On products of abstract automata

F. GÉCSEG

Frequently two automata behave exactly in the same way as far as the transitions induced by their inputs are concerned, but none of them can be represented homomorphically by a (general) power of the other one; although the existence of homomorphisms between automata does not imply that they have common input sets. This situation can be avoided by allowing input words as input signals of the component automata. This modification leads to the concept of a generalized product introduced in this paper. Furthermore, we allow input words as counter images of input signals under homomorphic representations. The resulting representations will be called simulations.

The purpose of this paper is to study the generalized products and simulations from the point of view of isomorphic and homomorphic completeness. It will turn out that in most cases the generalized products and simulations are more effective than the classical products and representations. Furthermore, the results concerning generalized products and simulations will be interpreted in terms of classical products, representations and temporal products of automata.

By an automaton we mean a triplet $\mathbf{A}=(X, A, \delta)$, where X and A are nonvoid finite sets called the input set and state set, respectively. Moreover, $\delta: A \times X \rightarrow A$ denotes the transition function of \mathbf{A}.

Take an arbitrary finite group G, and form the automaton $\mathbf{G}=\left(G, G, \delta_{G}\right)$ with $\delta_{\mathbf{G}}\left(g_{1}, g_{2}\right)=g_{1} g_{2}$ for all $g_{1}, g_{2} \in G$, where $g_{1} g_{2}$ means that g_{1} is multiplied by g_{2} in G. \mathbf{G} is a grouplike automaton.

For any nonvoid set X, let us denote by $F(X)$ the free monoid generated by X. If X is an input set of an automaton $\mathbf{A}=(X, A, \delta)$ then the elements $p \in F(X)$ are called input words of A. The transition function δ can be extended to $A \times F(X) \rightarrow A$ in a natural way: for any $p=p^{\prime} x \in F(X)$ and $a \in A, \delta(a, p)=\delta\left(\delta\left(a, p^{\prime}\right), x\right)$. Further on we shall use the more convenient notation $a p_{\mathrm{A}}$ for $\delta(a, p)$. If there is no danger of confusion then we omit the index \mathbf{A}.

Received December 18, 1974.

Let $\mathbf{A}=(X, A, \delta)$ be an automaton. Define a binary relation ϱ_{A} on $F(X)$ in the following manner: for two input words $p, q \in F(X), p \equiv q\left(\varrho_{\mathrm{A}}\right)$ if and only if $a p_{\mathrm{A}}=a q_{\mathrm{A}}$ for all $a \in A$. The quotient semigroup $F(X) / \varrho_{\mathrm{A}}$ is called the characteristic semigroup of \mathbf{A}, and it will be denoted by $S(\mathbf{A})$. We use the notation $[p]_{\mathrm{A}}$ for the element of $S(\mathbf{A})$, containing $p \in F(X)$. Thus, $[p]_{\mathbf{A}}=[q]_{\mathbf{A}}(p, q \in F(X))$ if and only if p and q induce the same transition in A. Again, if there is no danger of confusion, we omit the index \mathbf{A} in $[p]_{\mathbf{A}}$.

Take an automaton $\mathbf{A}=(X, A, \delta)$, and let π be a partition of A. It is said that π has the substitution property (shortly, SP) if $a \equiv b(\pi)$ implies $\delta(a, x) \equiv \delta(b, x)(\pi)$ for all $a, b \in A$ and $x \in X$. (Let us note that we use the same symbol π for a partition and for the equivalence relation inducing it.) The quotient automaton induced by π will be denoted by \mathbf{A} / π.

Let $\mathbf{A}_{i}=\left(X_{i}, A_{i}, \delta_{i}\right)(i=1, \ldots, n)$ be a system of automata. Moreover, let X be a finite nonvoid set, and φ a mapping of $A_{1} \times \ldots \times A_{n} \times X$ into $F\left(X_{1}\right) \times \ldots \times F\left(X_{n}\right)$. We say that the automaton $\mathrm{A}=(X, A, \delta)$ with $A=A_{1} \times \ldots \times A_{n}$ and

$$
\delta\left(\left(a_{1}, \ldots, a_{n}\right), x\right)=\left(a_{1} p_{1}, \ldots, a_{n} p_{n}\right)
$$

where $\left(p_{1}, \ldots, p_{n}\right)=\varphi\left(a_{1}, \ldots, a_{n}, x\right)$, is the generalized product of $\mathbf{A}_{i}(i=1, \ldots, n)$ with respect to X and φ. For this product we use the shorter notation $\mathbf{A}=\prod_{i=1}^{n} \mathbf{A}_{i}[X, \varphi]$.

A generalized product $\mathbf{A}=\prod_{i=1}^{n} \mathbf{A}_{i}[X, \varphi]$ is a generalized α_{i} product $(i=0,1, \ldots)$ if φ can be given in the form

$$
\varphi\left(a_{1}, \ldots, a_{n}, x\right)=\left(\varphi_{1}\left(a_{1}, \ldots, a_{n}, x\right), \ldots, \varphi_{n}\left(a_{1}, \ldots, a_{n}, x\right)\right)
$$

such that each $\varphi_{j}(1 \leqq j \leqq n)$ is independent of states having indices greater than or equal to $j+i$.

If in a generalized product [generalized α_{i}-product] φ is of the form $\varphi: A_{1} \times$ $\times \ldots \times A_{n} \times X \rightarrow X_{1} \times \ldots \times X_{n}$ then we get the concept of a product [α_{i}-product] (see [3]). Moreover, if in a generalized product [product] $\mathbf{A}, \mathbf{A}_{i}=\mathbf{B}$ for all $i(=1, \ldots, n)$ then \mathbf{A} is called a generalized power [power] of \mathbf{B}.

The concept of the generalized α_{i}-product (α_{i}-product) can be interpreted in the following way. For a given generalized product (product) take a well ordering on the set of its components. Assume that \mathbf{A}_{i} is the i-th automaton under this well ordering. If for two j and i with $i \leqq j$ there is a feed-back from \mathbf{A}_{j} to A_{i} then we say that the length of this feed-back is $j-i+1$. Now for any $i(=0,1, \ldots)$, in the generalized α_{i}-products (α_{i}-products) the lengths of such feed-backs does not exceed i under the usual well ordering of natural numbers.

We say that an automaton $\mathbf{A}=(X, A, \delta)$ homomorphically simulates $\mathbf{B}=\left(X^{\prime}, B, \delta^{\prime}\right)$ if there exist a one-to-one mapping τ_{1} of X^{\prime} into $F(X)$ and a mapping τ_{2} of a subset A^{\prime} of A onto B such that $\tau_{2}\left(a \tau_{1}\left(x^{\prime}\right)\right)=\delta^{\prime}\left(\tau_{2}(a), x^{\prime}\right)$ for any $a \in A^{\prime}$ and $x^{\prime} \in X^{\prime}$. If τ_{2} is
one-to-one as well then we speak of an isomorphic simulation. Furthermore, if τ_{1} is of the form $\tau_{1}: X^{\prime} \rightarrow X$, then we speak of homomorphic and isomorphic representations.

The following result is trivial.
Lemma 1. If \mathbf{A} homomorphically simulates \mathbf{B} and \mathbf{B} homomorphically simulates \mathbf{C}, then \mathbf{C} can be simulated homomorphically by \mathbf{A}. Similar statement is valid for isomorphic simulations. .

A system \sum of automata is called homomorphically S-complete with respect to the generalized product [generalized α_{i}-product] if any automaton can be simulated homomorphically by a generalized product [generalized α_{i}-product] of automata from Σ. The concept of isomorphic S-completeness is defined similarly.

Take a system Σ of automata. For any $\mathbf{A}=(X, A, \delta) \in \Sigma$ denote by $\mathbf{A}^{*}=\left(X^{*}, A, \delta^{*}\right)$ the automaton whose input set X^{*} is $S(\mathbf{A})$ and $\delta^{*}(a,[p])=a p_{\mathbf{A}}$. $([p] \in S(\mathbf{A}))$.

The following statement is obvious.
Lemma 2. For every generalized product (generalized $\alpha_{i}-$ product) $\mathbf{B}=\prod_{i=1}^{n} \mathbf{B}_{i}[X, \varphi]$ there is a product (α_{i}-product) $\mathbf{B}^{\prime}=\prod_{i=1}^{n} \mathbf{B}_{i}^{*}\left[X, \varphi^{*}\right]$ such that \mathbf{B} is isomorphic to \mathbf{B}^{\prime}, and conversely.

Now we are ready for studying isomorphic and homomorphic S-completeness with respect to different types of generalized products.

1. α_{0}-products

For any natural number n, denote by $\mathbf{T}_{n}=\left(T_{n}, N, \delta_{N}\right)$ the automaton for which $N=\{1, \ldots, n\}, T_{n}$ is the set of all transformations t of N, and $\delta_{N}(j, t)=t(j)$ for all $j \in N$ and $t \in T_{n}$.

Theorem 1. A system \sum of automata is isomorphically S-complete with respect to the generalized α_{0}-product if and only if for any natural number n, there exists an automaton $\mathbf{B} \in \Sigma$ such that \mathbf{B} isomorphically simulates \mathbf{T}_{n}.

Proof. In order to prove the sufficiency of these conditions take an automaton $\mathbf{A}=(X, A, \delta)$ with n states. Let τ_{2} be an arbitrary $1-1$ mapping of A onto $N=\{1, \ldots, n\}$. Form the α_{0}-product $\mathbf{T}_{n}^{\prime}=\left(\mathbf{T}_{n}\right)[X, \varphi]$, where $\varphi(x)=t\left(x \in X, t \in T_{n}\right)$ such that $\tau_{2}(\delta(a, x))=t\left(\tau_{2}(a)\right)$ for any $a \in A$. Let τ_{1} denote the identity mapping on X. Then (τ_{1}, τ_{2}^{-1}) gives an isomorphic simulation of \mathbf{A} by an α_{0}-product of \mathbf{T}_{n}. Moreover, by our assumption, there exists an automaton \mathbf{B} in \sum which isomorphically simulates \mathbf{T}_{n}. Therefore, by Lemma $1, \mathbf{A}$ can be simulated isomorphically by a generalized α_{0}-power of \mathbf{B}.

Conversely, let $n>1$ be a natural number, and take T_{n}. Assume that a generalized α_{0}-product $\mathbf{B}=\left(X, B, \delta^{\prime}\right)=\prod_{i=1}^{k} \mathbf{B}_{i}[X, \varphi]$ of automata from \sum isomorphically simulates \mathbf{T}_{n}. Then, by Lemma 2, \mathbf{T}_{n} can be simulated isomorphically by an α_{0}-product $\mathbf{B}^{\prime}=\left(X, B, \delta^{\prime \prime}\right)=\prod_{i=1}^{k} \mathbf{B}_{i}^{*}\left[X, \varphi^{*}\right]$, under two mappings $\tau_{1}: T_{n} \rightarrow F(X)$ and $\tau_{2}: B^{\prime} \rightarrow N$ $\left(B^{\prime} \cong B\right)$.

The elements b of B can be written in the vectorial form $b=\left(b_{1}, \ldots, b_{k}\right)$ ($b_{j} \in B_{j}$ and B_{j} is the state set of \mathbf{B}_{j}^{*}). Define partitions $\pi_{j}^{\prime}(j=1, \ldots, k)$ on B in the following way:

$$
b\left(=\left(b_{1}, \ldots, b_{k}\right)\right) \equiv\left(\left(b_{1}^{\prime}, \ldots, b_{k}^{\prime}\right)=\right) b^{\prime}\left(\pi_{j}^{\prime}\right) \quad\left(b, b^{\prime} \in B\right)
$$

if and only if $b_{1}=b_{1}^{\prime}, \ldots, b_{j}=b_{j}^{\prime}$. Now let $\pi_{j}(j=1, \ldots, k)$ be partitions on N given as follows: for any $b, b^{\prime} \in B^{\prime}$ we have $\tau_{2}(b) \equiv \tau_{2}\left(b^{\prime}\right)\left(\pi_{j}\right)$ if and only if $b \equiv b^{\prime}\left(\pi_{j}^{\prime}\right)$. It is easy to prove that the partitions π_{j} have SP.

On the other hand, on T_{n} only the two trivial partitions have SP. Thus, we get that each π_{j} has one-element blocks only, or it has one block only. Among these partitions there should be at least one which has more than one block, since $n>1$. Let l be the least index for which π_{l} has at least two blocks. Then the blocks of π_{l} consist of single elements. Therefore, the number of all blocks of π_{l} is n. We show that \mathbf{B}_{l}^{*} isomorphically simulates \mathbf{T}_{n}.

By our assumption and the definition of π_{j}, all elements of B^{\prime} coincide in their first $l-1$ components; let us denote them by $b_{1}^{\prime}, \ldots, b_{l-1}^{\prime}$. Moreover, denote by B_{l}^{\prime} the set of all l-th components of elements from B^{\prime}, and let X_{l}^{*} be the input set of \mathbf{B}_{l}^{*}. Define two mappings $\tau_{1}^{\prime}: T_{n} \rightarrow F\left(X_{l}^{*}\right)$ and $\tau_{2}^{\prime}: B_{l}^{\prime} \rightarrow A$ in the following way: if $\tau_{1}(t)=x^{(1)} \ldots x^{(u)}$ then let

$$
\begin{aligned}
& \tau_{1}^{\prime}(t)=\varphi_{l}^{*}\left(b_{1}^{\prime}, \ldots, b_{l-1}^{\prime}, b_{l}, \ldots, b_{k}, x^{(1)}\right) \ldots \\
& \ldots \varphi_{l}^{*}\left(\left(b_{1}^{\prime}, \ldots, b_{l-1}^{\prime}, b_{l}, \ldots, b_{k}\right)\left(x^{(1)} \ldots x^{(u-1)}\right)_{B^{\prime}}\right),\left(x^{(u)}\right),
\end{aligned}
$$

and if $\tau_{2}(b)=a\left(b \in B^{\prime}, a \in N\right)$ and b_{l} is the l-th component of b then let $\tau_{2}^{\prime}\left(b_{l}\right)=a$. (Note that, by the definition of the α_{0}-product, φ_{l}^{*} is independent of states having indices.greater than or equal to l.) It is obvious that τ_{2}^{\prime} is a one-to-one mapping of B_{l}^{\prime} onto N. Let us take a $b_{l}^{\prime} \in B_{l}^{\prime}$ and a $t \in T_{n}$. Then there exits a $b \in B^{\prime}$ with $b=\left(b_{1}^{\prime} ; \ldots, b_{1-1}^{\prime}, b_{1}^{\prime}, b_{1+1}, \ldots, b_{k}\right)$ such that $\tau_{2}(b)=\tau_{2}^{\prime}\left(b_{l}^{\prime}\right)=a$. Therefore, if $\tau_{1}(t)=$ $=x^{(1)} \ldots x^{(u)}$ then

$$
\begin{gathered}
b \tau_{1}(t)=\left(b_{1}^{\prime}, \ldots, b_{l-1}^{\prime}, b_{l}^{\prime} \varphi_{l}^{*}\left(b_{1}^{\prime}, \ldots, b_{l-1}^{\prime}, b_{l}^{\prime}, b_{l+1}, \ldots, b_{k}, x^{(1)}\right) \ldots\right. \\
\left.\ldots \varphi_{l}^{*}\left(\left(b_{1}^{\prime}, \ldots, b_{l-1}^{\prime}, b_{l}^{\prime}, b_{l+1}, \ldots, b_{k}\right)\left(x^{(1)} \ldots x^{(u-1)}\right)_{\mathbf{B}^{\prime}}, x^{(u)}\right), \ldots\right)
\end{gathered}
$$

since

$$
\begin{gathered}
b_{v}^{\prime} \varphi_{v}^{*}\left(b_{1}^{\prime}, \ldots, b_{l}^{\prime}, b_{l+1}, \ldots, b_{k}, x^{(1)}\right) \ldots \\
\ldots \varphi_{v}^{*}\left(\left(b_{1}^{\prime}, \ldots, b_{l}^{\prime}, b_{l+1}, \ldots, b_{k}\right)\left(x^{(1)} \ldots x^{(u-1)}\right)_{\mathbf{B}^{\prime}}, x^{(u)}\right)=b_{v}^{\prime}
\end{gathered}
$$

for any $v<l$. From this we get that the l-th component of $b \tau_{1}(t)$ is $b_{1}^{\prime} \tau_{1}^{\prime}(t)$, showingthat $\tau_{2}^{\prime}\left(b_{l}^{\prime} \tau_{1}^{\prime}(t)\right)=\delta_{N}\left(\tau_{2}^{\prime}\left(b_{l}^{\prime}\right), t\right)$. Since τ_{2}^{\prime} is $1-1$, thus $\mathbf{B}_{l} \in \sum$ isomorphically simulates T_{n}.

The case $n=1$ can be proved by a similar argument.
From Theorem 1 we get the following
Corollary. There exists no system of automata which is isomorphically S complete with respect to the generalized α_{0}-product and minimal.

Proof. Take a system \sum of automata which is isomorphically S-complete with respect to the generalized α_{0}-product. Moreover, let $A \in \Sigma$ be an automaton with n states, and take a natural number $m>n$. It is obvious that \mathbf{A} is isomorphic to a subautomaton of an α_{0}-product of \mathbf{T}_{m} (having one factor only). Furthermore, by Theorem 1, there exists a $\mathbf{B} \in \sum$ which isomorphically simulates \mathbf{T}_{m}. Therefore, A can be simulated isomorphically by a generalized α_{0}-power of \mathbf{B}. Thus, $\sum-\{\mathbf{A}\}$ is. isomorphically S-complete with respect to the generalized α_{0}-product, showing that Σ is not minimal.

Take the automaton $\mathbf{A}=(X, A, \delta)$ with $X=\{x, y, z\}, A=\left\{a_{1}, a_{2}\right\}$ and $\delta\left(a_{1}, x\right)=$ $=\delta\left(a_{2}, x\right)=\delta\left(a_{2}, z\right)=a_{2}$ and $\delta\left(a_{2}, y\right)=\delta\left(a_{1}, y\right)=\delta\left(a_{1}, z\right)=a_{1}$. This \mathbf{A} is called a two-state reset automaton. Let us denote by H_{2} the characteristic semigroup of \mathbf{A}.

For homomorphic simulations we have
Theorem 2. A system \sum of automata is homomorphically S-complete with respect to the generalized α_{0}-product if and only if the following conditions are satisfied:
(i) For any simple group G there exists $a \mathbf{B} \in \sum$ such that G is a homomorphic imageof a subgroup of $S(\mathbf{B})$;
(ii) There exists $\mathbf{C} \in \sum$ such that H_{2} is a homomorphic image of a subsemigroup of $S(\mathbf{C})$.

Proof. The necessity of these conditions follows from the well known theorem of Krohn and Rhodes. (For a nice presentation of the Krohn-Rhodes theory, see [6].).

To prove the sufficiency of (i) and (ii), again, by the Krohn-Rhodes theorem, it is. enough to show that: Every grouplike automaton $\mathbf{G}=\left(G, G, \delta_{G}\right)$ with a simple group $G(|G|>1)$ and a two-state reset automaton can be given as a homomorphic image of a subautomaton of an α_{0}-product $\prod_{i=1}^{k} \mathbf{B}_{i}^{*}\left[X, \varphi^{*}\right]$, where $\mathbf{B}_{i} \in \sum$.

Take a grouplike automaton $\mathbf{G}=\left(G, G, \delta_{G}\right)$, where $G(|G|>1)$ is a simple group. By condition (i), there exists a $\mathbf{B} \in \sum$ such that G is a homomorphic image of a subgroup G^{\prime} of $S(\mathbf{B})$, under a homomorphism $\tau: G^{\prime} \rightarrow G$. Let \mathbf{B} be given in the form $\mathbf{B}=(X, B, \delta)$. Now define an α_{0}-product $\mathbf{B}^{\prime}=\left(\mathbf{B}^{*}\right)\left[G, \varphi^{*}\right]$, where φ^{*} is an isomorphism of $F(G)$ into $F\left(G^{\prime}\right)$ such that $\tau\left(\varphi^{*}(g)\right)=g$ for any $g \in G$. Take an arbitrary identity $u p=v q$ over G, where u, v are variables and $p, q \in F(G)$. Assume that this identity
holds on \mathbf{B}^{\prime}. Since $S\left(\mathbf{B}^{\prime}\right)$ is a group (isomorphic to a subgroup of G^{\prime}), thus there exists a subset B^{\prime} of B such that each element of G induces a permutation of B^{\prime} (in \mathbf{B}^{\prime}), and distinct elements of G induce distinct permutations. It is obvious that $\left|B^{\prime}\right|>1$. The identity $u p=v q$ implies $u p=v p$. But p induces a permutation of B^{\prime}. Therefore, for any two elements a and b of B^{\prime}, we have $a p \neq b p$ if $a \neq b$. Thus, all identities holding on \mathbf{B}^{\prime} should have the form $u p=u q$, i.e., $\left[\varphi^{*}(p)\right]=\left[\varphi^{*}(q)\right]$ in $S(\mathbf{B})$ whenever $u p=u q$ holds in \mathbf{B}^{\prime}. Now, by the choice of $\varphi^{*}, p=\tau\left(\varphi^{*}(p)\right)=\tau\left(\varphi^{*}(q)\right)=q$, i.e., $u p=u q$ holds in \mathbf{G}. Therefore, we got that \mathbf{G} is contained in the equational class generated by \mathbf{B}^{\prime}. 'Thus, by the Theorem in [2], \mathbf{G} is a homomorphic image of a subautomaton of a finite direct power of \mathbf{B}^{\prime}. Since the direct product is a special case of the α_{0}-product, thus \mathbf{G} is a homomorphic image of a subautomaton of an α_{0}-power of \mathbf{B}^{\prime}. Consequently, by Lemma $2, \mathbf{G}$ can be simulated homomorphically by a generalized α_{0} power of \mathbf{B}.

Finally, if (ii) holds, then \mathbf{C}^{*} has a subautomaton which is a two-state reset automaton (see [6], p. 148). This completes the proof of Theorem 2.

Since for any simple group G with n elements there exists a simple group G^{\prime} with $\left|G^{\prime}\right|>n$ such that G is isomorphic to a subgroup of G^{\prime}, thus from Theorem 2 we get

Corollary 1. There exists no system of automata which is homomorphically S-complete with respect to the generalized α_{0}-product and minimal.

Moreover, Theorems 1 and 2 imply
Corollary 2. There exists a system \sum of automata such that. Σ is homomorphically S-complete with respect to the generalized α_{0}-product and Σ is not isomorphically S-complete with respect to the generalized α_{0}-product.

2. α_{1}-products

We start with the study of homomorphic S-completeness with respect to the generalized α_{1}-products.

Theorem 3. A system \sum of automata is homomorphically S-complete with respect to the generalized α_{1}-product if and only if for any natural number n, there exist an automaton $\mathbf{A}=(X, A, \delta)$ in Σ, states $a_{1}, \ldots, a_{n} \in A$ and input words $p_{j l} \in F(X)$ $(1 \leqq j, l \leqq n)$ such that $a_{j} p_{j l}=a_{l}$.

Proof. Let \sum be a system of automata which is homomorphically S-complete with respect to the generalized α_{1}-product. Let n be a natural number, and take a prime $r>n$. Define an automaton $\mathbf{A}_{\mathbf{r}}=\left(X^{\prime}, A_{r}, \delta_{r}\right)$ in the following way: $X^{\prime}=\{x\}$,
$A_{\mathrm{r}}=\left\{a_{0}, \ldots, a_{r-1}\right\}$ and

$$
\delta_{r}\left(a_{i}, x\right)= \begin{cases}a_{i+1} & \text { if } \quad i<r-1 \\ a_{0} & \text { if } \quad i=r-1\end{cases}
$$

Assume that \mathbf{A}_{r} can be simulated homomorphically by a generalized α_{1}-product $\mathbf{B}=\prod_{i=1}^{k} \mathbf{B}_{i}[\bar{X}, \varphi]$ of automata from \sum. Thus, by Lemma 2 , there exists an α_{1}-product $\mathbf{B}^{\prime}=\left(\bar{X}, B, \delta^{\prime}\right)=\prod_{i=1}^{k} \mathbf{B}_{i}^{*}\left[\bar{X}, \varphi^{*}\right]$ which homomorphically simulates \mathbf{A}_{r} under a set $B^{\prime} \subseteq B$ and mappings $\tau_{1}(x)=p \in F(\bar{X})$ and $\tau_{2}: B^{\prime} \rightarrow A_{r}$.

Let us represent the elements of \mathbf{B} in the vectorial form $b=\left(b_{1}, \ldots, b_{k}\right)$. Define the partitions $\pi_{j}^{\prime}(j=1, \ldots, k)$ on B in the same way as in the proof of Theorem 1. It can be shown by a short computation that these partitions π_{j}^{\prime} have SP.

By the choice of \mathbf{A}_{r}, there exists a subset $B^{\prime \prime}=\left\{b_{0}^{\prime}, \ldots, b_{u-1}^{\prime}\right\}$ of B^{\prime} such that $r \mid u$,

$$
b_{l}^{\prime} p_{\mathbf{B}^{\prime}}^{\prime(\pi)}= \begin{cases}b_{l+1}^{\prime} & \text { if } \quad l<u-1 \\ b_{0}^{\prime} & \text { if } \quad l=u-1\end{cases}
$$

and $\tau_{2}\left(b_{l}^{\prime}\right)=a_{l(\bmod r)}$, where $l(\bmod r)$ denotes the least nonnegative residue of l modulo r. Let π_{j} be the restriction of π_{j}^{\prime} to $B^{\prime \prime}$. It can be proved that for any j, the blocks of π_{j} have the same cardinality. Donete by f_{1} the number of blocks of π_{1}. Moreover, it is easy to show that $\pi_{1} \geqq \pi_{2} \geqq \ldots \geqq \pi_{k}$, and each block of π_{j} contains the same number f_{j+1} of blocks of $\pi_{j+1}(j=1, \ldots, k-1)$. Therefore, $u=f_{1} f_{2} \ldots f_{k}$. But $r \mid u$ and r is a prime. Thus, there exists an $l(l \leqq l \leqq k)$ such that $r \mid f_{l}$. This means, by the definition of the partitions π_{j}, that the number of states of \mathbf{B}_{l}^{*} occuring as l-th components in the elements of $B^{\prime \prime}$ is at least $f_{j} \geqq r$. Let us denote them by c_{1}, \ldots, c_{s}. Since for any two elements b^{\prime} and $b^{\prime \prime}$ of $B^{\prime \prime}$ there exists an input word $q=p \ldots p$ such that $b^{\prime} q_{\mathbf{B}^{\prime}}=b^{\prime \prime}$, thus for any $c_{t}, c_{h}(1 \leqq t, h \leqq s)$ there is an input signal $x_{t h}$ of \mathbf{B}_{l}^{*} with $c_{t} x_{t h}=c_{h}$ in \mathbf{B}_{l}^{*}. Consequently, by the definition of $\mathbf{B}_{l}^{*}, \mathbf{B}_{l} \in \sum$ satisfies the conditions of Theorem 3.

Conversely, assume that the conditions of Theorem 3 are satisfied. Take an arbitrary automaton $\mathbf{B}=\left(X, B, \delta_{\mathrm{B}}\right)$ with $B=\left\{b_{1}, \ldots, b_{n}\right\}$. Then there exist an automaton $\mathbf{A}=\left(\bar{X}, A, \delta_{\mathrm{A}}\right) \in \sum$, states $a_{1}, \ldots, a_{n} \in A$ and input signals $x_{i j}(1 \leqq i, j \leqq n)$ of \mathbf{A}^{*} such that $\delta_{\mathbf{A}}^{*}\left(a_{i}, x_{i j}\right)=a_{j}$. Now take the α_{1}-product $\mathbf{C}=\left(X, C, \delta_{\mathbf{C}}\right)=\left(\mathbf{A}^{*}\right)\left[X, \varphi^{*}\right]$, where for any $x \in X, \varphi^{*}\left(a_{i}, x\right)=x_{i j}$ if $\delta_{\mathbf{B}}\left(b_{i}, x\right)=b_{j}(i, j=1, \ldots, n)$, and in all other cases $\varphi^{*}(a, x)(a \in A)$ is defined arbitrarily. It is obvoius that \mathbf{C} isomorphically simulates B.

From the above proof we get
Corollary 1. A system of automata is homomorphically S-complete with respect to the generalized α_{1}-product if and only if it is isomorphically S-complete with respect to the generalized α_{1}-product.

Corollary 2. There exists no system of automata which is homomorphically (or isomorphically) S-complete with respect to the generalized α_{1}-product and minimal.

The following result shows that the homomorphic and isomorphic simulations with respect to the generalized α_{1}-product do not coincide if they are considered over an arbitrary system of automata.

Theorem 4. There exist a system Σ of automata and an automaton \mathbf{A} such that A can be simulated homomorphically by a generalized α_{1}-product of automata from Σ and \mathbf{A} cannot be simulated isomorphically by any generalized α_{1}-product of automata from Σ.

Proof. Take the following automaton $\mathbf{A}=(X, A, \delta)$, where $X=\{x, y\}, A=$ $=\{a, b, c\}, \delta(a, x)=\delta(c, y)=b, \delta(b, x)=\delta(c, x)=c$ and $\delta(b, y)=\delta(a, y)=a$. Moreover, let \sum consist of all two-state automata. If A can be simulated isomorphically by a generalized α_{1}-product of automata from Σ, then, by the proof of Theorem 3, there exists a nontrivial partition of A having SP. But a short computation shows that only the two trivial partitions of A have SP.

Now define an automaton $\mathbf{B}=\left(X, B, \delta^{\prime}\right)$ such that $X=\{x, y\}, B=\left\{a, b, b^{\prime}, c\right\}$, $\delta^{\prime}(a, x)=b, \quad \delta^{\prime}(b, x)=\delta^{\prime}\left(b^{\prime}, x\right)=\delta^{\prime}(c, x)=c, \quad \delta^{\prime}(a, y)=\delta^{\prime}(b, y)=\delta^{\prime}\left(b^{\prime}, y\right)=a \quad$ and $\delta^{\prime}(c, y)=b^{\prime}$. It is obvious that the mapping τ of B onto A with $\tau(a)=a, \tau(b)=\tau\left(b^{\prime}\right)=b$ and $\tau(c)=c$ is a homomorphism of \mathbf{B} onto \mathbf{A}. Moreover, the partition π with two blocks $\left\{a, b^{\prime}\right\}$ and $\{b, c\}$ has SP. Therefore, \mathbf{B} is isomorphic to an α_{0}-product of two two-state automata (cf. [1], p. 184). This ends the proof of Theorem 4.

3. General products and α_{i}-products with $i>1$

Take a set A and a system π_{0}, \ldots, π_{n} of partitions on A. We say that this system of partitions is regular if the following conditions are satisfied:
(i) π_{0} has one block only,
(ii) π_{n} has one-element blocks only,
(iii) $\pi_{0} \geqq \pi_{1} \geqq \ldots \geqq \pi_{n}$.

Let π be a partition of A. For any $a \in A$, denote by $\pi(a)$ the block of π containing a. Moreover, set $M_{i, a}=\left\{\pi_{i+1}(b): b \in A\right.$ and $\left.b \equiv a\left(\pi_{i}\right)\right\}$, where $a \in A$ and $i=0, \ldots, n-1$. Finally, let $\pi_{i} / \pi_{i+1}=\max \left\{\left|M_{i, a}\right|: a \in A\right\}$.

Consider an automaton $\mathrm{A}=(X, A, \delta)$. Then $\left(X^{*}\right)_{g(A)}$ always denotes a generating set of $S(\mathbf{A})$.

Now we prove.
Theorem 5. Let $l>2$ be a natural number and $i>1$. For an automaton $\mathbf{A}=$ $=(X, A, \delta), \mathbf{A}^{*}$ is isomorphic to some \mathbf{B}^{*}, where \mathbf{B} is a subautomaton of a generalized
α_{i}-product of automata having fewer states than l, if and only if for some $\left(X^{*}\right)_{g(\mathrm{~A})}$ there exists a regular system π_{0}, \ldots, π_{n} of partitions of A such that
(I) $\pi_{j} / \pi_{j+1} \leqq l$ for all $j=0, \ldots, n-1$,
(II) $a \equiv b\left(\pi_{j}\right)$ implies $\delta^{*}\left(a, x^{*}\right) \equiv \delta^{*}\left(b, x^{*}\right)\left(\pi_{j-i+1}\right)$ for all $i-1 \leqq j \leqq n, x^{*} \in\left(X^{*}\right)_{g(\mathrm{~A})}$ and $a, b \in A$.

Proof. Assume that for $\mathbf{A}=(X, A, \delta), \mathbf{A}^{*}$ is isomorphic to \mathbf{B}^{*}, where \mathbf{B} is a subautomaton of a generalized α_{i}-product $\prod_{j=1}^{n} \mathbf{A}_{j}\left[X^{\prime}, \varphi\right]$ of automata with $\left|A_{j}\right| \leqq l, l>2$ and $i>1$. By Lemma 2, \mathbf{B} is isomorphic to a subautomaton of the α_{i}-product $\mathbf{A}^{\prime}=$ $=\left(X^{\prime}, \bar{A}, \bar{\delta}\right)=\prod_{j=1}^{n} \mathbf{A}_{j}^{*}\left[X^{\prime}, \varphi^{*}\right]$. We may assume that \mathbf{B}^{*} is a subautomaton of $\mathbf{A}^{* *}$. Moreover, let $\sigma: S(\mathbf{A}) \rightarrow S(\mathbf{B}), \eta: A \rightarrow B$ be an isomorphism of \mathbf{A}^{*} onto \mathbf{B}^{*}. Define partitions $\pi_{j}(j=1, \ldots, n)$ on A in the following way: $a \equiv a^{\prime}\left(\pi_{j}\right)$ if and only if $\eta(a)=$ $=\left(a_{1}, \ldots, a_{n}\right), \eta\left(a^{\prime}\right)=\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)$ and $a_{1}=a_{1}^{\prime}, \ldots, a_{j}=a_{j}^{\prime}$. It is obvious that π_{0}, π_{1}, \ldots \ldots, π_{n} is a regular system of partitions. Moreover, condition (I) is satisfied by this system. Indeed, if $\eta(a)=\left(a_{1}, \ldots, a_{n}\right)$ and $\eta\left(a^{\prime}\right)=\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)$ then $\pi_{j+1}\left(a^{\prime}\right) \in M_{j, a}$ if and only if $a_{1}^{\prime}=a_{1}, \ldots, a_{j}^{\prime}=a_{j}$. Therefore, $M_{j, a}$ contains at most $\left|A_{j+1}\right|(\leqq l)$ blocks of π_{j+1}.

In order to prove the necessity of these conditions it remains to show that the system $\pi_{0}, \pi_{1}, \ldots, \pi_{n}$ satisfies (II) as well. Denote by $\left(X^{*}\right)_{g(\mathrm{~A})}$ the subset of $S(\mathbf{A})$ consisting of all $[p](p \in F(X))$ for which $\sigma([p])$ contains an $x^{\prime} \in X^{\prime}$. Since the set $\left\{\sigma([p]):[p] \in\left(X^{*}\right)_{g(\mathbf{A})}\right\}$ obviously generates $S(\mathbf{B})$ thus $\left(X^{*}\right)_{g(\mathbf{A})}$ is a generating system of $S(\mathrm{~A})$.

Take a j with $i-1 \leqq j \leqq n$, and two elements $a, a^{\prime} \in A$ such that $a \equiv a^{\prime}\left(\pi_{j}\right)$. Assume that $\eta(a)=\left(a_{1}, \ldots, a_{n}\right)$ and $\eta\left(a^{\prime}\right)=\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)$. Then, by the definition of π_{j}, we have $a_{1}=a_{1}^{\prime}, \ldots, a_{j}=a_{j}^{\prime}$. Now choose an arbitrary $x^{*} \in\left(X^{*}\right)_{g(\mathrm{~A})}$, and let $x^{\prime} \in X^{\prime}$ such that $x^{\prime} \in \sigma\left(x^{*}\right)$. Moreover, let $\varphi^{*}\left(\eta(a), x^{\prime}\right)=\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)$ and $\varphi^{*}\left(\eta\left(a^{\prime}\right), x^{\prime}\right)=\left(\bar{x}_{1}^{*}, \ldots, \bar{x}_{n}^{*}\right)$. Thus, by the definition of the, α_{i}-product, $x_{1}^{*}=\bar{x}_{1}^{*}, \ldots, x_{j-i+1}^{*}=\bar{x}_{j-i+1}^{*}$ since $a_{1}=$ $=a_{1}^{\prime}, \ldots, a_{j}=a_{j}^{\prime}$. Therefore, for $\bar{\delta}\left(\eta(a), x^{\prime}\right)=\left(b_{1}, \ldots, b_{n}\right)$ and $\bar{\delta}\left(\eta\left(a^{\prime}\right), x^{\prime}\right)=\left(b_{1}^{\prime}, \ldots, b_{n}^{\prime}\right)$ we have $b_{1}=b_{1}^{\prime}, \ldots, b_{j-i+1}=b_{j-i+1}^{\prime}$, showing that

$$
\delta^{*}\left(a, x^{*}\right) \equiv \delta^{*}\left(a^{\prime}, x^{*}\right)\left(\pi_{j-i+1}\right)
$$

Conversely, assume that for an $\mathbf{A}=(X, A, \delta)$ and $\left(X^{*}\right)_{g(\mathbf{A})}$ there exists a regular system $\pi_{0}, \pi_{1}, \ldots, \pi_{n}$ of partitions satisfying conditions (I) and (II). We construct automata $\mathbf{A}_{j}=\left(X_{j}, A_{j}, \delta_{j}\right)(j=1, \ldots, n)$ with $\left|A_{j}\right|=\pi_{j-1} / \pi_{j}(\leqq l)$ such that for a subautomaton \mathbf{B} of an α_{i}-product of the \mathbf{A}_{j} we have $\mathbf{A}^{*} \cong \mathbf{B}^{*}$.

Let A_{j} be arbitrary abstract sets with $\left|A_{j}\right|=\pi_{j-1} / \pi_{j}$. Moreover, $X_{j}=A_{1} \times \ldots$ $\ldots \times A_{j+i-1} \times\left(X^{*}\right)_{g(\mathrm{~A})}$ if $j+i-1 \leqq n$, and $X_{j}=A_{1} \times \ldots \times A_{n} \times\left(X^{*}\right)_{g(\mathrm{~A})}$ otherwise.

Now let \varkappa_{j} be a mapping of $M_{j}=\left\{\pi_{j}(a): a \in A\right\}$ onto A_{j} such that the restriction of \varkappa_{j} to any $M_{j-1, a}$ is one-to-one: Define the transition function δ_{j} by the following rules:
(1) $j \leqq n-i+1$. Then $\quad \delta_{j}\left(a_{j},\left(b_{1}, \ldots, b_{j+i-1}, x^{*}\right)\right)=x_{j}\left(\pi_{j}\left(\delta^{*}\left(a, x^{*}\right)\right)\right) \quad\left(a_{j} \in A_{j}\right.$; $\left(b_{1}, \ldots, b_{j+i-1}\right) \in A_{1} \times \ldots \times A_{j+i-1}$ and $\left.x^{*} \in\left(X^{*}\right)_{g(\mathrm{~A})}\right)$ if $a_{j}=b_{j}$ and there exists an $a \in A$ such that $x_{t}\left(\pi_{t}(a)\right)=b_{t}$ for all $t=1, \ldots, j+i-1$.
(2) $j>n-i+1$. Then $\delta_{j}\left(a_{j},\left(b_{1}, \ldots, b_{n}, x^{*}\right)\right)=\varkappa_{j}\left(\pi_{j}\left(\delta^{*}\left(a, x^{*}\right)\right)\right)$ if $a_{j}=b_{j}$ and there exists an $a \in A$ with $x_{t}\left(\pi_{t}(a)\right)=b_{t}(t=1, \ldots, n)$.
(3) In all other cases δ_{j} is defined arbitrarily.

First we prove that δ_{j} is well defined. Assume that in case (1) there exists a $b \in A$ with $x_{t}\left(\pi_{t}(b)\right)=b_{t}(t=1, \ldots, j+i-1)$. It is enough to show that $b \equiv a\left(\pi_{j+i-1}\right)$ (since this, by condition (II), implies that $\delta^{*}\left(b, x^{*}\right) \equiv \delta^{*}\left(a, x^{*}\right)\left(\pi_{j}\right)$ for any $\left.x^{*} \in\left(X^{*}\right)_{g(\mathrm{~A})}\right)$. We proceed by induction on $t . b \equiv a\left(\pi_{1}\right)$ obviously holds since x_{1} is a 1 -1 mapping of M_{1} onto A_{1}. Assume that our statement has been proved for $t-1$ $(1 \leqq t-1<j+i-1)$, i.e., $b \equiv a\left(\pi_{t-1}\right)$. Therefore, since x_{t} is $1-1$ on $M_{t-1, a}$ and $\chi_{t}\left(\pi_{t}(b)\right)=\chi_{t}\left(\pi_{t}(a)\right)$ thus $\pi_{t}(b)=\pi_{t}(a)$.

Case (2) can be proved by a similar argument. Note that π_{n} is induced by the equality relation on A. Therefore, in case (2) we get $a=b$.

Now let us form the following α_{i}-product $\mathbf{C}=\left(\left(X^{*}\right)_{g(A)}, C, \delta_{\mathbf{C}}\right)=\prod_{j=1}^{n} \mathbf{A}_{j}\left[\left(X^{*}\right)_{g(A)}, \varphi\right]$, where $\varphi=\left(\varphi_{1}, \ldots, \varphi_{n}\right)$ and for any $j=1, \ldots, n,\left(a_{1}, \ldots, a_{n}\right) \in A_{1} \times \ldots \times A_{n}$ and $x^{*} \in\left(X^{*}\right)_{g(\mathbf{A})}$,

$$
\varphi_{j}\left(a_{1}, \ldots, a_{n}, x^{*}\right)= \begin{cases}\left(a_{1}, \ldots, a_{j+i-1}, x^{*}\right) & \text { if } j \leqq n-i+1, \\ \left(a_{1}, \ldots, a_{n}, x^{*}\right) & \text { otherwise } .\end{cases}
$$

It is clear that \mathbf{C} is an α_{i}-product.
Define a mapping $\tau: A \rightarrow C$ in the following way:

$$
\tau(a)=\left(\kappa_{1}\left(\pi_{1}(a)\right), \ldots, \chi_{n}\left(\pi_{n}(a)\right)\right)
$$

for any $a \in A$. We prove that τ is an isomorphism of the automaton $\left(\left(X^{*}\right)_{g(\mathbf{A})}, A, \delta^{*}\right)$ into C. First we show, by induction, that τ is $1-1$. Assume that $a \neq a^{\prime}\left(a, a^{\prime} \in A\right)$. Let t be the greatest index for which $\pi_{t}(a)=\pi_{t}\left(a^{\prime}\right) . t<i n$, since otherwise $a=a^{\prime}$, contradicting our assumption. Then $\pi_{t+1}(a) \neq \pi_{t+1}\left(a^{\prime}\right)$. Therefore, $x_{t+1}(a) \neq x_{t+1}\left(a^{\prime}\right)$, since x_{t+1} is one-to-one on $M_{t, a}$.

Now take an arbitrary input signal $x^{*} \in\left(X^{*}\right)_{g(A)}$. Then

$$
\begin{gathered}
\delta_{\mathrm{C}}\left(\tau(a), x^{*}\right)=\left(\delta_{1}\left(\varkappa_{1}\left(\pi_{1}(a)\right),\left(x_{1}\left(\pi_{1}(a)\right), \ldots, x_{i}\left(\pi_{i}(a)\right), x^{*}\right)\right), \ldots\right. \\
\left.\ldots, \delta_{n}\left(\varkappa_{n}\left(\pi_{n}(a)\right),\left(x_{1}\left(\pi_{1}(a)\right), \ldots, x_{n}\left(\pi_{n}(a)\right), x^{*}\right)\right)\right)= \\
=\left(x_{1}\left(\pi_{1}\left(\delta^{*}\left(a, x^{*}\right)\right)\right), \ldots, x_{n}\left(\pi_{n}\left(\delta^{*}\left(a, x^{*}\right)\right)\right)\right)=\tau\left(\delta^{*}\left(a, x^{*}\right)\right),
\end{gathered}
$$

showing that τ is an isomorphism of $\left(\left(X^{*}\right)_{g(\mathrm{~A})}, A, \delta^{*}\right)$ onto the subautomaton $\mathbf{B}=\left(\left(X^{*}\right)_{\boldsymbol{\theta}(\mathrm{A})}, B, \delta^{*}\right)$ of \mathbf{C}, where $B=\{\tau(a) \mid a \in A\}$. This obviously implies that τ defines an isomorphism of \mathbf{A}^{*} onto \mathbf{B}^{*}, which completes the proof of Theorem 5.

Let us denote by $\mathbf{A}^{(2)}=\left(X^{(2)}, A^{(2)}, \delta^{(2)}\right)$ the automaton for which $X^{(2)}=$ $=\left\{x^{(1)}, x^{(2)}\right\}, A^{(2)}=\left\{a^{(1)}, a^{(2)}\right\}, \delta^{(2)}\left(a^{(1)}, x^{(1)}\right)=\delta^{(2)}\left(a^{(2)}, x^{(2)}\right)=a^{(2)}$ and $\delta^{(2)}\left(a^{(2)}, x^{(1)}\right)=$ $=\delta^{(2)}\left(a^{(1)}, x^{(2)}\right)=a^{(1)}$.

Theorem 6. Every automaton can be simulated isomorphically by a generalized α_{2}-power of $\mathbf{A}^{(2)}$.

Proof. Let $\mathbf{A}=(X, A, \delta)$ be an arbitrary automaton. It is obvious that $\mathrm{T}_{n}=$ $=\left(T_{n}, N, \delta_{n}\right)$ with $n \geqq \max \{3,|A|\}$ isomorphically simulates A. Therefore, in order to prove Theorem 6, by Lemma 1, it is enough to show that T_{n} can be simulated isomorphically by an α_{2}-power of $\mathrm{A}^{(2)}$.

Take the following elements t_{1}, t_{2} and t_{3} of T_{n}
$t_{1}(i)=i+1$ if $i<n$, and $t_{1}(n)=1$;
$t_{2}(1)=2, t_{2}(2)=1$, and $t_{2}(i)=i$ if $i>2$;
$t_{3}(1)=t_{3}(2)=1$, and $t_{3}(i)=i$ if $i>2$.
It can be proved (cf. [7]) that $\left\{\left[t_{1}\right],\left[t_{2}\right],\left[t_{3}\right]\right\}=\left(T_{n}^{*}\right)_{g\left(\mathbf{T}_{n}\right)}$ generates $S\left(\mathbf{T}_{n}\right)$.
First we prove that T_{n} can be simulated isomorphically by a generalized α_{2} product of two-state automata. By Theorem 5, it is enough to show that there exists a regular system $\pi_{0}, \pi_{1}, \ldots, \pi_{k}$ of partitions of N such that
(i) $\pi_{j} / \pi_{j+1} \leqq 2$ for all $j=0, \ldots, k-1$;
(ii) $b \equiv c\left(\pi_{j}\right)$ implies that $\delta_{n}^{*}\left(b, t^{*}\right) \equiv \delta_{n}^{*}\left(c, t_{n}^{*}\right)\left(\pi_{j-1}\right)$ for all $b, c \in N, t^{*} \in\left\{\left[t_{1}\right]\right.$, $\left.\left[t_{2}\right],\left[t_{3}\right]\right\}$ and $1 \leqq j \leqq k$.

Let π_{1} consist of the following two blocks: $\{1, \ldots, k\}$ and $\{k+1, \ldots, n\}$, where $k=u$ if $n=2 u$, and $k=u+1$ if $n=2 u+1$. Let us assume that the partitions π_{t} have been defined for all $t \leqq m \leqq k$, and that π_{m} has the following blocks: $\{1, \ldots, k-m+1\}$, $\{k-m+2\}, \ldots,\{k\},\{k+1, \ldots, k+n-m+1\},\{k+n-m+2\}, \ldots,\{n\}$. Then π_{m+1} is defined to be the partition having the blocks:

$$
\{1, \ldots, k-m\},\{k-m+1\}, \ldots,\{k\},\{k+1, \ldots, k+n-m\},\{k+n-m+1\}, \ldots,\{n\} .
$$

It is obvious that the resulting system of partitions $\pi_{0}, \pi_{1}, \ldots, \pi_{k}$ is regular and satisfies (i). Moreover, (ii) obviously holds for π_{1} and π_{k}. Now take an arbitrary m with $1 \leqq m<k-1$, and let $b, c \in N$ such that $b \equiv c\left(\pi_{m+1}\right)$. We may assume that $b \neq c$. Then either $1 \leqq b, c \leqq k-m$ or $k+1 \leqq b, c \leqq k+n-m$. In the first case for any $t^{*} \in\left\{\left[t_{1}\right],\left[t_{2}\right],\left[t_{3}\right]\right\}, 1 \leqq \delta_{n}^{*}\left(b, t^{*}\right), \delta_{n}^{*}\left(c, t^{*}\right) \leqq k-m+1$, and in the second case $k+1 \leqq$ $\leqq \delta_{n}^{*}\left(b, t^{*}\right), \delta_{n}^{*}\left(c, t^{*}\right) \leqq k+n-m+1$, showing that (ii) holds for any $\pi_{j}(1 \leqq j \leqq k)$. Thus we have proved that \mathbf{A} can be simulated isomorphically by a generalized α_{2} product of two-state automata.

One can easily prove that every two-state automaton is isomorphic to an α_{1} power of $\mathbf{A}^{(2)}$, having one factor only. Since an α_{2}-product of α_{1}-products with single factors is an α_{2}-product, thus \mathbf{A} can be simulated isomorphically by a generalized α_{2}-power of $\mathbf{A}^{(2)}$.

Theorem 7. A system \sum of automata is homomorphically S-complete with respect to the generalized product if and only if there exist an $\mathbf{A}=(X, A, \delta) \in \Sigma$, $a \in A$ and $p_{1}, p_{2}, q_{1}, q_{2} \in F(X)$ such that $a p_{1} \neq a p_{2}$ and $a=a p_{1} q_{1}=a p_{2} q_{2}$.

Proof. The necessity of these conditions can be proved in the same way as that of the corresponding statement for products in [9].

Conversely, assume that the conditions of Theorem 7 are satisfied by \sum. iSet $a_{1}=a p_{1}$ and $a_{2}=a p_{2}$. Now form the following generalized α_{1}-product $\mathbf{B}=$ $=\left(X^{(2)}, A, \delta^{\prime}\right)=(\mathbf{A})\left[X^{(2)}, \varphi\right]$, where $\varphi\left(a_{1}, x^{(1)}\right)=q_{1} p_{2}, \varphi\left(a_{1}, x^{(2)}\right)=q_{1} p_{1}, \varphi\left(a_{2}, x^{(1)}\right)=$ $=q_{2} p_{1}$ and $\varphi\left(a_{2}, x^{(2)}\right)=q_{2} p_{2}$; moreover, $\varphi(a, x)$ is defined arbitrarily if $a \neq a_{1}, a_{2}$ ($a \in A, x \in X^{(2)}$). It is obvious that the mapping $\eta: a^{(j)} \rightarrow a_{j}(j=1,2)$ is an isomorphism of $\mathbf{A}^{(2)}$ into \mathbf{B}. Thus, by Theorem 6 , we get that \sum is isomorphically S-complete with respect to the generalized α_{2}-product. This ends the proof of Theorem 7.

The proof of the sufficiency of Theorem 7 yields the following
Corollary. A system \sum of automata is homomorphically S-complete with respect to the generalized product if and only if for any $i=2,3, \ldots, \sum$ is isomorphically S complete with respect to the generalized α_{i}-product.

Now we are going to prove a stronger result. First we introduce the following notation, and prove a lemma.

Let us denote by $\mathbf{E}_{(2)}=\left(X^{(2)}, E_{2}, \delta^{(2)}\right)$ the automaton for which $X^{(2)}=\left\{x, x_{e}\right\}$, $E_{2}=\left\{e_{1}, e_{2}\right\}, \delta^{(2)}\left(e_{1}, x_{e}\right)=e_{1}, \delta^{(2)}\left(e_{2}, x_{e}\right)=e_{2}$, and $\delta^{(2)}\left(e_{i}, x\right)=e_{2}$ for $i=1,2$.

Lemma 3. Let $\mathbf{B}=(Y, B, \delta)$ be an automaton such that there exists a well -ordering \leqq on B with the property that $b \leqq b p$ for any $b \in B$ and $p \in F(Y)$. Then B is isomorphic to a subautomaton of an α_{0}-power of $\mathbf{E}_{(2)}$.

Proof. Assume that the conditions of Lemma 3 are satisfied. Moreover, let $B=\left\{b_{1}, \ldots, b_{n}\right\}$, and $b_{i}<b_{j}$ if $i<j$. Now define partitions $\pi_{t}(t=1, \ldots, n-1)$ on B in the following way: $b_{u} \equiv b_{v}\left(\pi_{t}\right)$ implies $b_{u}=b_{v}$ if $u \leqq t$ or $v \leqq t$, and $b_{u} \equiv b_{v}\left(\pi_{t}\right)$ for all $u, v>t$. It is obvious that all π_{t} have $\mathrm{SP}, \pi_{1}>\pi_{2}>\ldots>\pi_{n-1}$ and $\pi_{t} / \pi_{t+1}=2$.

For any $t(=1, \ldots, n-1)$ take an abstract set $A_{t}=\left\{a_{t}^{(1)}, a_{t}^{(2)}\right\}$. Furthermore, define mappings \varkappa_{t} of $M_{t}=\left\{\pi_{t}(b) \mid b \in B\right\}$ onto A_{t} such that $x_{t}\left(\left\{b_{j}\right\}\right)=a_{t}^{(1)}$ if $j \leqq t$ and $x_{t}\left(\left\{b_{t+1}, \ldots, b_{n}\right\}\right)=a_{t}^{(2)}$. Obviously, x_{t} is $1-1$ on $M_{t-1, b}$ for any $b \in B$. (π_{0} is the trivial partition of B having one block only.)

Now let us define the automata $\mathbf{A}_{t}=\left(X_{t}, A_{t}, \delta_{t}\right)$ in the following way: $X_{1}=Y$, and $X_{t}=A_{1} \times \ldots \times A_{t-1} \times Y$ if $1<t<n$. Moreover, $\delta_{1}\left(a_{1}, y\right)=\chi_{1}\left(\pi_{1}(\delta(b, y))\right)\left(a_{1} \in A_{1}\right.$, $y \in Y$), where $b \in \varkappa^{-1}\left(a_{1}\right)$, and
(i) $\delta_{t}\left(a_{t},\left(a_{1}, \ldots, a_{t-1}, y\right)\right)=\chi_{t}\left(\pi_{t}(\delta(b, y))\right)$ if there exists a $b \in B$ such that $\chi_{j}\left(\pi_{j}(b)\right)=a_{j}(j=1, \ldots, t)$;
(ii) $\delta_{t}\left(a_{t},\left(a_{1}, \ldots, a_{t-1}, y\right)\right)=a_{t}$ otherwise, where $y \in Y$ and $\left(a_{1}, \ldots, a_{t}\right) \in A_{1} \times \ldots \times A_{i}$.

Now form the α_{0}-product $\mathbf{C}=\left(Y, C, \delta_{\mathrm{C}}\right)=\prod_{t=1}^{n-1} \mathbf{A}_{t}[Y, \varphi]$ for which $\varphi_{1}\left(a_{1}, \ldots\right.$ $\left.\ldots, a_{n-1}, y\right)=y$, and $\varphi_{t}\left(a_{1}, \ldots, a_{n-1}, y\right)=\left(a_{1}, \ldots, a_{t-1}, y\right)$ if $t>1\left(y \in Y, a_{j} \in A_{j}\right.$, $j=1, \ldots, n-1)$. One can prove in a way similar to that in the proof of the sufficiency of Theorem 5, that the mapping $\tau: b \rightarrow\left(\varkappa_{1}\left(\pi_{1}(b)\right), \ldots, \chi_{n-1}\left(\pi_{n-1}(b)\right)\right)$ is an isomorphism of \mathbf{B} into \mathbf{C}.

Now let us order the elements of A_{t} by $a_{t}^{(1)}<a_{t}^{(2)}$. We prove that for any $x_{t} \in X_{t}, \delta_{t}\left(a_{t}^{(i)}, x_{t}\right)=a_{t}^{(j)}(1 \leqq i, j \leqq 2)$ implies $a_{t}^{(i)} \leqq a_{t}^{(j)}$. Take an arbitrary $x_{t}=\left(a_{1}, \ldots, a_{t-1}, y\right) \in X_{t}$. If there exists no $b \in B$ with $x_{s}\left(\pi_{s}(b)\right)=a_{s}(s=1, \ldots, t-1)$ and $x_{t}\left(\pi_{t}(b)\right)=a_{t}^{(i)}$ then, by (ii) in Lemma 3, $\delta_{t}\left(a_{t}^{(i)}, x_{t}\right)=a_{t}^{(i)}$. Now assume that for a $b_{u} \in B, x_{s}\left(\pi_{s}\left(b_{u}\right)\right)=a_{s}\left(s=1, \ldots, t ; a_{t}=a_{t}^{(i)}\right)$ and $\delta\left(b_{u}, y\right)=b_{v}$. Then $b_{u} \leqq b_{v}$. Therefore, by the definition of x_{t} and the ordering on $A_{t}, x_{t}\left(\pi_{t}\left(b_{u}\right)\right)=a_{t}^{(i)} \leqq a_{t}^{(j)}=x_{t}\left(\pi_{t}\left(b_{v}\right)\right)$.

Finally, we show that \mathbf{A}_{t} can be represented isomorphically by an α_{0}-power of $\mathbf{E}_{(2)}$ (having a single factor). Take the α_{0}-power $\mathbf{D}_{t}=\left(X_{t}, E_{2}, \delta_{\mathbf{0}}\right)=\left(\mathbf{E}_{(2)}\right)\left[X_{t}, \psi\right]$, where for any $e_{i} \in E_{2}$ and $x_{t} \in X_{t}$,

$$
\psi\left(e_{i}, x_{t}\right)=\left\{\begin{array}{lll}
x & \text { if } & \delta_{t}\left(a_{t}^{(1)}, x_{t}\right)=a_{t}^{(2)}, \\
x_{e} & \text { if } & \delta_{t}\left(a_{t}^{(1)}, x_{t}\right)=a_{t}^{(1)} .
\end{array}\right.
$$

It can be shown, by a short computation, that the mapping $\eta: a_{t}^{(i)} \rightarrow e_{i}(i=1,2)$ is an isomorphism of \mathbf{A}_{t} onto \mathbf{D}_{t}.

Since the formation of the α_{0}-product is associative, thus we proved that \mathbf{B} can be represented isomorphically by an α_{0}-power of $\mathbf{E}_{(2)}$.

Now we prove
Theorem 8. Let \sum be an arbitrary set of automata. An automaton \mathbf{B} can be simulated homomorphically by a generalized product of automata from \sum if and only if \mathbf{B} can be simulated isomorphically by a generalized α_{2}-product of automata from Σ.

Proof. If there is an $\mathbf{A} \in \sum$ satisfying the conditions of Theorem 7 then, by the Corollary to Theorem $7, \sum$ is isomorphically S-complete with respect to the generalized α_{2}-product. Therefore, in the sequel we may assume that none of the automata in \sum satisfies the conditions of Theorem 7.

Let $\mathbf{B}=(Y, B, \delta)$ be an automaton which can be simulated homomorphically by a generalized product of automata from \sum. It can be shown that \mathbf{B} does not satisfy the conditions of Theorem 7. Consequently, one can define a well ordering \leqq on B such that for any $b, c \in B$ and $p \in F(Y), b p=c$ implies $b \leqq c$. Now assume that there exist $b, c \in B$ and $p \in F(Y)$ with $b p=c$ and $b \neq c$. It is easy to prove that in this case there exist an $\mathbf{A}=\left(X, A, \delta^{\prime}\right)$ in $\sum, a_{1}, a_{2} \in A, p_{1}, p_{2} \in F(Y)$ such that $a_{1} p_{1}=a_{2} p_{1}=$ $=a_{2} p_{2}=a_{2}, a_{1} p_{2}=a_{1}$ and $a_{1} \neq a_{2}$.

By Lemma 3, B can be represented isomorphically by an α_{0}-power of $\mathbf{E}_{(2)}$. Since the formation of the generalized α_{0}-product is associative, thus it is enough to
show that $\mathbf{E}_{(2)}$ can be represented isomorphically by a generalized α_{0}-power of \mathbf{A}. Take the α_{0}-power $\mathbf{D}=\left(X^{(2)}, A, \delta_{\mathrm{D}}\right)=\left(A^{*}\right)\left[X^{(2)}, \psi\right]$, where for any $a \in A, \psi(a, x)=\left[p_{1}\right]$ and $\psi\left(a, x_{e}\right)=\left[p_{2}\right]$. Then $\tau: e_{i} \rightarrow a_{i}(i=1,2)$ defines an isomorphism of $\mathbf{E}_{(2)}$ into \mathbf{D}.

Now if for any $b \in B$ and $y \in Y, \delta(b, y)=b$ and B has at least two elements then there exists an $\mathbf{A} \in \Sigma$ such that \mathbf{A} has at least two states. Then \mathbf{B} can be represented isomorphically by a generalized α_{0}-power of \mathbf{A}. Finally, if $|B|=1$ then \mathbf{B} can be represented isomorphically by a generalized α_{0}-power of any automata from Σ. This ends the proof of Theorem 8.

4. T-products and (T, α_{i})-products $(i=0,1, \ldots)$

In [8] G. I. Ivanov introduced the concept of the temporal composition as an abstract equivalent of the single-channel representation of multichannel finite state machines (see [5]). Now we restrict the definition of the temporal composition to automata.

Let $\mathbf{A}_{i}=\left(X_{i}, A, \delta_{i}\right)(i=1,2)$ be arbitrary automata having a common state set A. Take a set X with $|X|=\left|X_{1} \times X_{2}\right|$ and a 1-1 mapping γ of X onto $X_{1} \times X_{2}$. Then the automaton $\mathbf{A}=(X, A, \delta)$ is the temporal product of \mathbf{A}_{1} by \mathbf{A}_{2} with respect to X and γ if for any $a \in A$ and $x \in X, \delta(a, x)=\delta_{2}\left(\delta_{1}\left(a, x_{1}\right), x_{2}\right)$, where $\left(x_{1}, x_{2}\right)=\gamma(x)$.

The concept of the temporal product can be generalized in a natural way for arbitrary finite family of automata. It should be noted that the formation of the temporal product is associative.

We say that an automaton \mathbf{A} is a (T, α_{i})-product ($i=0,1, \ldots$) [T-product] of automata from Σ if there exists a sequence of classes of automata, $\Sigma=\Sigma_{0}, \Sigma_{1}$, Σ_{2}, Σ_{3} such that the automata in Σ_{1} and Σ_{3} can be given as temporal products of automata in Σ_{0} and Σ_{2}, respectively, the automata in Σ_{2} are isomorphic copies of subautomata of α_{i}-products [products] of automata from Σ_{1}, and $A \in \Sigma_{3}$.

Let us note that in the definition of Σ_{2} it would be enough to confine ourselves to isomorphic copies of α_{i}-products [products] of automata in \sum_{1}. However, it would make our computations more difficult, without yielding any further results.

In the sequel we assume that if Σ is a system of automata then for any $\mathbf{A}=$ $=(X, A, \delta) \in \sum$ there exists an $x \in X$ inducing the identity mapping of A, i.e., $\delta(a, x)=a$ for all $a \in A$.

We say that an automaton A can be represented homomorphically by a T-product $\left[\left(T, \alpha_{i}\right)\right.$-product $]$ of automata from \sum if \mathbf{A} is a homomorphic image of a subautomaton of a T-product [$\left(T, \alpha_{i}\right)$-product] of automata in \sum. The concept of the isomorphic representation is defined similarly. Moreover, Σ is homomorphically complete with respect to the T-product [$\left(T, \alpha_{i}\right)$-product] if every automaton can be represented homomorphically by a T-product $\left[\left(T, \alpha_{i}\right)\right.$-product] of automata from \sum. A natural
modification of this definition leads to the concept of the isomorphic completeness with respect to the T-product [$\left(T, \alpha_{i}\right)$-product].

The following results show the relation between simulations by generalized products and representations by T-products and (T, α_{i})-products of automata. One can easily prove that if \sum is a system of automata and $\mathbf{A} \in \sum$ then \mathbf{A}^{*} can be represented isomorphically by a temporal power of \mathbf{A}. Thus we have

Theorem 9. If Σ is isomorphically (homomorphically) S-complete with respect to the generalized α_{0}-product then \sum is isomorphically (homomorphically) complete with respect to the (T, α_{0})-product.

The converse of Theorem 9 fails to hold which will follow from Theorems 1 and 11.

Theorem 10. Assume that a set Σ of automata is homomorphically complete with respect to the (T, α_{0})-product. Then there exist an $\mathbf{A}=(X, A, \delta) \in \sum, a, b \in A$ and a word $p \in F(X)$ such that $a \neq b$ and $a p=b p=b$.

Proof. Let Σ_{1}, Σ_{2} and Σ_{3} denote the same classes of automata as in the definition of the (T, α_{0})-product.

Assume that \sum is homomorphically complete with respect to the (T, α_{0})-product. Then there exists a $\mathbf{B}=(X, B, \delta)$ in \sum_{3} such that $\mathbf{E}_{(2)}$ is a homomorphic image of a subautomaton of \mathbf{B}. (For the definition of $\mathbf{E}_{(2)}$, see p. 32.) One can prove that there exist $a, b \in B, x \in X$ and a positive integer k such that $a \neq b$ and $a p=b p=b$, where $p=x^{k}$.

Suppose that \mathbf{B} is a temporal product of $\mathbf{B}_{1}, \ldots, \mathbf{B}_{l}$ with respect to X and γ such that $\mathbf{B}_{i}=\left(X_{i}, B, \delta_{i}\right)(i=1, \ldots, l), \mathbf{B}_{i} \in \sum_{2}$ and $\gamma(x)=\left(x_{1}, \ldots, x_{l}\right)\left(\in X_{1} \times \ldots \times X_{l}\right)$. For any $t(=0,1, \ldots)$ and $1 \leqq i<l$, let $a_{t \cdot l+i}$ and $b_{t \cdot l+i}$ denote the elements $a\left(x^{t}\right)_{\mathbf{B}}\left(x_{1}\right)_{\mathbf{B}_{1}} \ldots\left(x_{i}\right)_{\mathbf{B}_{i}}$ and $b\left(x^{t}\right)_{\mathrm{B}}\left(x_{1}\right)_{\mathrm{B}_{1}} \ldots\left(x_{i}\right)_{\mathrm{B}_{i}}$, respectively. Thus, $a=a_{0}, b=b_{0}=$ $=a_{k \cdot l}=b_{k \cdot l}$. Now assume that $u<k \cdot l$ is the greatest nonnegative integer for which $a_{u} \neq b_{u}$. There exists such a u, since $a_{0} \neq b_{0}$. Let u be given in the form $u=m \cdot l+v$, where m and v are nonnegative integers and $v<l$. Therefore, $\delta_{v+1}\left(a_{u}, x_{v+1}\right)=\delta_{v+1}\left(b_{u}\right.$, x_{v+1}). This means that there are $c, d \in B$ and a positive integer n such that $c \neq d$ and $c\left(x_{v+1}^{n}\right)_{\mathbf{B}_{v+1}}=d\left(x_{v+1}^{n}\right)_{\mathbf{B}_{v+1}}=d$.

Thus we have got that there exist a $\mathbf{C}=\left(Y, C, \delta_{\mathbf{C}}\right)$ in $\sum_{2}, c, d \in C, y \in Y$ and a positive integer k such that $c \neq d$ and $c y^{k}=d y^{k}=d$. Assume that \mathbf{C} can be given by an α_{0}-product $\mathbf{C}=\left(\mathbf{C}_{1} \times \mathbf{C}_{2}\right)[Y, \varphi]$, where $\mathbf{C}_{i}=\left(Y_{i}, C_{i}, \delta_{i}^{\prime}\right)(i=1,2)$. Let $c=\left(c_{1}, c_{2}\right)$ and $d=\left(d_{1}, d_{2}\right)$. For a $p=y_{1} \ldots y_{n} \in F(Y)$ and $c^{\prime} \in C_{1}$ let $p\left(\mathbf{C}_{1}\right)=\varphi_{1}\left(y_{1}\right) \ldots \varphi_{1}\left(y_{n}\right)$ and $p\left(\mathbf{C}_{2}, c^{\prime}\right)=y_{1}^{\prime} \ldots y_{n}^{\prime}$, where $y_{1}^{\prime}=\varphi_{2}\left(c^{\prime}, y_{1}\right), \ldots, y_{n}^{\prime}=\varphi_{2}\left(c^{\prime}\left(y_{1} \ldots y_{n-1}\right)\left(\mathbf{C}_{1}\right), y_{n}\right)$. Then, for $q=y^{k}$, we obviously have $c_{1} q\left(\mathbf{C}_{1}\right)=d_{1}, d_{1} q\left(\mathbf{C}_{1}\right)=d_{1}$ and $c_{2} q\left(\mathbf{C}_{2}, c_{1}\right)=d_{2}, d_{2} q\left(\mathbf{C}_{2}, d_{1}\right)=$ $=d_{2}$. Now if $c_{1} \neq d_{1}$ then there exists a word $q^{\prime}=q\left(\mathbf{C}_{1}\right) \in F\left(Y_{1}\right)$ such that $c_{1} q^{\prime}=d_{1} q^{\prime}=d_{1}$.

Let us assume that $c_{1}=d_{1}$. Then $q\left(\mathbf{C}_{2}, c_{1}\right)=q\left(\mathbf{C}_{2}, d_{1}\right)$, and $c_{2} \neq d_{2}$ since $c \neq d$. Therefore, in this case for $q^{\prime \prime}=q\left(\mathrm{C}_{2}, c_{1}\right) \in F\left(Y_{2}\right)$ we have $c_{2} q^{\prime \prime}=d_{2} q^{\prime \prime}=d_{2}$.

Since $\mathbf{C} \in \Sigma_{2}$ and the formation of the α_{0}-product is associative, thus we have got that there exist an automaton $\mathbf{D}=\left(Z, D, \delta_{\mathrm{D}}\right)$ in Σ_{1}, two states $d, d^{\prime} \in D$ and a word $p \in F(Z)$ such that $d \neq d^{\prime}$ and $d p=d^{\prime} p=d^{\prime}$. Assume that $p=z_{1} \ldots z_{n}\left(z_{i} \in Z\right)$. Let us denote by d_{i} and d_{i}^{\prime} the states $d p_{i}$ and $d^{\prime} p_{i}$, respectively, where p_{i} is the prefix of p of length i, for all $0 \leqq i<n$. Suppose that $j<n$ is the greatest nonnegative integer with $d_{j} \neq d_{j}^{\prime}$: Since $d_{0} \neq d_{0}^{\prime}$ thus there exists such a j. Therefore, $\delta_{\mathbf{D}}\left(d_{j}, z_{j+1}\right)=$ $=\delta_{\mathrm{D}}\left(d_{j}^{\prime}, z_{j+1}\right)$. Thus, there are states $a^{\prime}, b^{\prime} \in D$ and a positive integer t such that $a^{\prime} \neq b^{\prime}$ and $a^{\prime} z_{j+1}^{t}=b^{\prime} z_{j+1}^{t}=b^{\prime}$. Now, since \mathbf{D} is a temporal product of automata from Σ thus there exist an $\mathrm{A}=(X, A, \delta) \in \sum, a, b \in A$ and a word $p \in F(X)$ such that $a \neq b$ and $a p=b p=b$. (See the proof of the similar statement concerning B.) This ends the proof of Theorem 10.

Take an automaton $\mathbf{A}=(X, A, \delta)$, a state $a \in A$ and an input signal $x \in X$. Then the cycle generated by (a, x) in \mathbf{A} means the set of elements $a x^{0}, a x, \ldots, a x^{k}, \ldots$. For this cycle we use the short notation (a, x). If $a x^{0}, \ldots, a x^{u}$ are pairwise different and u is the least exponent for which there exists a $w>u$ such that $a x^{w}=a x^{u}$ then $a x^{0}, \ldots$ $\ldots, a x^{u-1}$ is the preperiod of (a, x) and u is the length of this preperiod. (When the preperiod is empty its length equals 0 .) Furthermore, if $u+v$ is the smallest positive integer for which $a x^{u}=a x^{u+v}$ holds then $a x^{u}, \ldots, a x^{u+v-1}$ is the period of the cycle under question, and v is the length of this period. In this case we say that (a, x) is a cycle of type (u, v).

An automaton $\mathbf{A}=(X, A, \delta)$ is called x-cyclic $(x \in X)$ of type (k, l) if for some $a \in A$, the set A coincides with the cycle (a, x) in \mathbf{A}, and this cycle is of type (k, l), while the input signals different from x induce the identity mapping of $A . \mathbf{A}$ is said to be a prime-power automaton with respect to x if it is x-cyclic of type $\left(0, r^{r}\right)$, where r is a prime and n is a natural number. If $n=1$ then \mathbf{A} is a prime automaton. Moreover, \mathbf{A} is an elevator regarding x if it is x-cyclic of type $(k, 1)$ with $k \geqq 1$.

For any natural number r, let $\mathbf{C}_{(r)}=\left(X, C_{r}, \delta_{r}\right)$ denote the following automaton: $X=\left\{x, x_{e}\right\}, C_{r}=\left\{c_{0}^{(r)}, \ldots, c_{r-1}^{(r)}\right\}, \delta_{r}\left(c_{j}^{(r)}, x_{e}\right)=c_{j}^{(r)}(0 \leqq j<r)$ and $\delta_{r}\left(c_{j}^{(r)}, x\right)=$
 $X=\left\{x, x_{e}\right\}, E_{t}=\left\{e_{1}, \ldots, e_{t}\right\}, \delta^{(t)}\left(e_{j}, x_{e}\right)=e_{j}(j=1, \ldots, t), \delta^{(t)}\left(e_{j}, x\right)=e_{j+1}$ if $j<t$, and $\delta^{(t)}\left(e_{t}, x\right)=e_{t}$. Finally, let \sum_{P} denote the system consisting of $\mathbf{E}_{(2)}$ and of $\mathbf{C}_{(r)}$ for all prime number r.

Now we prove
Lemma 4. Let $\mathbf{A}=(X, A, \delta)$ be an automaton with two input signals such that one of them induces the identity mapping of A. Then \mathbf{A} can be represented isomorphically by an α_{0}-product of automata from \sum_{P}.

Proof. Let $\mathbf{A}=(X, A, \delta)$ be an arbitrary automaton with $X=\left\{x, x_{e}\right\}$ such that x_{e} induces the identity mapping of \mathbf{A}. Then \mathbf{A} can be given as a union of pairwise disjoint subsets A_{1}, \ldots, A_{k} such that $\mathbf{A}_{i}=\left(X, A_{i}, \delta_{i}\right)(i=\mathrm{i}, \ldots, k)$ are connected subautomata of \mathbf{A}, where δ_{i} denotes the restriction of δ to A_{i}.

For an $a \in A$ we say that it is initial if (a, x) is of type (s, r) with $s>0$ and there exists no $b \in A$ and $p \in F(X)$ such that $b \neq a$ and $b p=a$. Assume that $\left\{a_{i 1}, \ldots, a_{i l_{1}}\right\}$ is the set of all the initial elements of $A_{i}(i=1, \ldots, k)$. For any $a_{i j}$ take the cycle $\left(a_{i j}, x\right)$ in \mathbf{A}_{i}. It is obvious that these cycles $\left(a_{i j}, x\right)\left(j=1, \ldots, l_{i}\right)$ have the same period, say of type ($0, t_{i}$). Define a partition $\pi_{i 0}$ on A in the following manner:
(i) for $a, b \in A_{i}, a \equiv b\left(\pi_{i 0}\right)$ if and only if there exists a $p \in F(X)$ with $|p|=u \cdot t_{i}$ such that $a p=b p$,
(ii) if $a, b \notin A_{i}$ then $a \equiv b\left(\pi_{i 0}\right)$,
(iii) $a \equiv b\left(\pi_{i 0}\right)$ implies $a, b \in A_{i}$ or $a, b \notin A_{i}$. One can show, by a short computation, that $\pi_{i 0}$ has SP.

Now for any initial state $a_{i j}$, let $\pi_{i j}$ be the following partition of A : the elements in the preperiod of $\left(a_{i j}, x\right)$ as well as the elements in all preperiods having commón elements with the preperiod of $\left(a_{i j}, x\right)$ form one-element blocks of $\pi_{i j}$, and all other elements of A are in the same block of $\pi_{i j}$. Again, a short computation shows that $\pi_{i j}$ has SP. Moreover, the intersection $\cap\left(\pi_{i j} \mid i=1, \ldots, k ; j=0, \ldots, l_{i}\right)$ is the trivial partition having one-element blocks only. Therefore, \mathbf{A} can be given as a subdirect product of the quotient automata $\mathbf{A} / \pi_{i j}\left(i=1, \ldots, k ; j=0, \ldots, l_{i}\right)$.

Let us consider a quotient automaton $\mathbf{A} / \pi_{i j}$ with $j>0$. Then $\mathbf{A} / \pi_{i j}$ is either a one-state automaton or it satisfies Lemma 3. If $\mathbf{A} / \pi_{i j}$ has only one state then it can be represented isomorphically by an α_{0}-power (having a single factor) of any automaton in \sum_{P}. In the other case, by Lemma $3, \mathbf{A} / \pi_{i j}$ can be represented isomorphically. by an α_{0}-power of $\mathbf{E}_{(2)}$.

Now let us investigate the quotient automaton $\mathbf{A} / \pi_{i 0}$. Obviously, $\left(\pi_{i 0}\left(a_{i j}\right), x\right)$. forms a cycle in $\mathbf{A} / \pi_{i 0}$ of type ($0, t_{i}$). (Note that this cycle is independent of j.) We distinguish the following three cases:
(1) $t_{i}=k=1$. Then $\mathbf{A} / \pi_{i 0}$ is a one-state automaton. Therefore, it can be represented isomorphically by an α_{0}-power of any automaton from \sum_{p}.
(2) $t_{i}>1$ and $k=1$. In this case $\mathrm{A} / \pi_{i 0}$ is isomorphic to $\mathrm{C}_{(t)}$. Let t_{i} be given in the form $t_{i}=r_{1}^{w_{1}} \ldots r_{n}^{w_{n}}$, where r_{j} are pairwise different prime numbers and $w_{j}>0$ $(j=1, \ldots, n)$. Then $\mathbf{C}_{(t)}$ is isomorphic to the direct product of $\mathbf{C}_{\left(s_{1}\right)}, \ldots, \mathbf{C}_{\left(s_{n}\right)}$, where $s_{j}=r_{j}^{w_{j}}$ (see the proof of Theorem 1 in [4]).

Take $\mathbf{C}_{(s)}$ such that $s=r^{l}$, where r is a prime number and $l>0$. We prove that $\mathbf{C}_{(s)}$ can be represented isomorphically by an α_{0}-power of $\mathbf{C}_{(r)}$. Obviously, it is enough to show that whenever $l>1$ then there exists an α_{0}-product of $\mathbf{C}_{\left(r^{-1}\right)}$ and $\mathbf{C}_{(r)}$ which is isomorphic to $\mathbf{C}_{\left(r^{r}\right)}$. Form the α_{0}-product $\mathbf{C}=\left(\mathbf{C}_{\left(r^{1-1}\right)} \times \mathbf{C}_{(r)}\right)[X, \varphi]$, where
for any $y \in X$ and $\left(c_{u}^{(r l-1)}, c_{v}^{(r)}\right)$ from $C_{r l-1} \times C_{r}, \varphi_{1}\left(c_{u}^{(r l-1)}, c_{v}^{(r)}, y\right)=y$ and

$$
\varphi_{2}\left(c_{u}^{(r \mathbf{r}-1)}, c_{v}^{(r)}, y\right)= \begin{cases}x & \text { if } u=r^{r-1}-1 \quad \text { and } \quad y=x, \\ x_{e} & \text { otherwise } .\end{cases}
$$

By the definition of $\varphi,\left(c_{0}^{\left(r^{l-1}\right)}, c_{0}^{(r)}\right) x^{z}=\left(c_{z}^{\left(r^{l-1}\right)}, c_{0}^{(r)}\right)$ if $z<r^{l-1}$, and

$$
\left(c_{0}^{(r l-1)}, c_{0}^{(r)}\right) x^{z}=\left(c_{0}^{(r l-1)}, c_{1}\right) \quad \text { if } \quad z=r^{l-1}
$$

From this it can be seen immediately, that $\left(c_{0}^{(r l-1)}, c_{0}^{(r)}\right) x^{z} \neq\left(c_{0}^{(r i-1)}, c_{0}^{(r)}\right)$ if $z<r^{l}$, and $\left(c_{0}^{(r i-1)}, c_{0}^{(r)}\right) x^{z}=\left(c_{0}^{(r l-1)}, c_{0}^{(r)}\right)$ provided that $z=r^{l}$. Moreover, x_{e} induces the identity mapping of the state set of \mathbf{C}. Therefore, \mathbf{C} is x-cyclic of type ($0, r^{l}$), showing that \mathbf{C} is isomorphic to $\mathbf{C}_{(s)}$. Since the formation of the α_{0}-product is associative, thus we got that $\mathbf{A} / \pi_{i 0}$ can be represented isomorphically by an α_{0}-product of automata from Σ_{p}.
(3) $k>1$. Now if $t_{i}=1$ then $\mathbf{A} / \pi_{i 0}$ has two states and both input signals induce the identity mapping of its state set. Therefore, $\mathbf{A} / \pi_{i 0}$ can be represented isomorphically by an α_{0}-power (with a single factor) of arbitrary automata from \sum_{P}. Thus, we may assume that $t_{i}>1$ too. Then $\mathbf{A} / \pi_{i 0}$ is isomorphic to the following automaton $\mathbf{C}=\left(X, C, \delta_{\mathbf{C}}\right): \quad C=\left\{c, c_{0}, \ldots, c_{t_{i}-1}\right\}, \quad \delta_{\mathbf{C}}(c, x)=\delta_{\mathbf{C}}\left(c, x_{e}\right)=c, \delta_{\mathbf{C}}\left(c_{j}, x\right)=c_{(j+1)\left(\bmod t_{i}\right)}$ and $\delta_{\mathbf{C}}\left(c_{j}, x_{e}\right)=c_{j}\left(0 \leqq j<t_{i}\right)$. We now prove that \mathbf{C} can be represented isomorphically by an α_{0}-product of $\mathbf{E}_{(2)}$ and $\mathbf{C}_{\left(t_{1}\right)}$. Take $\left.\mathbf{D}=\left(X, D, \delta_{D}\right)=\mathbf{E}_{(2)} \times \mathbf{C}_{\left(t_{i}\right)}\right)[X, \varphi]$, where for any $\left(e_{u}, c_{v}^{\left(t_{i}\right)}\right) \in D$ and $y \in X, \varphi_{1}\left(e_{u}, c_{v}^{\left(t_{i}\right)}, y\right)=x_{e}$ and

$$
\varphi_{2}\left(e_{u}, c_{v}^{\left(t_{v}\right)}, y\right)=\left\{\begin{array}{lll}
y & \text { if } \quad u=2 \\
x_{e} & \text { if } & u=1
\end{array}\right.
$$

Then the mapping $\eta: C \rightarrow D$ with $\eta(c)=\left(e_{1}, c_{0}^{\left(t_{i}\right)}\right)$ and $\eta\left(c_{j}\right)=\left(e_{2}, c_{j}^{\left(t_{i}\right)}\right)\left(0 \leqq j<t_{i}\right)$ is an isomorphism of \mathbf{C} into \mathbf{D}. Moreover, by the proof of (2), $\mathbf{C}_{\left(t_{i}\right)}$ can be represented isomorphically by an α_{0}-product of automata from \sum_{P}. Thus, we got that $\mathbf{A} / \pi_{i 0}$ can be represented isomorphically by an α_{0}-product of automata in \sum_{P}. This completes the proof of Lemma 4.

Now we are ready to prove
Theorem 11. A system \sum of automata is isomorphically complete with respect to the $\left(T, \alpha_{0}\right)$-product if and only if there exist an $\mathbf{A}=(X, A, \delta) \in \Sigma, a, b \in A$ and a word $p \in F\left(X^{\prime}\right)$ such that $a \neq b$ and $a p=b p=b$.

Proof. The necessity of these conditions follows from Theorem 10.
Conversely, assume that in \sum there is an automaton satisfying the above conditions. Again, let Σ_{1}, Σ_{2} and Σ_{3} denote those classes of automata as in the definition of the (T, α_{0})-product.

Now take an automaton $\mathbf{C}=\left(Z, C, \delta_{\mathbf{C}}\right)$ such that $Z=\left\{z, z_{e}\right\}$ and for any $c \in C$, $\delta_{\mathbf{C}}\left(c, z_{e}\right)=c$. By Lemma $4, \mathbf{C}$ can be represented isomorphically by an α_{0}-product
$\mathbf{D}=\left(Z, D, \delta_{\mathbf{D}}\right)=\prod_{i=1}^{n} \mathbf{B}_{i}[Z, \varphi]$ of automata from \sum_{P}. For any $i \leqq n$, define two automata in the following way:
(i) Assume that \mathbf{B}_{i} is a prime automaton $\mathbf{C}_{(r)}$. Then let

$$
\begin{gathered}
\mathbf{C}_{(r)}^{\prime}=\left(X, C_{r}^{\prime}, \delta_{r}^{\prime}\right), \quad \text { where } \quad X=\left\{x, x_{e}\right\} \\
C_{r}^{\prime}=\left\{c_{0}^{(r)^{\prime}}, c_{0}^{(r) *}, \ldots, c_{r-1}^{(r)}, c_{r-1}^{(r) *}\right\} \\
\delta_{r}^{\prime}\left(c_{i}^{(r)^{\prime}}, x_{e}\right)=c_{i}^{(r) \prime}
\end{gathered}
$$

$$
\delta_{r}^{\prime}\left(c_{i}^{(r) *}, x\right)=\delta_{r}^{\prime}\left(c_{i}^{(r) *}, x_{e}\right)=c_{i}^{(r) *} \quad \text { and } \quad \delta_{r}^{\prime}\left(c_{i}^{(r)}, x\right)=c_{i}^{(r) *} \quad(0 \leqq i<r)
$$

Moreover, let $\mathbf{C}_{(r)}^{\prime \prime}=\left(X, C_{r}^{\prime}, \delta_{r}^{\prime \prime}\right)$ be the automaton for which

$$
\delta_{r}^{\prime \prime}\left(c_{i}^{(r) \prime}, x_{e}\right)=\delta_{r}^{\prime \prime}\left(c_{i}^{(r)^{\prime}}, x\right)=c_{i}^{(r)^{\prime}}, \delta_{r}^{\prime \prime}\left(c_{i}^{(r) *}, x_{e}\right)=c_{i}^{(r) *}, \text { and } \delta_{r}^{\prime \prime}\left(c_{i}^{(r) *}, x\right)=c_{(i+1)(\operatorname{modr})}^{(r)}
$$

(ii) If \mathbf{B}_{i} is the elevator $\mathbf{E}_{(2)}$ then we define the following two automata: $\mathbf{E}_{2}^{\prime}=$ $=\left(X, E_{2}^{\prime}, \delta_{(2)}^{\prime}\right)$ and $\mathrm{E}_{2}^{\prime \prime}=\left(X, E_{2}^{\prime}, \delta_{(2)}^{\prime \prime}\right)$, where $X=\left\{x, x_{e}\right\}, E_{2}^{\prime}=\left\{e_{1}^{\prime}, e_{1}^{*}, e_{2}^{\prime}\right\}$ and

$\delta_{(2)}^{\prime}$	x	x_{e}			
e_{1}^{\prime}	e_{1}^{*}	e_{1}^{\prime}		$\delta_{(2)}^{\prime \prime}$	x
e_{1}^{\prime}	e_{e}^{\prime}				
e_{1}^{*}	e_{1}^{*}	e_{1}^{\prime}			
e_{2}^{\prime}	e_{2}^{\prime}	e_{2}^{\prime}		e_{1}^{*}	e_{2}^{\prime}
e_{2}^{\prime}	e_{1}^{*}				
e_{2}^{\prime}	e_{2}^{\prime}				

Let us form the α_{0}-products

$$
\mathbf{D}^{\prime}=\left(Z, D^{\prime}, \delta_{\mathbf{D}}^{\prime}\right)=\prod_{i=1}^{n} \mathbf{B}_{i}^{\prime}\left[Z, \varphi^{\prime}\right] \quad \text { and } \quad \mathbf{D}^{\prime \prime}=\left(Z, D^{\prime}, \delta_{\mathbf{D}}^{\prime \prime}\right)=\prod_{i=1}^{n} \mathbf{B}_{i}^{\prime \prime}\left[Z, \varphi^{\prime \prime}\right]
$$

such that for any $\left(b_{1}, \ldots, b_{n}\right) \in D$ and $z^{\prime} \in Z$,

$$
\varphi^{\prime}\left(d_{1}, \ldots, d_{n}, z^{\prime}\right)=\varphi^{\prime \prime}\left(d_{1}, \ldots, d_{n}, z^{\prime}\right)=\varphi\left(b_{1}, \ldots, b_{n}, z^{\prime}\right)
$$

where $d_{i}=b_{i}^{\prime}$ or $b_{i}^{*}(i=1, \ldots, n)$. Moreover, take the temporal product $\mathbf{G}=$ $=\left(Z \times Z, G, \delta_{\mathbf{G}}\right)$ of \mathbf{D}^{\prime} by $\mathbf{D}^{\prime \prime}$ with respect to the identity mapping γ^{\prime} on $Z \times Z$. One can show that the mappings $x^{\prime}: Z \rightarrow Z \times Z$ and $\eta: D \rightarrow D^{\prime}$ with $x^{\prime}\left(z^{\prime}\right)=\left(z^{\prime}, z^{\prime}\right)$ and $\eta\left(\left(b_{1}, \ldots, b_{n}\right)\right)=\left(b_{1}^{\prime}, \ldots, b_{n}^{\prime}\right) \quad\left(z^{\prime} \in Z,\left(b_{1}, \ldots, b_{n}\right) \in D\right)$ is an isomorphism of \mathbf{D} into \mathbf{G}.

It is obvious that $\mathbf{E}_{(2)}$ can be represented isomorphically by a temporal power of the automaton \mathbf{A} satisfying the conditions of Theorem 11. Moreover, the well ordering $c_{0}^{(r) \prime}<c_{0}^{(r) *}<\ldots<c_{r-1}^{(r)}<c_{r-1}^{(r) *}$ of the state set of $C_{(r)}^{\prime}$, and the well ordering $c_{0}^{(r) *}<c_{1}^{(r) \prime}<\ldots<c_{r-1}^{(r) *}<c_{0}^{(r) \prime}$ of the state set of $\mathbf{C}_{(r)}^{\prime \prime}$ satisfy the conditions of Lemma 4. Therefore, $\mathbf{C}_{(r)}^{\prime}$ and $\mathbf{C}_{(r)}^{\prime \prime}$ can be represented isomorphically by an α_{0}-power of $\mathbf{E}_{(2)}$. Similarly, the well ordering $e_{1}^{\prime}<e_{1}^{*}<e_{2}^{\prime}$ of the state sets of \mathbf{E}_{2}^{\prime} and $\mathbf{E}_{2}^{\prime \prime}$ show that \mathbf{E}_{2}^{\prime} and $\mathbf{E}_{2}^{\prime \prime}$ can be represented isomorphically by α_{0}-powers of $\mathbf{E}_{(2)}$. Since the formation of the α_{0}-product is associative, thus we got that $\mathbf{D}^{\prime}, \mathbf{D}^{\prime \prime} \in \Sigma_{2}$.

Now let $\mathbf{B}=\left(Y, B, \delta^{\prime}\right)$ be an arbitrary automaton, and for every $y \in Y$ take $Z_{y}=$ $=\left\{y, y_{e}\right\}$ and denote by $\mathbf{B}_{y}=\left(Z_{y}, B, \delta_{y}\right)$ the automaton whose transition function is defined by $\delta_{y}(b, y)=\delta^{\prime}(b, y)$ and $\delta_{y}\left(b, y_{e}\right)=b$ for any $b \in B$.

For all \mathbf{B}_{y} take an α_{0}-product $\mathbf{D}_{y}=\left(Z_{y}, D_{y}, \bar{\delta}_{y}\right)=\prod_{i=1}^{n_{y}} \mathbf{B}_{i}^{(y)}\left[Z_{y}, \varphi_{y}\right]$ of prime automata $\mathbf{C}_{(r)}$ and $\mathbf{E}_{(2)}$ such that $\psi_{y}: B \rightarrow D_{y}$ is an isomorphism of \mathbf{B}_{y} into \mathbf{D}_{y}. Without loss of generality we may assume that $D_{y}=D_{y^{\prime}}(=D)$ and $\psi_{y}(b)=\psi_{y^{\prime}}(b)(=\psi(b))$ for any $y, y^{\prime} \in Y$ and $b \in B$. Indeed, if $\mathbf{C}_{(r)}$ is a factor in some $\mathbf{D}_{y^{\prime}}$ with multiplicity m^{\prime} and m_{r} is the maximal number of occurrences of $\mathbf{C}_{(r)}$ in the α_{0}-products $\mathbf{D}_{y^{\prime}}$ then $\mathbf{D}_{y^{\prime}}$ can be replaced by a suitable α_{0}-product of $\mathbf{D}_{y^{\prime}}$ by $\mathbf{C}_{(r)}^{m_{r}-m^{\prime}}$. Similar statement is valid for $\mathbf{E}_{(2)}$. (Observe that x_{e} always induces the identity mappings of the state sets of $\mathbf{C}_{(r)}$ and $\mathbf{E}_{(2)}$.) The requirement $\psi_{y}(b)=\psi_{y^{\prime}}(b)$ can be satisfied by a suitable renaming of the elements of the D_{y}.

Now for all $y \in Y$ construct the α_{0}-products $\mathbf{D}_{y}^{\prime}=\left(Z_{y}, D_{y}^{\prime}, \delta_{y}^{\prime}\right)$ and $\mathbf{D}^{\prime \prime}=$ $=\left(Z_{y}, D_{y}^{\prime}, \delta_{y}^{\prime \prime}\right)$ (as for \mathbf{D} at the beginning of the proof). It is obvious, by the construction of \mathbf{D}_{y}^{\prime} and $\mathbf{D}_{y}^{\prime \prime}$, that $\left|D_{y}^{\prime}\right|=\left|D_{y^{\prime}}^{\prime}\right|$ for any $y, y^{\prime} \in Y$. Moreover, these automata \mathbf{D}_{y}^{\prime} and $\mathbf{D}_{y}^{\prime \prime}$ are in Σ_{2}, and \mathbf{D}_{y} is isomorphic to a subautomaton of the temporal product \mathbf{G}_{y} of \mathbf{D}_{y}^{\prime} by $\mathbf{D}_{y}^{\prime \prime}$, under some mappings $x_{y}: Z_{y} \rightarrow Z_{y} \times Z_{y}$ and $\eta_{y}: D_{y} \rightarrow D_{y}^{\prime}$. Again, by a suitable renaming of the elements of D_{y}^{\prime}, we can achive that $D_{y}^{\prime}=D_{y^{\prime}}^{\prime}$ $\left(=D^{\prime}\right)$ and $\eta_{y}(d)=\eta_{y^{\prime}}(d)(=\eta(d))$ for all $y, y^{\prime} \in Y$ and $d \in D_{y}$.

Assume that $Y=\left\{y_{1}, \ldots, y_{k}\right\}$. Take the temporal product $\mathbf{F}=\left(\bar{Z}, D^{\prime}, \bar{\delta}\right)$ of the automata $\mathbf{D}_{y_{1}}^{\prime}, \mathbf{D}_{y_{1}}^{\prime \prime}, \ldots, \mathbf{D}_{y_{k}}^{\prime}, \mathbf{D}_{y_{k}}^{\prime \prime}$ with respect to \bar{Z} and γ, where $\bar{Z}=Z_{y_{1}} \times Z_{y_{1}} \times \ldots$ $\ldots \times Z_{y_{k}} \times Z_{y_{k}}$ and γ is the identity mapping of \bar{Z}. Define a mapping $\chi: Y \rightarrow \bar{Z}$ with
$x\left(y_{i}\right)=\left(\left(y_{1}\right)_{e},\left(y_{1}\right)_{e}, \ldots,\left(y_{i-1}\right)_{e},\left(y_{i-1}\right)_{e}, x_{y_{i}}\left(y_{i}\right),\left(y_{i+1}\right)_{e},\left(y_{i+1}\right)_{e}, \ldots,\left(y_{k}\right)_{e},\left(y_{k}\right)_{e}\right)$
for all $y_{i} \in Y$. A short computation shows that the pair $x: Y \rightarrow \bar{Z}$ and $\psi \eta: B \rightarrow D^{\prime}$ is an isomorphism of \mathbf{B} into \mathbf{F}. Moreover, $\mathbf{F} \in \Sigma_{3}$, which ends the proof of Theorem 11.

Corollary. A system \sum of automata is homomorphically complete with respect to the $\left(T, \alpha_{0}\right)$-product if and only if it is isomorphically complete with respect to the (T, α_{0})-product.

Now we are ready to present a stronger result. First we prove
Lemma 5. Let $\mathbf{B}=(Y, B, \delta)$ be an automaton with $Y=\left\{y, y_{e}\right\}$ such that y_{e} induces the identity mapping of B. If for any $b \in B$, the cycle (b, y) in \mathbf{B} is of type $(0, t)$, where $t=1$ or t is a power of r and r is a fixed prime number, then \mathbf{B} can be represented isomorphically by an α_{0}-power of $\mathbf{C}_{(r)}$.

Proof. Like in the proof of Lemma $4, B$ can be given as a union of pairwise disjoint subsets B_{1}, \ldots, B_{k} such that $\mathbf{B}_{i}=\left(Y, B_{i}, \delta_{i}\right)(i=1, \ldots, k)$ are connected subautomata of \mathbf{B}. By our assumption, \mathbf{B} has no initial states. Therefore, every B_{i}
is a cycle of type $\left(0, t_{i}\right)$, where $t_{i}=1$ or r^{l}. For any $i(=1, \ldots, k)$ define the partitions: $\pi_{i}\left(=\pi_{i 0}\right)$ as in Lemma 4.

Let us distinguish the following three cases:
(1) $t_{i}=k=1$. Then B is a one-state automaton. Obviously, it can be represented isomorphically by an α_{0}-power of $\mathbf{C}_{(r)}$ (having a single factor).
(2) $t_{i}=r^{l}$ and $k=1$. Then, by the proof of Lemma $4, \mathbf{B}$ is an α_{0}-power of $\mathbf{C}_{(r)}$.
(3) $k>1$. If $t_{i}=1$ then \mathbf{B} / π_{i} has two states and both input signals induce the identity mapping of its state set. Therefore, \mathbf{B} / π_{i} is isomorphic to an α_{0}-power of $\mathbf{C}_{(r)}$ (having one factor only). Now if $t_{i}=r^{\prime}$ then \mathbf{B} / π_{i} can be represented isomorphically by an α_{0}-power of $\mathbf{C}_{(r)}$ having $l+1$ factors. This can be proved in the same way as the corresponding statement in Lemma 4. The only difference is that here we need $\mathbf{C}_{(r)}$ instead of $\mathbf{E}_{(2)}$.

Since the intersection $\cap\left(\pi_{i} \mid i=1, \ldots, k\right)$ is the trivial partition of B having oneelement blocks only, thus \mathbf{B} can be represented isomorphically by an α_{0}-power of $\mathbf{C}_{(r)}$.

Theorem 12. Let \sum be a system of automata. An automaton \mathbf{B} can be represented homomorphically by a $\left(T, \alpha_{0}\right)$-product of automata from \sum if and only if \mathbf{B} can be represented isomorphically by a $\left(T, \alpha_{0}\right)$-product of automata from \sum.

Proof. Assume that $\mathbf{B}=\left(Y, B, \delta^{\prime}\right)$ can be represented homomorphically by a (T, α_{0})-product of automata from \sum. If there are $b \in B$ and $y \in Y$ such that for the type (u, v) of the cycle (b, y) in \mathbf{B} we have $u>0$ then, by the proof of the necessity of Theorem 10, there exist $\mathbf{A}=(X, A, \delta) \in \Sigma, a_{1}, a_{2} \in A$ and $p \in F(X)$ with $a_{1} \neq a_{2}$ and $a_{1} p=a_{2} p=a_{2}$. Therefore, by Theorem $11, \sum$ is isomorphically complete with respect to the (T, α_{0})-product.

Thus, we may assume that for all $b \in B$ and $y \in Y$ the cycles (b, y) in \mathbf{B} are of type $(0, t)$. If $t=1$ for all cycles in \mathbf{B} and $|B|>1$ then there exists an $\mathbf{A} \in \sum$ having at least two states. Obviously, \mathbf{B} can be represented isomorphically by an α_{0}-power of \mathbf{A}. Furthermore, it is also obvious that if $|B|=1$ then \mathbf{B} can be represented isomorphically by an α_{0}-power of any automaton from \sum.

Now we can suppose that there exists at least one cycle (b, y) in \mathbf{B} of type $(0, t)$ such that $t>1$. Moreover, it can also be assumed that \sum is not homomorphically complete with respect to the $\left(T, \alpha_{0}\right)$-product. Thus, there exist an $\mathrm{A}=\left(X^{\prime}, A, \delta\right) \in \sum$, $a \in A$ and $x^{\prime} \in X^{\prime}$ such that the cycle $\left(a, x^{\prime}\right)$ is of type $(0, l)$ with $l>1$.

Let $Y=\left\{y_{1}, \ldots, y_{s}\right\}$, and denote by $\mathbf{B}_{i}=\left(Z_{i}, B, \delta_{i}\right)$ the automaton for which $Z_{i}=\left\{y_{i}, z_{e}\right\}, \delta_{i}\left(b, y_{i}\right)=\delta^{\prime}\left(b, y_{i}\right)$ for all $b \in B$, and z_{e} induces the identity mapping of B. Every \mathbf{B}_{i} can be given as a union of pairwise disjoint connected subautomata $\mathbf{B}_{i j}=$ $=\left(Z_{i}, B_{i j}, \delta_{i j}\right)\left(j=1, \ldots, m_{i}\right)$ such that each $\mathbf{B}_{i j}$ is y_{i}-cyclic of type $\left(0, t_{i j}\right)$. Set $m=\max \left\{m_{i} \mid i=1, \ldots, s\right\}$ and $t=\max \left\{t_{i j} \mid i=1, \ldots, s ; j=1, \ldots, m_{i}\right\}$. We show that there are automata $\mathbf{D}_{i}^{\prime}=\left(Z_{i}, D_{i}, \delta_{i}^{\prime}\right)$ and $\mathbf{D}_{i}^{\prime \prime}=\left(Z_{i}, D_{i}, \delta^{\prime \prime}\right)(i=1, \ldots, s)$ in \sum_{2} such that \mathbf{B}_{i} is isomorphic to a subautomaton of a temporal product of \mathbf{D}_{i}^{\prime} by $\mathbf{D}_{i}^{\prime \prime}$.

For the sake of simplicity, assume that $m_{i}=u$ and $t_{i j}=v_{j}$. Moreover, let

$$
B_{i j}=\left\{c_{0}^{(j)}, \ldots, c_{v_{j}-1}^{(j)}\right\} \quad \text { and } \quad \delta_{i j}\left(c_{v}^{(j)}, y_{i}\right)=c_{(v+1)\left(\bmod v_{j}\right)}^{(j)} .
$$

Take a prime r with $r \mid l$, and let w be a power of r such that $w \geqq 2 t$. For every k ($k=1, \ldots, m$) define an automaton $\mathbf{C}_{k}=\left(Z_{i}, C_{k}, \delta_{k}\right)$, where
and

$$
C_{k}=\left\{d_{0}^{(k)}, \ldots, d_{w-1}^{(k)}\right\}, \quad \bar{\delta}_{k}\left(d_{v}^{(k)}, y_{i}\right)=d_{(v+1)(\bmod w)}^{(k)}
$$

$$
\delta_{k}\left(d_{v}^{(k)}, z_{e}^{\prime}\right)=d_{v}^{(k)} \quad \text { for all } \quad v=(0, \ldots, w-1)
$$

Assume that these sets C_{k} are pairwise disjoint. Define D_{i} by $D_{i}=\cup\left(C_{k} \mid k=1, \ldots, m\right)$,

$$
\delta_{i}^{\prime}\left(d_{v}^{(k)}, z\right)=\delta_{k}\left(d_{v}^{(k)}, z\right) \quad \text { for all } \quad z \in Z_{i}
$$

$\mathbf{D}_{i}^{\prime \prime}$ is defined similarly. It differs from \mathbf{D}_{i}^{\prime} only in that for all $j=1, \ldots, u$, if $w>2 v_{j}$ then

$$
\delta_{i}^{\prime \prime}\left(d_{2 v_{j}-1}^{(j)}, y_{i}\right)=d_{0}^{(j)}, \quad \delta_{i}^{\prime \prime}\left(d_{0}^{(j)}, y_{i}\right)=d_{2 v_{j}}^{(j)}, \quad \delta_{i}^{\prime \prime}\left(d_{v}^{(j)}, y_{i}\right)=d_{v+1}^{(j)}
$$

whenever $2 v_{j} \leqq v<w-1$, and $\delta_{i}^{\prime \prime}\left(d_{w-1}^{(j)}\right)=d_{1}^{(j)}$. In all other cases the transitions are the same as in \mathbf{D}_{i}^{\prime}. By Lemma 5, both \mathbf{D}_{i}^{\prime} and $\mathbf{D}_{i}^{\prime \prime}$ are in Σ_{2}, since $\mathbf{C}_{(r)}$ is isomorphic to a subautomaton of an α_{0}-power of \mathbf{A}.

Now take the temporal product $\mathbf{D}_{i}=\left(V_{i}, D_{i}, \delta_{i}^{*}\right)$ of \mathbf{D}_{i}^{\prime} by $\mathbf{D}_{i}^{\prime \prime}$ with respect to V_{i} and γ_{i}, where $V_{i}=Z_{i} \times Z_{i}$ and γ_{i} is the identity mapping of V_{i}. A routine computation shows that the pair of mappings $\varkappa_{i}: z \rightarrow(z, z)\left(z \in Z_{i}\right)$ and $\psi_{i}: c_{v}^{(j)} \rightarrow d_{2 v}^{(j)}$ is an isomorphism of \mathbf{B}_{i} into $\mathbf{D}_{\boldsymbol{i}}$.

Observe that the cardinality of D_{i} is independent of $i(i=1, \ldots, s)$. Therefore, by a suitable renaming of the elements of D_{i} we can achive that $D_{1}=\ldots=D_{s}(=D)$ and $\psi_{i}(b)=\psi_{j}(b)$ for all $i, j=1, \ldots, s$. Using the same idea as in the proof of Theorem 11, one can show that \mathbf{B} is isomorphic to a subautomaton of a temporal product of $\mathbf{D}_{1}^{\prime}, \mathbf{D}_{1}^{\prime \prime}, \ldots, \mathbf{D}_{s}^{\prime}, \mathbf{D}_{s}^{\prime \prime}$. This ends the proof of Theorem 12.

We say that an automaton $\mathbf{A}=(X, A, \delta)$ is completely isolated if $\delta(a, x)=a$ for any $a \in A$ and $x \in X$.

Theorem 13. A set Σ of automata is homomorphically complete with respect to the T-product or $\left(T, \alpha_{i}\right)$-product $(i=1,2, \ldots)$ if and only if there is an automaton in \sum which is not completely isolated.

Proof. Since the products and temporal products of completely isolated automata are completely isolated thus the conditions of Theorem 13 are obviously necessary.

Conversely, assume that there exists an $\mathrm{A}=(X, A, \delta)$ in Σ which is not completely isolated. Then the following two cases can occur:
(i) There are $a, b \in A$ and $p \in F(X)$ such that $a \neq b$ and $a p=b p=b$. Then, by Theorem 11, Σ is isomorphically complete with respect to the (T, α_{0})-product. Therefore, it is isomorphically complete with respect to the T-product or any (T, α_{i})-product $(i=0,1, \ldots)$.
(ii) There are $p \in F(X), x \in X$ and $a_{0}, \ldots, a_{t-1}(t>1)$ such that $a_{j} \neq a_{k}$ if $j \neq k$ $(0 \leqq j, k<t), a_{j} p=a_{(j+1)(\bmod t)}$ and $\delta\left(a_{j}, x\right)=a_{j}$. Then the cyclic automaton $\mathbf{C}_{(t)}$ of type $(0, t)$ can be represented isomorphically by a temporal power of \mathbf{A}. Furthermore, it is obvious that the elevator $\mathbf{E}_{(2)}$ can be represented isomorphically by an α_{1}-power of $\mathbf{C}_{(t)}$. Therefore, since the α_{0}-product of α_{1}-products is an α_{1}-product, thus, by Theorem 11, we get that Σ is isomorphically complete with respect to the (T, α_{1})-product. This completes the proof of Theorem 13.

From the proof of Theorem 13 we get the following
Corollary. A set \sum of automata is homomorphically complete with respect to the T-product or $\left(T, \alpha_{i}\right)$-products $(i>0)$ if and only if it is isomorphically complete with respect to the T-product or $\left(T, \alpha_{i}\right)$-products with $i>0$.

References

[1] F. Gécseg and I. Peák, Algebraic theory of automata, Akadémiai Kiađó (Budapest, 1972).
[2] F. Gécseg and S. Székely, On equational classes of unoids, Acta Sci. Math., 34 (1973), 99-101.
[3] F. Gécseg, Composition of automata, Proceedings of the 2nd Colloquium on Automata, Languages and Programming, Saarbrücken, 1974, Springer Lecture Notes in Computer Science, Vol. 14, 351-363.
[4] F. GÉcSeg, On subdirect representations of finite commutative unoids, Acta Sci. Math., 36 (1974), 33-38.
[5] A. Gill, Single-channel and multichannel finite-state machines, IEEE Trans. Comput., 19 (1970) \mathbf{N}°-11, 1073-1078.
[6] A. Ginzburg, Algebraic theory of automata, Academic Press (New York-London, 1968).
[7] Глушков, В. М. О полноте систем операции в электронных вычислительных машин, Кибернетика, 2 (1968), 1-5.
[8] Иванов, Г. И., Временные преобразования цифровых автоматов, Изв. Акад. Наук. СССР, Техническая кибернетика, 6 (1973), 106-113.
[9] Летичевский, А. А., Условия полноты для конечных автоматов, Жури. вычисл. матем. и матем. физ., 1 (1961), 702-710.

