Extensions of partial multiplications and polynomial identities on Abelian groups

SHALOM FEIGELSTOCK

(i) In this paper G will denote an abelian group, and A will denote a subgroup of G. A multiplication on A is meant to be a homomorphism $\mu: A \times A \rightarrow A$, and a partial multiplication on A is meant to be a homomorphism $\mu: A \times A \rightarrow G[1$, vol. II, pp. 281-284]. A multiplication φ on G is called an extension of a partial multiplication μ on A if the restriction of φ to $A,\left.\varphi\right|_{A}=\mu$. In (ii) conditions are given for which every partial multiplication on A extends to a multiplication on G.
$P\left(X_{1}, \ldots, X_{n}\right)$ will denote a polynomial in non-commuting variables over the ring of integers. A partial multiplication μ on A is said to satisfy a polynomial identity $P\left(X_{1}, \ldots, X_{n}\right)$ if the elements of (A, μ) satisfy $P\left(X_{1}, \ldots X_{n}\right)=0$. In (iii) conditions are given for which a multiplication on G extending a partial multiplication μ on A satisfies polynomial indentities statisfied by μ. Polynomial identities which a multiplication on a torsion free group can satisfy are examined in (iv).
(ii) Theorem 1. Let A be a torsion free subgroup of G. Every partial multiplication on A can be extended to a multiplication on G under each of the following conditions:

1. G is divisible,
2. $(G \otimes G) /(A \otimes A)$ is free,
3. $(G \otimes G) /(A \otimes A)$ is a torsion group, and G is p-divisible for every prime p for which $(G \otimes G) /(A \otimes A)$ has a non-trivial p-component.
Proof. The sequence

$$
0 \rightarrow A \otimes A \rightarrow G \otimes G \rightarrow(G \otimes G) /(A \otimes A) \rightarrow 0
$$

is exact [3, Theorem 2.8]. Therefore, the sequence

$$
\operatorname{Hom}(G \otimes G, G) \rightarrow \operatorname{Hom}(A \otimes A, G) \xrightarrow{\varphi} \operatorname{Ext}((G \otimes G) /(A \otimes A), G)
$$

is exact. Each of the conditions $1-3$ assures that Ext $((G \otimes G) /(A \otimes A), G)=0$, so that φ is an epimorphism.

[^0](iii) Theorem 2. Let G be torsion free, and let A be an essential subgroup of G (i.e. G / A is a torsion group). Let μ be a partial multiplication on A satisfying a homogeneous polynomial identity $P\left(X_{1}, \ldots, X_{n}\right)$. If $\bar{\mu}$ is a multiplication on G which extends μ, then $\bar{\mu}$ satisfies $P\left(X_{1}, \ldots, X_{n}\right)$.

Proof. Let $m=\operatorname{deg} P\left(X_{1}, \ldots, X_{n}\right)$, and let $g_{1}, \ldots, g_{n} \in G$. There exist positive integers l_{i} such that $l_{i} g_{i} \in A, 1 \leqq i \leqq n$. Let $l=\prod_{i=1}^{n} l_{i}$. Then $\lg _{i} \in A, 1 \leqq i \leqq n$. Therefore $0=P\left(l_{1}, \ldots, l g_{n}\right)=l^{m} P\left(g_{1}, \ldots, g_{n}\right) . G$ is torsion free, so that $P\left(g_{1}, \ldots, g_{n}\right)=0$.

Corollary 1. Let G be a torsion free group, and let B be an A-high subgroup of G. Let μ be a partial multiplication on $A \otimes B$, and let μ_{A} and μ_{B} respectively be the restrictions of μ to A and to B. Let μ_{A} and μ_{B} satisfy a homogeneous polynomial $P\left(X_{1}, \ldots, X_{n}\right)$. Then 1. μ satisfies $P\left(X_{1}, \ldots, X_{n}\right)$, and 2. every multiplication $\bar{\mu}$ on G which extends μ satisfies $P\left(X_{1}, \ldots, X_{n}\right)$.

Pioof. The homogeneity of $P\left(X_{1}, \ldots, X_{n}\right)$ clearly implies 1 . Let $\bar{\mu}$ be a multiplication on G which extends $\mu . G /(A \otimes B)$ is a torsion group [1, vol I, p. 50 ex. 6]. By Theorem $2, \bar{\mu}$ satisfies $P\left(X_{1}, \ldots, X_{n}\right)$.

Corollary 2. For every positive integer $n \geqq 2$ there exists a nilpotent ring R with degree of nilpotency n such that the additive group G of R satisfies:

1. G is divisible and torsion free.
2. G is the divisible hull of a group A whose nilstufe [4] is $n-1$.

Proof. Szele [4, Theorem 2] has shown that there exists a torsion free group A with nilstufe $n-1$. Let μ be a multiplication on A for which $A^{n-1} \neq 0 . \mu$ satisfies $P\left(X_{1}, \ldots, X_{n}\right)=X_{1} X_{2}, \ldots, X_{n}$. Let G be the divisible hull of A. By Theorem $1, \mu$ can be extended to a multiplication on G, and by Theorem $2, \bar{\mu}$ satisfies $P\left(X_{1}, \ldots, X_{n}\right)$.

Theorem 3. Let A be an essential subgroup of G, and let μ be a partial multiplication on A such that (A, μ) does not possess any nonzero left zero divisors. Then for any multiplication $\bar{\mu}$ on G extending μ, the nonzero elements of A are not left zero divisors in $(G, \tilde{\mu})$.

Proof. Let $0 \neq a \in A$. Define $\varphi_{a}: A \rightarrow G, \varphi_{a}\left(A^{\prime}\right)=\mu\left(a, a^{\prime}\right)$ for all $a^{\prime} \in A . \varphi_{a}$ is a homomorphism on A. Since a is not a left zero divisor in $(A, \mu), \varphi_{a}$ is a monomorphism. Let $\bar{\mu}$ be a multiplication on G extending μ. Define $\bar{\varphi}_{a}: G \rightarrow G, \bar{\varphi}_{a}(g)=\mu(a, g)$ for all $g \in G . \bar{\varphi}_{a}$ is an endomorphism of G, with the restriction of $\bar{\varphi}_{a}$ to $A,\left.\bar{\varphi}_{a}\right|_{A}=\varphi_{a}$. By [1, Lemma 24.2] $\bar{\varphi}_{a}$ is a monomorphism. Hence a is not a left zero divisor in ($G, \bar{\mu}$).
(iv) Theorem 4. Let G be a torsion free group, and let μ be a multiplication on G satisfying a homogeneous polynomial $P\left(X_{1}, \ldots, X_{n}\right)$ of degree r. Let C be the sum of the coefficients of $P\left(X_{1}, \ldots, X_{n}\right)$. Then either μ satisfies X^{r}, or $C=0$.

Proof. Let $0 \neq g \in G$. Clearly, $0=P(g, \ldots, g)=C g^{r} . G$ is torsion free. Therefore, if $C \neq 0$, then $g^{r}=0$.

Theorem 5. Let R be a ring satisfying the polynomial identity

$$
P\left(X_{1}, X_{2}\right)=a X_{1}^{2}+b X_{2}^{2}+C X_{1} X_{2}+d X_{2} X_{1}+e X_{1}+f X_{2} .
$$

Then R satisfies $b(X Y+Y X)$.
Proof. If R satisfies $P\left(X_{1}, X_{2}\right)$, then R satisfies

$$
\begin{aligned}
P_{1}\left(X_{1}, X_{2}, X_{3}\right) & =P\left(X_{1}+X_{3}, X_{2}\right)-P\left(X_{1}, X_{2}\right)-P\left(X_{3}, X_{2}\right)= \\
& =a\left(X_{1} X_{3}+X_{3} X_{1}\right)-b X_{2}^{2}-f X_{2} .
\end{aligned}
$$

R also satisfies

$$
\begin{gathered}
P_{2}\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=P_{1}\left(X_{1}+X_{4}, X_{2}, X_{3}\right)-P\left(X_{1}, X_{2}, X_{3}\right)-P_{1}\left(X_{4}, X_{2}, X_{3}\right)= \\
=b X_{2}^{2}+f X_{2},
\end{gathered}
$$

or $P_{2}(X)=b X^{2}+f X$. This implies that R satisfies

$$
P_{3}(X, Y)=P_{2}(X+Y)-P_{2}(X)-P_{2}(Y)=b(X Y+Y X)
$$

The following are direct consequences of Theorem 5 or its proof:
Corollary 1. Let G be a torsion free group, and let μ be a multiplication on G satisfying $P\left(X_{1}, X_{2}\right)$ of theorem 5 with $b \neq 0$. Then μ satisfies $X Y+Y X$. If μ is commutative, then μ satisfies $X Y$.

Corollary 2. Let R be a commutative ring satisfying $P\left(X_{1}, X_{2}\right)$ of Theorem 5. Let π be the set of prime divisors of b and let π^{\prime} be the set of primes p for which the additive group of R has a nonzero p-primary component. If $\pi \cap \pi^{\prime}=\emptyset$, then R satisfies $X Y$.

Corollary 3. Let R be a ring satisfying $P\left(X_{1}, X_{2}\right)$ of Theorem 5 with $b \neq 0$. Then for every $a \in R,\left\{a, a^{2}\right\}$ is a dependent set [1 vol. I, p. 83].

Corollary 4. Let R be a ring satisfying $P\left(X_{1}, X_{2}\right)$ of Theorem 5 , with $b=0$, $f \neq 0$. Then the additive group of R is bounded.

Theorem 6. Let G be a torsion free group of finite rank n such that for every $0 \neq g \in G$, the type of $g, T(g)$, is not idempotent. Then every multiplication on G satisfies $X^{2 n}$.

Proof. Koehler [2, Theorem 1.6] has shown that every ascending chain of types realizable in $G, t_{1}<t_{2},<\ldots<t_{r}$, with $t_{r} \neq(\infty, \ldots, \infty, \ldots)$ is of length less than or equal to n. Let $0 \neq g \in G$. For every multiplication on G

$$
\begin{equation*}
T(g) \leqq T\left(g^{2}\right) \leqq T\left(g^{4}\right) \leqq \ldots \leqq T\left(g^{2^{n}}\right) \tag{*}
\end{equation*}
$$

Suppose that $T\left(g^{2^{k+1}}\right)=T\left(g^{2^{k}}\right), T\left(g^{2^{k+1}}\right) \geqq 2 T\left(g^{2^{k}}\right)$ for some $0 \leqq k \leqq n$ so that $T\left(g^{2^{k}}\right)$ is idempotent, and hence $g^{2^{k}}=0$. If $T\left(g^{2^{k}}\right)<T\left(g^{2^{k+1}}\right)$ for all $k, 0 \leqq k<n$, then (*) is a chain of length $n+1$, and hence $T\left(g^{2^{n}}\right)=(\infty, \ldots, \infty, \ldots)$ which implies that $g^{2^{n}}=0$.

References

[1] L. Fuchs, Infinite Abelian Groups, vol. I (1970), vol. II (1973), Academic Press (New York and London).
[2] J. E. Koehler, The Type Set of a Torsion Free Group of Finite Rank, Illinois J. Math., 9 (1965), 66-86.
[3] S. M. Yahya, Kernel of the homomorphism $A^{\prime} \otimes B^{\prime} \rightarrow A \otimes B$, J. Nat. Sci. and Math., 3 (1963), 41-56.
[4] T. Szele, Gruppentheoretische Beziehungen bei gewissen Ringkonstruktionen, Math. Z., 54 (1951), 168-180.

[^0]: Received September 9, 1974.

