary $\varepsilon(>0)$ there exists a $\delta^{\prime}(>0)$ such that for every measurable set G with $\mu(G)<\delta^{\prime}$ we have

$$
\begin{equation*}
\int_{G} \delta R_{N}(x) d x \leqq(\varepsilon / 2)^{p} . \quad(1 \leqq p \leqq 2) \tag{20}
\end{equation*}
$$

For any i and $j(0 \leqq i<j<N)$ let

$$
\begin{equation*}
\delta=\delta\left(i, j, N, \delta^{\prime}, \varepsilon,\left\{a_{n}\right\}\right)=\min \left\{\delta^{\prime} / 2^{i+j}, \varepsilon /\left(8 N \pi \max _{1 \leqq n<N}\left|a_{n}\right|\right)\right\} . \tag{21}
\end{equation*}
$$

By Theorem 1 there exist a system $\left\{T_{n}^{(i, j)}(x)\right\}_{1}^{\infty} \in \mathscr{F}$ and a measurable set $G^{(i, j)}$ such that if $i<n \leqq j$ then for any $x \in \mathbf{C} G^{(i, j)}$

$$
\begin{equation*}
\left|\varphi_{n}(x)-(-1)^{j(x)} T_{n}^{(i, j)}(x)\right| \leqq \delta \quad(j(x)=0 \text { or } 1) \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu\left(G^{(i, j)}\right) \leqq \delta . \tag{23}
\end{equation*}
$$

If $x \in \mathbf{C} G^{(i, j)}$ then by (22) we get

$$
\left|\sum_{n=i+1}^{j} a_{n} \varphi_{n}(x)\right| \leqq\left|\sum_{n=i+1}^{j} a_{n} T_{n}^{(i, j)}(x)\right|+\delta \sum_{n=i+1}^{j}\left|a_{n}\right|
$$

and considering (21) we have

$$
\begin{equation*}
\left|\sum_{n=i+1}^{j} a_{n} \varphi_{n}(x)\right|^{p} \leqq 2^{p-1}\left|\sum_{n=i+1}^{j} a_{n} T_{n}^{(i, j)}(x)\right|^{p}+(\varepsilon / 4 \pi)^{p} \tag{24}
\end{equation*}
$$

where $1 \leqq p \leqq 2$.
Set $G_{N}=\bigcup_{0 \leqq i<j<N} G^{(i, j)}$. Using (21) and (23) we get

$$
\begin{equation*}
\mu\left(G_{N}\right) \leqq \sum_{0 \leqq i<j<N} \mu\left(G^{(i, j)}\right) \leqq \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \delta^{\prime} / 2^{l+j}=\delta^{\prime} \tag{25}
\end{equation*}
$$

If $x \in \mathbf{C} G_{N}$, by (24), we have

$$
\delta R(x) \leqq 2^{p-1} \max _{.0 \leqq i<j<N}\left|\sum_{n=i+1}^{j} a_{n} T_{n}^{(i, j)}(x)\right|^{p}+(\varepsilon / 4 \pi)^{p} \quad(1 \leqq p \leqq 2)
$$

and considering (20) and (25) we get

$$
\begin{gathered}
\int_{0}^{2 \pi} \delta \mathcal{R}(x) d x=\left(\int_{G_{N}}+\int_{G_{N}}\right) \delta \mathcal{R}(x) d x \leqq \\
\leqq\left.\left. 2^{p-1} \int_{0}^{2 \pi} \max _{0 \leqq i<j<N}\right|_{n=i+1} ^{j} a_{n} T_{n}^{(i, j)}(x)\right|^{p} d x+\varepsilon^{p} \leqq 2^{p-1}\left\|\left\{a_{n}\right\}_{0}^{N}, \mathscr{T}\right\|_{p}^{p}+\varepsilon^{p} \\
(1 \leqq p \leqq 2) .
\end{gathered}
$$

Hence we can see that

$$
\sup _{\varphi \in \Phi}\left(\left.\left.\int_{0}^{2 \pi} \max _{0 \leqq i<j<N}\right|_{n=i+1} ^{j} a_{n} \varphi_{n}(x)\right|^{p} d x\right)^{1 / p} \leqq 2^{1-\frac{1}{p}}\left\|\left\{a_{n}\right\}_{0}^{N}, \mathscr{T}\right\|_{p}+\varepsilon .
$$

Considering that ε was arbitrary small we have (19), thus our proof is complete.
6. Proof of Theorem 4. By Theorem A and Theorem 3 the sufficiency is obvious.

To prove the necessity we assume $\left\|\left\{a_{n}\right\}_{0}^{\infty}, \mathscr{T}\right\|_{p}=\infty$. Applying Theorem 3 and Lemma 3 we have $\left\|\left\{a_{n}\right\}_{0}^{\infty}, \Phi\right\|_{2}=\infty$.

By (1) and Lemma 4 we obtain that $\lim _{N \rightarrow \infty}\left\|\left\{a_{n}\right\}_{M}^{N}, \Phi\right\|_{2}=\infty$ for any M; thus there exists a sequence $\left\{N_{k}\right\}_{0}^{\infty}\left(0=N_{0}<N_{1}<\ldots\right)$ such that $\left\|\left\{a_{n}\right\}_{N_{k}}^{N_{k+1}+1}, \Phi\right\|_{2} \geqq 1$ for every k.

For the sequence $\left\{N_{k}\right\}_{0}^{\infty}$ we can apply Lemma 5 and we get a system $\varphi \in \Phi$ and a sequence $\left\{E_{k}\right\}_{1}^{\infty}$ of stochastically independent sets such that (16) is fulfilled and if $x \in E_{k}$ then (17) holds.

Considering (15), (16), and applying the second Borel-Cantelli lemma we get $\mu\left(\lim _{k} E_{k}\right)=2 \pi$.

Taking the system φ, the sequences $\left\{a_{n}\right\}_{1}^{\infty}, b_{n} \equiv 1(n=1,2, \ldots)$, and choosing $\varepsilon=1 / 2$, it follows from Theorem 2 that there exists a system $T \in \mathscr{T}$ such that the inequality $\left|\sum_{n=v_{k}(x)+1}^{\mu_{k}(x)} a_{n} T_{n}(x)\right| \geqq \frac{1}{2}$ holds for infinitely many k, almost everywhere in $[0,2 \pi]$. This implies that the series $\sum_{n=1}^{\infty} a_{n} T_{n}(x)$ diverges almost everywhere in $[0,2 \pi]$.

References

[1] L. Leindler, Über die orthogonalen Polynomsysteme, Acta Sci. Math., 21 (1960), 19-47.
[2] K. Tandori, Über die Konvergenz der Orthogonalreihen, Acta Sci. Math., 24 (1963), 139-151.
[3] K. Tandori, Über die Konvergenz der Orthogonalreihen. II, Acta Sci. Math., 25 (1964), 219232.

