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On products of abstract automata 
F. GECSEG 

Frequently two automata behave exactly in the same way as far as the transi-
tions induced by their inputs are concerned, but none of them can be represented 
homomorphically by a (general) power of the other one; although the existence of 
homomorphisms between automata does not imply that they have common input 
sets. This situation can be avoided by allowing input words as input signals of the 
component automata. This modification leads to the concept of a generalized product 
introduced in this paper. Furthermore, we allow input words as counter images of 
input signals under homomorphic representations. The resulting representations will 
be called simulations. 

The purpose of this paper is to study the generalized products and simulations 
from the point of view of isomorphic and homomorphic completeness. It will turn 
out that in most cases the generalized products and simulations are more effective 
than the classical products and representations. Furthermore, the results concerning 
generalized products and simulations will be interpreted in terms of classical products, 
representations and temporal products of automata. 

By an automaton we mean a triplet A = { X , A, <5), where X and A are nonvoid 
finite sets called the input set and state set, respectively. Moreover, 8: AXX—A 
denotes the transition function of A. 

Take an arbitrary finite group G, and form the automaton G={G, G, <5G) with 
<5g(£I> gz)=gig2 for all g1,g2£G, where g1g2 means that g t is multiplied by g2 in G. 
G is a grouplike automaton. 

For any nonvoid set X, let us denote by F(X) the free monoid generated by X. 
If X is an input set of an automaton A = ( X , A, ¿) then the elements pdF(X) are 
called input words of A. The transition function <5 can be extended to A X F ( X ) — A 
in a natural way: for any p=p'x£F(X) and a£A, d(a, p)=5(S(a, p'), x). Further 
on we shall use the more convenient notation apA for d(a,p). If there is no danger of 
confusion then we omit the index A. 
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Let A — (X,A,3) be an automaton. Define a binary relation QA on F(X) in 
the following manner: for two input words p, q £ F{X),p = q (gA) if and only if apA—aqK 

for all a£A. The quotient semigroup F(X)/QA is called the characteristic semigroup 
of A, and it will be denoted by 5(A). We use the notation [p]A for the element of 
5(A), containing p£F(X). Thus, [p]A = [q]K ( p , q £ F ( X ) ) if and only if p and q 
induce the same transition in A. Again, if there is no danger of confusion, we 
omit the index A in [/?]A. 

Take an automaton A = (Jf, A, 3), and let TT be a partition of A. It is said that 
7t has the substitution property (shortly, SP) if a=b{n) implies 8(a, x)=3(b, x)(n) 
for all a, b£A and x£X. (Let us note that we use the same symbol 7r for a partition 
and for the equivalence relation inducing it.) The quotient automaton induced by n 
will be denoted by A/TT. 

Let Aj=(Xj , Au di) (i= 1, . . . , ri) be a system of automata. Moreover, let X 
be a finite nonvoid set, and cp a mapping of , 4 1 X. . .X^ n XA r i n to i ? ( I i ) X . . . X F ( A r J . 
We say that the automaton A = (Ar, A, 3) with A = A1X---XA„ and 

<5((A 1 ; . . . , a„), x) = (alpl, ..., a„pn), 

where (Pi,---,P„) = <p(alt..., a„, x), is the generalized product of A, (/' = 1, . . . , « ) 
tl 

with respect to Xand (p. For this product we use the shorter notation A= JJ A^X, cp], 
n • = l 

A generalized product A= JJ A,[Z, cp] is a generalized arproduct ( /=0 , 1, ...) 
¡=1 

if (p can be given in the form 

(p{a1, ...,an, x) = (^(fli, ...,a„,x), ...^„fa, ...,a„,x)) 

such that each (pj ( l ^ j ^ n ) is independent of states having indices greater than 
or equal toy + i. 

If in a generalized product [generalized a,-product] cp is of the form cp: AtX 
X ... XA„XX~*XxX... XXn then we get the concept of a product [a ;-product] (see 
[3]). Moreover, if in a generalized product [product] A, A , ~ B for all / ( = 1 , . . . , ri) 
then A is called a generalized power [power] of B. 

The concept of the generalized af -product (a ;-product) can be interpreted in 
the following way. For a given generalized product (product) take a well ordering on 
the set of its components. Assume that A( is the z-th automaton under this well 
ordering. If for two j and i with i ^ j there is a feed-back f rom A} to At then we say 
that the length of this feed-back is7—1 + 1. Now for any z'(=0, 1, ...), in the general-
ized a ;-products (a,-products) the lengths of such feed-backs does not exceed i 
under the usual well ordering of natural numbers. 

We say that an automaton K = (X, A, 3) homomorphically simulates B = (X', B, 3') 
if there exist a one-to-one mapping of X' into F(X) and a mapping T2 of a subset 
A' of A onto B such that x2(az1 (x ' ) )=5 ' ( t 2 (a) , x ') for any a£A' and x'dX'. If t 2 is 
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one-to-one as well then we speak of an isomorphic simulation. Furthermore, if Tx 

is of the form Tx : X' — X, then we speak of homomorphic and isomorphic representations. 
The following result is trivial. 

L e m m a 1. If A homomorphically simulates B and B homomorphically simulates 
C, then C can be simulated homomorphically by A. Similar statement is valid for 
isomorphic simulations. • 

A system 2 automata is called homomorphically S-complete with respect 
to the generalized product [generalized a ;-product] if any automaton can be simulated 
homomorphically by a generalized product [generalized a,--product] of automata 
from 21- The concept of isomorphic S-completeness is defined similarly. 

Take a system 2 automata. For any A = (X, A, <5)6£ denote by 
A* = (X*,A,S*) the automaton whose input set X* is S(A) and S*(a,[p])=apA 

( [ r f 6 5 ( A ) ) . 

The following statement is obvious. 
n 

L e m m a 2. For every generalized product (generalized (/.¡-product) B= JJ Bt[X, <p] 
¡=i 0 

there is a product (acrproduct) B ' = ]jBf[X,(p*] such that B is isomorphic to B', 
i = 1 

and conversely. 

Now we are ready for studying isomorphic and homomorphic S-completeness 
with respect to different types of generalized products. 

1. a„-products 

For any natural number n, denote by T„ = (Tn, N, §N) the automaton for which 
iV= {1, ...,»}, T„ is the set of all transformations t of N, and dN(j, t) = t(j) for all 
j£N. and t£T„. 

T h e o r e m 1. A system 2 °f automata is isomorphically S-complete with respect 
to the generalized oc0-product if and only if for any natural number n, there exists an 
automaton Bf J? su°h that B isomorphically simulates T„. 

P r o o f . In order to prove the sufficiency of these conditions take an automaton 
A — (X, A,8) with n states. Let t2 be an arbitrary 1—1. mapping of A onto 
JV={1, ...,«}. Form the «„-product T'n = {Tn)[X, cp], where (p(x) = t (x^X, t^T„) 
such that T2(<5(a, x)) = t(x2(a)) for any a£A. Let r1 denote the identity mapping on X. 
Then (T15 T2

_1) gives an isomorphic simulation of A by an a0-product of T„. Moreover, 
by our assumption, there exists an automaton B in £ which isomorphically simulates 
T„. Therefore, by Lemma 1, A can be simulated isomorphically by a generalized 
a0-power of B. 
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Conversely, let w> 1 be a natural number, and take T„. Assume that a generalized 
k 

<x0-product B ^ A ' , B, 5')= JJ Bt[X, <p] of automata from 21 isomorphically simulates 
¡=i 

T„. Then, by Lemma 2, T„ can be simulated isomorphically by an a0 -product 

B' = (X,B,8") = JlBf[X,q>*], under two mappings T^ T„^F(X) and T2: B'^N 

(B"gB). 
The elements b of B can be written in the vectorial form b=(blt ..., bk) 

(bj£Bj and Bj is the state set of B p . Define partitions n'j (./=1, . . . , k) on B in the 
following way: 

b( = (blt ...,bk)) = ((¿>i, ...,b'k) = )b'(n'j) (b,b'£B) 

if and only if hi=b[, ...,bj=b'j. Now let Tij ( j = 1, ..., k) be partitions on N given as 
follows: for any b, b'£B' we have t 2 (6 )= t 2 (6 ' ) (nj) if and only if b=b' (it'}). It is easy 
to prove that the partitions Jtj have SP. 

On the other hand, on T„ only the two trivial partitions have SP. Thus, we get 
that each itj has one-element blocks only, or it has one block only. Among these parti-
tions there should be at least one which has more than one block, since « > 1 . Let / be 
the least index for which nt has at least two blocks. Then the blocks of n, consist 
of single elements. Therefore, the number of all blocks of nl is n. We show that 
B* isomorphically simulates T„. 

By our assumption and the definition of nj, all elements of B' coincide in their 
first /—1 components; let us denote them by b'lt ..., b'l_1. Moreover, denote by B[ 
the set of all /-th components of elements from B', and let X* be the input set of 
B(*. Define two mappings t^: Tn — F(X*) and •c'2:B'l—A in the following way: if 
T 1 ( i ) = X ( 1 ) . . . X ( U ) then let 

- <Pt((bi, . .., bU, b„ ...,bk) (*« ... xC-^V), (*<">), 

and if Tz(b) = a (b£B', a£N) and b, is the /-th component of b then let z'2(b,)=a. 
(Note that, by the definition of the a„ -product, cpf is independent of states having 
indices greater than or equal to /.) It is obvious that z'2 is a one-to-one mapping of 
B[ onto N. Let us take a b',£B', and a t£T„. Then there exits a b^B' with 
b={b'x,..., b\, ¿>1+1,..., bk) such that x2(b)—T:2(b'l)=a. Therefore, if ^ ( 0 = 
=x ( 1 ) . . .x ( u ) then 

¿Ti(0 = (bi, ..., Ai-i.^i.frj+i. •••,bk,x^) ... 

... <Pt((b[, ...,bU,bl,bl+1, ...,bk)(x(1> ...xC-^B-.xM), ...), 
since 

b'v(pt(bi, ...,b{,bl+1, ...,bk,xP>) ... 

... cp*((b[, ...,b;,bl+1, ...,&*)(*« ... = b'v 
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for any v<l. From this we get that the /-th component of br1(t) is showing 
that T'2(b'lT,

1(t))=5N{x'2(b',),t). Since x'2 is 1—1, thus B i s o m o r p h i c a l l y simu-
l a t e s ^ . 

The case n=1 can be proved by a similar argument. 
From Theorem 1 we get the following 

C o r o l l a r y . There exists no system of automata which is isomorphically 5-
complete with respect to the generalized a0-product and minimal. 

P r o o f . Take a system 2 automata which is isomorphically 5-complete 
with respect to the generalized a0-product. Moreover, let A 6 2 be an automaton 
with n states, and take a natural number m >« . It is obvious that A is isomorphic to a 
subautomaton of an a0-product of Tm (having one factor only). Furthermore, by 
Theorem 1, there exists a which isomorphically simulates Tm . Therefore, 
A can be simulated isomorphically by a generalized a0-power of B. Thus, ^ - { A } is-
isomorphically 5-complete with respect to the generalized a0-product, showing that 
2 is not minimal. 

Take the automaton A = (X, A, <5) with X= {x, y, z}, A = {a1, a2} and S(alt x) = 
=S(a2, x)=S(a2, z)=a2 and S(a2) y)—5(a1, y)=S(a1, z)=a1. This A is called a 
two-state reset automaton. Let us denote by H2 the characteristic semigroup of A. 

For homomorphic simulations we have 

T h e o r e m 2. A system 2 °f automata is homomorphically S-complete with 
respect to the generalized a0-product if and only if the following conditions are satisfied: 

(i) For any simple group G there exists a B £ 2 suc^ that G is a homomorphic image 
of a subgroup of 5(B); 

(ii) There exists C^2 su£h that H2 is a homomorphic image of a subsemigroup• 
ofS( C). 

P r o o f . The necessity of these conditions follows from the well known theorem of 
Krohn and Rhodes. (For a nice presentation of the Krohn—Rhodes theory, see [6].} 

To prove the sufficiency of (i) and (ii), again, by the Krohn—Rhodes theorem, it is 
enough to show that: Every grouplike automaton G = (G, G, <5G) with a simple group 
G (|G| >1 ) and a two-state reset automaton can be given as a homomorphic image of 

k 
a subautomaton of an a0-product J] Bf [X, <p*], where B ;£ 2-

¡=1 

Take a grouplike automaton G = ( G , G, <5G), where G (|G|=-1) is a simple group. 
By condition (i), there exists a B C ^ such that G is a homomorphic image of a sub-
group G ' of 5(B), under a homomorphism T : G ' — G . Let B be given in the form 
B=(X, B, 8). Now define an A0-product B'=(B*)[G, <P*], where <p* is an isomorphism 
of F(G) into F{G') such that T(<p*(g))—g for any g£G. Take an arbitrary identity 
up—vq over G, where u, v are variables and p, q£F(G). Assume that this identity 
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holds on B \ Since S(B') is a group (isomorphic to a subgroup of G'), thus there 
exists a subset B' of B such that each element of G induces a permutation of B' (in B'), 
and distinct elements of G induce distinct permutations. It is obvious that \B'\>\. The 
identity up = vq implies up=vp. But/? induces a permutation of B'. Therefore, for any 
two elements a and b of B', we have ap^bp if a^b. Thus, all identities holding on 
B' should have the form up=uq, i.e., [<?*(/>)] = [<p*(?)] in S(B) whenever up = uq 
holds in B'. Now, by the choice of cp*, p = x((p*(p)) = r((p*(q)) = q, i.e., up = uq holds 
in G. Therefore, we got that G is contained in the equational class generated by B'. 
Thus, by the Theorem in [2], G is a homomorphic image of a subautomaton of a 
finite direct power of B'. Since the direct product is a special case of the a0-product, 
thus G is a homomorphic image of a subautomaton of an a0-power of B'. Conse-
quently, by Lemma 2, G can be simulated homomorphically by a generalized a0-
power of B. 

Finally, if (ii) holds, then C* has a subautomaton which is a two-state reset 
automaton (see [6], p. 148). This completes the proof of Theorem 2. 

Since for any simple group G with n elements there exists a simple group G' with 
\G'\>n such that G is isomorphic to a subgroup of G', thus from Theorem 2 we get 

C o r o l l a r y 1. There exists no system of automata which is homomorphically 
S-complete with respect to the generalized a0-product and minimal. 

Moreover, Theorems 1 and 2 imply 

C o r o l l a r y 2. There exists a system 2 °f automata such that,2 is homomorphi-
cally S-complete with respect to the generalized % „-product and 2 ' s not isomorphically 
S-complete with respect to the generalized (x0-product. 

2. a ! -products 

We start with the study of homomorphic S-completeness with respect to the 
generalized o^-products. 

T h e o r e m 3. A system 2 °f automata is homomorphically S-complete with 
respect to the generalized c^-product if and only if for any natural number n, there 
•exist an automaton A — (X, A, d) in states a1, ...,an(LA and input words p^ 6 F(X) 
(1 ^ j , l^ri) such that ajp^ — a 

P r o o f . Let 2 be a system of automata which is homomorphically S-complete 
with respect to the generalized o^-product. Let n be a natural number, and take a 
prime /•=>«. Define an automaton A r = ( X ' , Ar, <5r) in the following way: X'={x), 
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Ar={a0, . . . , a r _j} and 
. . , [a,+i if i ^ r - l , 

^ ' X ) = {a 0 if i = r - l . 

Assume that Ar can be simulated homomorphically by a generalized a2-product 
k _ 

B = / 7 Bf [X, (p] of automata from 2 r Thus, by Lemma 2, there exists an ax-product ¡=i 
_ k • _ 

B' — (X, B, 5')= J]Bf[X, q>*] which homomorphically simulates Ar under a set 
>=i _ 

B'QB and mappings T1(x)=pZF(X) and T 2 :B '—A r . 
Let us represent the elements of B in the vectorial form b = (b1, ..., bk).. Define 

the partitions (J—I, . . . , k) on B in the same way as in the proof of Theorem 1. 
It can be shown by a short computation that these partitions n'j have SP. 

By the choice of A r , there exists a subset B" = {b'0, . . . , of B' such that r\u, 

,, ,a \b'i+1 if / < « - 1 , 
b l P B = \ K if l=u-1. 

and T2 (b[)=a, (mod r ), where I (mod r) denotes the least nonnegative residue of I modulo 
r. Let Uj be the restriction of to B". It can be proved that for any j, the blocks of 
•7ij have the same cardinality. Donete by / i the number of blocks of n1. Moreover, it is 
easy to show that and each block of n j contains the same number 
fJ+1 of blocks of 7i j+1 0 = U •••> £ — 1)- Therefore, u=f1f2...fk. But r\u and r is a 
prime. Thus, there exists an such that r\ft. This means, by the definition 
of the partitions Tij, that the number of states of B(* occuring as /-th components 
in the elements of B" is at least f j = r. Let us denote them by cx, ..., cs. Since for 
any two elements b' and b" of B" there exists an input word q=p...p such that b'qB, = b", 
thus for any ct, ch (1 S i , h^s) there is an input signal xth of B* with c,xth = ch in B*. 
Consequently, by the definition of B * , B t ^ 2 satisfies the conditions of Theorem 3. 

Conversely, assume that the conditions of Theorem 3 are satisfied. Take an 
arbitrary automaton B = ( X , B, (5B) with B={b1, ..., b„). Then there exist an auto-
maton A=(X, A, 5a)€2?> states aL, ..., an£A and input signals (1 ^ i j ^ n ) 
of A* such that S*A(at, x^^dj. Now take the ^ -p roduc t C== (X, C, ¿ c ) = (A*)[Ar, (p*], 
where for any x^X,(p*(ai,x)—xij if 5B(bi,x)=bJ (i,j= 1, . . . ,«) , and in all other 
cases (p* (a, x)(a£A) is defined arbitrarily. It is obvoius that C isomorphically sim-
ulates B. 

From the above proof we get 

C o r o l l a r y 1. A system of automata is homomorphically S-complete with respect 
to the generalized ax-product if and only if it is isomorphically S-complete with respect 
to the generalized product. 
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C o r o l l a r y 2. There exists no system of automata which is homomorphically 
(or isomorphically) S-complete with respect to the generalized ax-product and minimal. 

The following result shows that the homomorphic and isomorphic simulations 
with respect to the generalized o^-product do not coincide if they are considered over 
an arbitrary system of automata. 

T h e o r e m 4. There exist a system £ of automata and an automaton A such 
that A can be simulated homomorphically by a generalized ax-product of automata 

from 2! °nd A cannot be simulated isomorphically by any generalized a1-product of 
automata from 

P r o o f . Take the following automaton A = (X,A,5), where X={x, y), A = 
= {a,b,c}, S(a, x)—5(c, y)=b, S(b, x)=S(c, x) = c and ¿(b, y)=d(a, y)—a. More-
over, let 2 consist of all two-state automata. If A can be simulated isomorphically 
by a generalized o^-product of automata from then, by the proof of Theorem 3, 
there exists a nontrivial partition of A having SP. But a short computation shows 
that only the two trivial partitions of A have SP. 

Now define an automaton B=(X, B, §') such that X={x,y}, B= {a, b, b', c}, 
5' (a, x) — b, 8'(b,x) = S\b',x) = S'{c,x) = c, 8'(a,y) = 5'(b, y) = S'(b\ y) = a and 

y) = b'. It is obvious that the mapping r of B onto A with t ( a ) = a, z(b) = T(b')=b 
and t (c) = c is a homomorphism of B onto A. Moreover, the partition n with two 
blocks {a, b'} and {b, c} has SP. Therefore, B is isomorphic to an a0-product of two 
two-state automata (cf. [1], p. 184). This ends the proof of Theorem 4. 

3. General products and a,-products with i > 1 

Take a set A and a system 7To, ...,u„ of partitions on A. We say that this system 
of partitions is regular if the following conditions are satisfied: 

(i) 7TQ has one block only, 
(ii) 7r„ has one-element blocks only, 

(iii) 7T0S7r1&...a7rn. 
Let n be a partition of A. For any a£ A, denote by n (a) the block of n containing a. 

Moreover, set Mi a = {niJrl{b)\ b£A and 6=a(7r()}, where a£A and z'=0, . . . ,«—1. 
Finally, let Kjni+1—max{\Miia\ \ a£A}. 

Consider an automaton A = (X, A, S). Then (X*)e(A) always denotes a generating 
set of 5(A). 

Now we prove. 

T h e o r e m 5. Let / > 2 be a natural number and />1 . For an automaton A= 
= (X, A, 3), A* is isomorphic to some B*, where B is a subautomaton of a generalized 
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а( -product of automata having fewer states than I, if and only if for some (X*)e(A) 

there exists a regular system л0, . . . , 7t„ of partitions of A such that 
(I) 7tjlKj+i = l for a//7 = 0, . . . , n 1, 

(II) a=b(nj) implies 5* (a, x*)=<5 *{b, x*) ( f o r all i - l ^ j ^ n , x* € (X%A) 

anda,b£A. 
P r o o f . Assume that for A = (X,A,5), A* is isomorphic to B*, where В is a subauto-

« 
maton of a generalized a ;-product / J Ay[A", <p\ of automata with \Aj\sl, /=>2 and 

j=i 
/ > 1. By Lemma 2, В is isomorphic to a subautomaton of the a,--product A' = _ n 

=(X', A,5)= ]J к*,[Х',(р*]. We may assume that B* is a subautomaton of A'*. 
j=í 

Moreover, let a : 5(A)—5(B), rj : A-* В be an isomorphism of A* onto B*. Define 
partitions 7ij ( 7 = 1 , . . . , n) on A in the following way: a=a'(nJ) if and only if t](a) = 
= ( o l s . . . , a„), í/(a')—(aí> • ••> a r*dűi—űí> • ••,aj=a'j. It is obvious that 7r0, ... 
...,7г„ is a regular system of partitions. Moreover, condition (I) is satisfied by this 
system. Indeed, if rj(a) = (a1,..., a„) and t] (a') = {a{, . . . , a|J) then njJrX{a')£Mj<tt if and 
only if a'x=ax, . . . , a'j=aj. Therefore, MJ a contains at most \AJ+1\(^l) blocks of 

1-
In order to prove the necessity of these conditions it remains to show that the 

system 7г0, , ...,n„ satisfies (II) as well. Denote by (X*)gW the subset of 5(A) 
consisting of all [p] (p£F(X)) for which a([p]) contains an x'£X'. Since the set 

([/>]) •' [ / ? ] € o b v i o u s l y generates 5(B) thus (X*)g(Aj is a generating system of 
5(A). 

Take a 7 with /—1 =j=n, and two elements a, a'd A such that a=a'(nj). Assume 
that r](a) = (a1, ..., a„) and t](a')=(a'1, ..., a'n). Then, by the definition of Tij, we have 
al~a'l, ..., aj=a'j. Now choose an arbitrary x*£ (X*) g ( A ) , and let x'£X' such that 
x'fa(x*). Moreover, let <p*(ri(a), x') = (xl, ..., x*) and <p*(ri (a), x') = (x*, . . . , 3c*). 
Thus, by the definition öf the, a ;-product, x j = x * , .. . , x*_ i+1=x*_,-+i since a t = 
=a[, . . . , aj=a'j. Therefore, for Щ(a), x')=(b1, ..., bn) and 5(rj(a'), x') = (b[, ..., b'n) 
we have bx=b'x, ..., bj_i+1=b'j_i+1, showing that 

d*(a,x*) = 5*(a', x*)(nj_i+1). 

Conversely, assume that for an A=(X, A, <5) and (X')g(A) there exists a regular 
system 7T0, nl, ..., n„ of partitions satisfying conditions (I) and (II). We construct 
automata A j = ( X j , AJt Sj) (y'=l, . . . , « ) with \Aj\=7i]_ljKj(^l) such that for a sub-
automaton В of an <x; -product of the A} we have A*s;B*. 

Let Aj be arbitrary abstract sets with \Aj\=Jtj_Jnj. Moreover, Xj=A1X... 
...XAJ+i_!X(^)g(A) i f j + i - l ^ n , and Xj = ALX...XA„X (X*)g(A) otherwise. 

Now let y.j be a mapping of M}= {лу(а): ad A} onto Aj such that the restriction 
of Xj to any M j _ l a is one-to-one. Define the transition function Sj by the following 
rules: 
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(1) 7=2 /1- /+1. Then Sjiaj,^, ...,bj^i.1,x*)) = xj(nj(s*(a,x*))) (aj£Aj; 
(¿i , ..., bJ+i_1)£A1X...XAj+i_1 and x * 6 { X * ) g W ) if a—bj and there exists an 
a£A such that x,(nt(a))=b, for all t=\, . . . , 7 ' + / — 1. 

(2) 7 > n — / + 1 . Then SJ(aJ,(b1, ...,b„, x*))=xj{nj(5*(a, x*))) if aj=bj and there 
exists an a£A with xt(n,(a))—b, (t= 1, ..., n). 

(3) In all other cases Sj is defined arbitrarily. 
First we prove that Sj is well defined. Assume that in case (1) there exists a 

b£A with x,(nt(b))=bt (/= 1, ...,j+i— 1). It is enough to show that b=a (nJ+i-j) 
(since this, by condition (II), implies that d*(b, x*)=d*(a, x*) (nj) for any 

We proceed by induction on t. b=a{it^) obviously holds since xr is a 
1—1 mapping of onto Ax. Assume that our statement has been proved for t— 1 
( l ^ i — 1 < 7 + / — 1 ) , i.e., b=a{n,_!). Therefore, since is 1—1 on Af,_1>a and 
x, (7i, (b))=x, (n, (a)) thus n, (b) = n, (a). 

Case (2) can be proved by a similar argument. Note that n„ is induced by the 
equality relation on A. Therefore, in case (2) we get a—b. 

n 
Now let us form the following A;-product C = ( ( A ' + ) 9 ( A ) , C , ^ C ) = ]J A J [ ( A , * V ( A ) , cp], 

J=i 
where <p = {(p1, ..., (p„) and for any 7 = 1 , . . . , « , (a1} ..., a„)^AxX... XA„ and 

It is clear that C is an a,--product. 
Define a mapping x: A — C in the following way: 

x(a) = (x^ia)), ...,x„(n„(a))) 

for any a£A. We prove that x is an isomorphism of the automaton A, 5*) 
into C. First we show, by induction, that x is 1—1. Assume that a^a' (a, a'£A). 
Let t be the greatest index for which nt(a) = nt(a'). t-=n, since otherwise a = a', contra-
dicting our assumption. Then 7rI+1(a)?i7r(+1(a')- Therefore, xl+1(a)?zxt+1 (a'), 
since xt+1 is one-to-one on Mt a. 

Now take an arbitrary input signal x*€(l r*) (iV). Then 

Sc(x(a), x*) = ( ¿ ^ ( ^ ( a ) ) , (x^n^a)),^¡(a)), x*)),... 

• • •, <5* (*>» K («)). Oi («))> 0„ («))= x*))) = 

= (x,(n,(6*(a, x*))), ...,xn(7tn(S*(a, x*)))} = x(S*(a, x% 

showing that x is an isomorphism of ((A"*)b(A), A, <5*) onto the subautomaton 
B = ((Ar*)fl(A), B, <5*) of C, where B= {x(a)\a£A}. This obviously implies that x defines 
an isomorphism of A* onto B*, which completes the proof of Theorem 5. 

x*fAX*\ 
K , •••,aJ + i_1,x*) if j ^ n - i + l , 
(ar,..., a„, x*) otherwise. 
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Let us denote by A(2> = (*(2),4(i!),<5(2)) the automaton for which X™ = 
= {x(1>, x<2>}, A(2> = {a(1), a<2)}, x(1))=<5<2>(a<2>, x ( 2 ))=a ( 2 ) and <5(2) (a(2), *(1)) = 
=<5(2)(a(1), x ( 2 ) )=a ( 1 ) . 

T h e o r e m 6. £1;«?^ automaton can be simulated isomorphically by a generalized 
a2-power of A(2>. 

P r o o f . Let A = (X, A, 5) be an arbitrary automaton. It is obvious that T„ = 
={Tn, N, <5„) with ngmax{3, \A |} isomorphically simulates A. Therefore, in order 
to prove Theorem 6, by Lemma 1, it is enough to show that T„ can be simulated 
isomorphically by an a2-power of A(2). 

Take the following elements tx, t2 and t3 of T„ 
t1 (i) — i+ 1 if /<« , and ti(n) = 1; 
t2( 1)=2, t2(2)=1, and t2(i) = i if 2; 
/3(1) = i3(2) = 1, and t3(i)=i if />2 . 

It can be proved (cf. [7]) that {[/J, [t2], [i3]} = (r*)9(Xn) generates S(T„). 
First we prove that T„ can be simulated isomorphically by a generalized a2-

product of two-state automata. By Theorem 5, it is enough to show that there exists 
a regular system n0, n1, . . . , nk of partitions of N such that 

(i) 7tJ/7tJ + 1 s 2 for ally'=0, . . . , k - 1 ; 
(ii) b=c(7tj) implies that d*(b, t*) = d*(c, for a11 h- cf~N> '*€{[?i]„ 

[t2], [/3]} and l ^ j ^ k . 
Let % consist of the following two blocks: {1, .. . , k) and (fc+1, .. . ,«}, where 

k = u if n = 2u, and k = u+1 if n—2u+l. Let us assume that the partitions n, have 
been defined for all t^m^k, and that nm has the following blocks: {1, ..., k—m +1}, 
{k-m + 2}, ..., {k}, {k+\, ...,k + n-m + \), {k + n—m + 2}, ..., {n}. Then irm+1 is 
defined to be the partition having the blocks: 

{1, ..., k — m), {k-m+1}, ..., {k}, {&+1, ..., k + n-m}, {k + n—m + l}, ..., {«}. 

. It is obvious that the resulting system of partitions n0, is regular and 
satisfies (i). Moreover, (ii) obviously holds for n1 and nk. Now take an arbitrary m 
with 1, and let b, c£N such that b = c(nm+1). We may assume that b^c. 
Then either 1 ^b, c^k—m or k + l^b, c^k+n—m. In the first case for any 
'*€{[ii], [t2], [f3]}, 1 =S*(b, t*), S*(c,t*)^k-m+1, and in the second case k+1=5 
^¿*(b,t*),5*(c,t*)^k + n-m+\, showing that (ii) holds for any Uj (1 =j=k). 
Thus we have proved that A can be simulated isomorphically by a generalized a2-
product of two-state automata. 

One can easily prove that every two-state automaton is isomorphic to an em-
power of A(2), having one factor only. Since an oc2-product of -products with 
single factors is an a2-product, thus A can be simulated isomorphically by a general-
ized a2-power of A(2). 
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T h e o r e m 7. A system 2 °f automata is homomorphically S-complete with 
respect to the generalized product if and only if there exist an A=(X, A, 8)$2> 
•a£A andPi_,p2, h, q2£F(X) such that apt^ap2 and a=ap1q1=ap2q2. 

P r o o f . The necessity of these conditions can be proved in the same way as that 
of the corresponding statement for products in [9]. 

Conversely, assume that the conditions of Theorem 7 are satisfied by 2 -
;Set fli=flpi and a2=ap2. Now form the following generalized -product B = 
= (X(*\ A, 8') = (A)[X™, <p], where <p(alt xM) = qlP2, <p(au x^) = qlPl, <p(a2, x ( l )) = 
=q2Pi and (p(a2, x(i))=q2p2\ moreover, (p(a,x) is defined arbitrarily if a^a1,a2 

(a£A, x£X(2>). I t i s obvious that the mapping r\: aiJ) — aj 0 = 1, 2) is an isomorphism 
•of A(2) into B. Thus, by Theorem 6, we get that 2 is isomorphically S-complete 
•with respect to the generalized a2-product. This ends the proof of Theorem 7. 

The proof of the sufficiency of Theorem 7 yields the following 

C o r o l l a r y . A system 2 °f automata is homomorphically S-complete with respect 
•to the generalized product if and only if for any i=2, 3, . . . , 2 >s isomorphically S-
<complete with respect to the generalized a.¡-product. 

Now we are going to prove a stronger result. First we introduce the following 
notation, and prove a lemma. 

Let us denote by E ( 2 ) = ( I ( 2 ) , £ 2 l i ( 2 ) ) the automaton for which Z ( 2 ) = {x, xe}, 
E2={ei, e2), ¿ ( 2 )(ej , xe) = e1, <5(2)(e2, xe) = e2, and S(2)(eh x) = e2 for / = 1 , 2. 

L e m m a 3. Let B = (Y,B,8) be an automaton such that there exists a well 
•ordering ^ on B with the property that bsbp for any b£B and p£ F(Y). Then B is 
isomorphic to a subautomaton of an au-power of~E(2). 

P r o o f . Assume that the conditions of Lemma 3 are satisfied. Moreover, let 
B= {¿l5 ..., bn}, and b^bj if / < / Now define partitions n, ( / = 1, . . . , n — 1) on B in 
the following way: bu=bv(n,) implies bu—bv if u^t or v^t, and bu=bv (n,) for all 
,u, v>t. It is obvious that all nt have SP, n^n^... >7r„_x and nt/nt+1=2. 

For any f ( = l , . . . , k — 1) take an abstract set A, = {a(
t
1\ a^}. Furthermore, 

•define mappings x, of Mt={n,(b)\b£B} onto A, such that xt{{bJ))=a{^) if j^t and 
x,({bt+1, ...,b„])=af). Obviously, x, is 1—1 on M,_l b for any b£B. (n0 is the 
trivial partition of B having one block only.) 

Now let us define the automata A,=(X,,A,, 8,) in the following way: Xt = Y, 
and I ^ ^ X - . X ^ - x X F if 1 < i < « . Moreover, y)=x1(n1(8(b, j>))) (ax^Alt 

y€ Y), where b£x~1(a1), and 
(i) 8t(a„ (fll5 y))=x,{n,(8{b, 7))) if there exists a b£B such that 

*j(nj(b))=aj 0 ' = i , 
(ii) 8t(a„ (alt ...,at_1,y))=a, otherwise, 

where F and (02, ..., al)£A1X...XAl. 
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n -1 
Now form the a0-product C = (F, C,8c) = J] At[Y, <p] for which <p1, ... 

y)=y, and <pt(ai; ..., a„_j , y)=(a1, ..., at_t, y) if 1 (y£Y,ajeAj, 
j— 1 , . . . , n — 1). One can prove in a way similar to that in the proof of the sufficiency 
of Theorem 5, that the mapping x: b—(xj (n1 (b)),..., y.„-1(nri_1 (b))) is an isomorphism 
of B into C. 

Now let us order the elements of A, by i ^ 1 ' < W e prove that for 
any xt£X,, 8t{af, xt)=a(

t
J) (l^i,js2) implies af^a\J). Take an arbitrary 

xt=(ai> •••» °<-i> If there exists no b£B with xs(ns(b)) = as ( s = l , . . . , t— 1) 
and x,{nt{b))=af then, by (ii) in Lemma 3, 8,(a(j\ xt)=a(p. Now assume that for a 
bu£B, xs(ns(bu))=as (5=1, ..., f , at=af) and 8(bu,y)=bv. Then bu^bv. Therefore, 
by the definition of xt and the ordering on A,, xt(nt(bu)) = a(p=xt(nt(bv)). 

Finally, we show that At can be represented isomorphically by an a0-power of 
E (2) (having a single factor). Take the a0-power D,=(Xt, E2, 8D)=(E(2))[Xt, f ] , 
where for any e^E2 and x,£Xt, 

It can be shown, by a short computation, that the mapping //: a®—et ( /=1, 2) is an 
isomorphism of At onto D,. 

Since the formation of the a0-product is associative, thus we proved that B 
can be represented isomorphically by an a0-power of E (2 ). 

Now we prove 

T h e o r e m 8. Let 2 be an arbitrary set of automata. An automaton B can be 
simulated homomorphically by a generalized product of automata from 2 if and only 
if B can be simulated isomorphically by a generalized ^-product of automata from 2-

P r o o f . If there is an A £ 2 satisfying the conditions of Theorem 7 then, by the 
Corollary to Theorem 7, 2 i s isomorphically ¿»-complete with respect to the genera-
lized a2-product. Therefore, in the sequel we may assume that none of the automata 
in 2 satisfies the conditions of Theorem 7. 

Let B = ( 7 , B, 8) be an automaton which can be simulated homomorphically 
by a generalized product of automata from 2 - It can be shown that B does not 
satisfy the conditions of Theorem 7. Consequently, one can define a well ordering ^ 
on B such that for any b, cdB and p£F(Y), bp=c implies b^c. Now assume that 
there exist b, c£B and p£F(Y) with bp = c and b^c. It is easy to prove that in this 
case there exist an A — (X, A, 8') in 2' a1, a2£A, px, p2£F{Y) such that alp1 = aipi = 
=a2p2=a2, a1p2=a1 and ax^a2. 

By Lemma 3, B can be represented isomorphically by an a0-power of E (2 ) . 
Since the formation of the generalized a0-product is associative, thus it is enough to 

>=i 

x if 8t(a<1\xt) = a^, 
xe if 5,(a<v, x,) = a™. 

3 A 
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show that E(2) can be represented isomorphically by a generalized a0-power of A. 
Take the <x0-power D = (X(2), A, 8D) = (A*)[X(2\ 1¡/], where for any a£A, \p(a, x) = [Pl] 
and ^(a , xe) = [/?2], Then ( /=1 ,2 ) defines an isomorphism of E (2) into D. 

Now if for any b£B and yd Y, 6{b, y)=b and B has at least two elements then 
there exists an A £ 2 s u c ' 1 that A has at least two states. Then B can be represented 
isomorphically by a generalized a0-power of A. Finally, if |2?| = 1 then B can be 
represented isomorphically by a generalized a0-power of any automata from 2 -
This ends the proof of Theorem 8. 

4. T-products and (T, a;)-products ( /=0,1,. . .) 

In [8] G. I . IVANOV introduced the concept of the temporal composition as an 
abstract equivalent of the single-channel representation of multichannel finite state 
machines (see [5]). Now we restrict the definition of the temporal composition to 
automata. 

Let A¡=(Xi , A, <5f) ( /= 1,2) be arbitrary automata having a common state set A. 
Take a set X with \X\ = I^XA^I and a 1—1 mapping y of X onto XxXX2. Then the 
automaton A — (X,A, <5) is the temporal product of Aj by A2 with respect to X and 
y if for any a£A and x£X, 5(a, x)=d2(d1(a, x :), x2), where (x l5 x2) = y(x). 

The concept of the temporal product can be generalized in a natural way for 
arbitrary finite family of automata. It should be noted that the formation of the 
temporal product is associative. 

We say that an automaton A is a (T, a^-product ( /=0, 1, ...) [T-product] of 
automata from 2 if there exists a sequence of classes of automata, 2 ~ 2o> 2 i > 
^ 2 ) such that the automata in and 2 s c a n be given as temporal products of 
automata in ¿Ho and 2 2 > respectively, the automata in 2 2 are isomorphic copies of 
subautomata of a,-products [products] of automata from and A £ 2a • 

Let us note that in the definition of 't would be enough to confine ourselves 
to isomorphic copies of a,-products [products] of automata in However, it 
would make our computations more difficult, without yielding any further results. 

In the sequel we assume that if ^ is a system of automata then for any A = 
= (X, A, 8)(L2 there exists an xd A" inducing the identity mapping of A, i.e., ¿(a, x)=a 
for all a£A. 

We say that an automaton A can be represented homomorphically by a T-product 
[(T, a{)-product] of automata from ^ if A is a homomorphic image of a subautomaton 
of a T-product [(T, a,)-product] of automata in 2 - The concept of the isomorphic 
representation is defined similarly. Moreover, 2homomorphically complete with 
respect to the T-product [{T, a,)-product] if every automaton can be represented 
homomorphically by a T-product [(T, a,)-product] of automata from 2 - A natural 
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modification of this definition leads to the concept of the isomorphic completeness 
with respect to the ^-product [(7", a ;)-product]. 

The following results show the relation between simulations by generalized 
products and representations by T-products and (T, af)-products of automata . One 
can easily prove that if ^ is a system of automata and A 6 2 then A* can be represented 
isomorphically by a temporal power of A. Thus we have 

T h e o r e m 9. I f 2 is isomorphically (homomorphically) S-complete with respect 
to the generalized a0-product then 2 isomorphically (homomorphically) complete 
with respect to the (T, -product. 

The converse of Theorem 9 fails to hold which will follow from Theorems 1 
and 11. 

T h e o r e m 10. Assume that a set 2 °f automata is homomorphically complete 
with respect to the (T, a0)-product. Then there exist an A = (X, A, 2> b£ A and 
a word p £ F(X) such that a^b and ap = bp=b. 

P r oof . Let 2 \ > 2 2 2 s denote the same classes of automata as in the 
definition of the (T, a0)-product. 

Assume that 2 is homomorphically complete with respect to the (T, a0)-product. 
Then there exists a.B~(X, B, S) in 2 i s u c h that E ( 2 ) is a homomorphic image of a 
subautomaton of B. (For the definition of E ( 2 ) , see p. 32.) One can prove that there 
exist a, b£B, x£X and a positive integer k such that a^b and ap = bp = b, where 
p=xk. 

Suppose that B is a temporal product of Bx , . . . , B, with respect to X and y 
such that B,=(*i,B,Sd (i=h - > 0 , » ¡ € 2 2 and y(x) = (xt, ..., x,)(£X1x...XXl). 
For any i( = 0 , 1 , . . . ) and 1 let at,l+l and bt.l+l denote the elements 

« M B ^ O B . - ^ B , A N D ¿ ( A i t K i V - •<X>BI> respectively. Thus, a = a0, b = bQ = 
=ak.l—bk.l. Now assume that u<k-l is the greatest nonnegative integer for which 
au7ibu. There exists such a u, since a^b^. Let u be given in the form u=m-l+v, 
where m and v are nonnegative integers and »< / . Therefore, Sv+1(au, xv+1) = Sv+1(bu, 
x„+1). This means that there are c,d£B and a positive integer n such that c-^d 
and C(^+I)b ,+1=<*(*;+I)B1 ,+1=<* 

Thus we have got that there exist a C = (Y, C, Sc) in 2z> c> d£C, y£ Y and a 
positive integer k such that c^d and cyk=dyk=d. Assume that C can be given by 
an a0-product C = ( C 1 X C 2 ) [ 7 , tp], where €¡=(7,- , Ch <5,') 0 = 1,2). Let c=(c1,c2) 
and d—(d1, d2). For a p=y1...yn£F(Y) and c ' c Q let p(C1)=<p1{y1)...<p1(yn) and 
piC2,c')=y[...y'n, where ^ = 9 2 ( C ' ( J 1 . . . ^ „ _ 1 ) ( C 1 ) , J „ ) . Then, for 
q=yk, we obviously have c1q(C1) = d1, d1q(C1)=d1 and c2q(C2, c1)=dz, d2q(C2, dt) = 
= d2. Now if Cj then there exists a word q' = q(C1)£F(Y1) such that c1q' = diq' = d1. 

3' 
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Let us assume that c x = . Then q (C2 , c1)=q (C2, dL), and c2 jt d2 since c^d. Therefore, 
in this case for q"=q(C2, we have c2q"—d2q"=d2. 

Since C € 2 i and the formation of the a0-product is associative, thus we have 
got that there exist an automaton D = ( Z , D, <5D) in 2i> t w 0 states d,d'£D and a 
word p£F(Z) such that d^d' and dp=d'p=d'. Assume that p=z1...z„ (z ;6Z). 
Let us denote by and d[ the states dp( and d'pt, respectively, where p-t is the 
prefix of p of length i, for all 0^z<m. Suppose that j<n is the greatest nonnegative 
integer with dj^dj. Since d07±d'0 thus there exists such a j. Therefore, SD(dj, zJ+l) — 
=SD(dj, zj+1). Thus, there are states a', b'dD and a positive integer t such that 
a V A ' and a'z'j+1=b'z'j+1=b'. Now, since D is a temporal product of automata from 
2 thus there exist an A = ( Z , A, S)d2> a, b£A and a word p6F(X) such that a^b 
and ap=bp=b. (See the proof of the similar statement concerning B.) This ends the 
proof of Theorem 10. 

Take an automaton A=(X, A, <5), a state ad A and an input signal xdX. Then 
the cycle generated by (a, x) in A means the set of elements ax°, ax, ..., axk, .... For 
this cycle we use the short notation {a, x). If ax°, . . . , ax" are pairwise different and 
u is the least exponent for which there exists a such that axw=axu then ax0,... 
..., ax"-1 is the preperiod of (a, x) and u is the length of this preperiod. (When the pre-
period is empty its length equals 0.) Furthermore, if u+v is the smallest positive integer 
for which axu=axu+v holds then ax", ..., axu+v~1 is the period of the cycle under 
question, and v is the length of this period. In this case we say that (a, x) is a cycle of 
type (u, v). 

An automaton k — {X,A,S) is called x-cyclic (x£X) of type (k , I) if for some 
A, the set A coincides with the cycle {a, x) in A, and this cycle is of type (k, I), 

while the input signals different from x induce the identity mapping of A. A is said 
to be a prime-power automaton with respect to x if it is x-cyclic of type (0, rn), where 
r is a prime and n is a natural number. If n — 1 then A is a prime automaton. Moreover, 
A is an elevator regarding x if it is x-cyclic of type (k, 1) with k^l. 

For any natural number r, let C ( r ) =(X, Cr, dr) denote the following auto-
maton: X— {x, xe}, Cr = {CW ... , c W j , « ^ , Xe) = cM ( 0 a n d 6r(cf, x) = 
= c 0 + i ) ( m o d r ) - Moreover, let E ( ( ) = ( Z , E„ <5(0) be the elevator of type (t, 1), where 
X={x,xe}, £,= {<?!,..., e(}, b(,)(ej,xe) = ej (j=\, ...,/), <5(,)(ey, x) = eJ+1 if j<t, 
and S(t)(et, x) = et. Finally, let 21 P denote the system consisting of E (2 ) and of C ( r ) 

for all prime number r. 

Now we prove 

L e m m a 4. Let A = (X, A, <5) be an automaton with two input signals such that 
one of them induces the identity mapping of A. Then A can be represented isomorphically 
by an a0-product of automata from 2p • 
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P r o o f . Let A = (X, A, 6) be an arbitrary automaton with X= {x, xe} such that 
xe induces the identity mapping of A. Then A can be given as a union of pairwise 
disjoint subsets A1,...,Ak such that At=(X, At, ¿¡¡) (i=i,...,k) are connected 
subautomata of A, where <5f denotes the restriction of <5 to A-t. 

For an ad A we say that it is initial if (a, x) is of type (s, r) with .s>0 and there 
exists no b£A and p£F(X) such that b^a and bp=a. Assume that {aa, . . . , a l ( } 
is the set of all the initial elements of Ai ( /=1 , . . . , k). For any аи take the cycle 
(«У, x) in A;. It is obvious that these cycles (au ,x)(J— 1, . . . , /¡) have the same period, 
say of type (0, /,). Define a partition ni0 on A in the following manner: 

(i) for a,b£Ah a=b (ni0) if and only if there exists a pdF(X) with | p \ = u - t , 
such that ap=bp, 

(ii) if a, b QAi then a=b (ni0), 
(iii) a=b (ni0) implies a, b^Ai or a, b$At. One can show, by a short compu-

tation, that n i0 has SP. 

Now for any initial state ai}, let be the following partition of A: the elements 
in the preperiod of (ai}, x) as well as the elements in all preperiods having commo'n 
elements with the preperiod of (au, x) form one-element blocks of 7itj, and all other 
elements of A are in the same block of nu. Again, a short computation shows that 
7iij has SP. Moreover, the intersection П (7ry|j = l , ...,k;j=0, . . . , / f ) is the trivial 
partition having one-element blocks only. Therefore, A can be given as a subdirect 
product of the quotient automata А/я у ( i = 1, . . . , k ; j = 0 , . . . , /¡). 

Let us consider a quotient automaton A/nu with 0. Then А / п и is either a 
one-state automaton or it satisfies Lemma 3. If A/ntj- has only one state then it can be 
represented isomorphically by an a0-power (having a single factor) of any automaton 
in 2 V 1° the other case, by Lemma 3, A/7il7 can be represented isomorphically 
by an я0-power of E ( 2 ) . 

Now let us investigate the quotient automaton А/пю. Obviously, (пю(аи), x) 
forms a cycle in A/ni0 of type (0, /,). (Note that this cycle is independent of j.) We 
distinguish the following three cases: 

(1) t~k—1. Then A/7Ti0 is a one-state automaton. Therefore, it can be repre-
sented isomorphically by an я0-power of any automaton from 

(2) 1 and k = 1. In this case A/ni0 is isomorphic to C ( ( ) . Let i,- be given in 
the form where r j are pairwise different prime numbers and Wj>0 
0 = 1 , ..., и). Then C ( I ) is isomorphic to the direct product of C(Si), . . . , C ( s w h e r e 
S j = r j i (see the proof of Theorem 1 in [4]). 

. Take C(j) such that s = rl, where r is a prime number and / > 0 . We prove that 
C(s) can be represented isomorphically by an a0-power of C w . Obviously, it is 
enough to show that whenever /> 1 then there exists an a„-product of C ( ri-i) and C w 

which is isomorphic to C(ri). Form the a0-product C = ( C ( r i . i ) X C w ) [X, <p], where 
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for any ydX and (ci '"1 ' , c<r>) from C,.- iXC r , (pMr"1}, 4r),y)=y and 

f x if U = rl~1-1 and y = x, * « - > . <•;»,,) = o t h e r w i s e 

By the definition of <p, (c^'"1*, 4r))x* = (c f - 1 *, 4r)) if z < r ' - \ and 

( c r _ l ) , c i r ) ) * ' = (cr" 1 ) , c 1 ) if z = rl~\ 

From this it can be seen immediately, that c ^ ) * * ^ (coг,~1,, cu°) if z<r', 
and (c^'"1 ', 4 r ) )x z = (ci r '_1), 4 r ) ) provided that z = rl. Moreover, xe induces the 
identity mapping of the state set of C. Therefore, C is x-cyclic of type (0, r'), show-
ing that C is isomorphic to C(s). Since the formation of the a0-product is associa-
tive, thus we got that A/ni0 can be represented isomorphically by an a0-product of 
automata from I p . 

(3) i > l . Now if /;= 1 then A/ni0 has two states and both input signals induce 
the identity mapping of its state set. Therefore, A/ni0 can be represented isomorphi-
cally by an a0-power (with a single factor) of arbitrary automata from 2 p - Thus, 
we may assume that f,->l too. Then A/ni0 is isomorphic to the following automaton 
C = (X, C, 8C): C— {c, c0, . . . , c , r l } , §c(c, x)=5c(c, xe) = c, <5c(cy, x) = c0.+1)(modf() 

and 8c(cj, xe) = Cj We now prove that C can be represented isomorphi-
cally by an a0-product of E(2) and C ( ( ( ).Take D = (Z, D, 8D) = E(2) XC((()) [X, cp], 
where for any (eu, c ^ ) 6 D and y£X, <p1(eu, c(J>\ y) = xe and 

f y if u = 2, 
9Aeu,c^,y) = , f h = 1 

Then the mapping t]:C-*D with ri(c)=(e1, 4'()) and ri(cj)=(e2, (0^ /<? , ) is an 
isomorphism of C into D. Moreover, by the proof of (2), C((j) can be represented 
isomorphically by an a0 -product of automata from 2p- Thus, we got that A/ni() 

can be represented isomorphically by an a0-product of automata in This com-
pletes the proof of Lemma 4. 

Now we are ready to prove 

T h e o r e m 11. A system 2 °f automata is isomorphically complete with respect 
to the (T, a0)-product if and only if there exist an A = (Xf A, <5)6 ]?> a, b£ A and a 
wordp£F{X') such that a^b and ap=bp=b. 

Proo f . The necessity of these conditions follows from Theorem 10. 
Conversely, assume that in 2 there is an automaton satisfying the above con-

ditions. Again, let > 22 a n d 2a denote those classes of automata as in the defi-
nition of the (T, a0)-product. 

Now take an automaton C=(Z , C, 5C) such that Z = {z, ze} and for any c€C, 
<5c(c, ze)=c. By Lemma 4, C can be represented isomorphically by an a0-product 
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D = ( Z , D, <5D) = / 7 B,[Z, cp] of automata from 2Hp- For any iSn , define two auto-
¡=i 

mata in the following way: 
(i) Assume that B,- is a prime automaton C(r). Then let 

C'w = (AT, c ; , where X={x,xe}, 
c' — /.»to' r(r>* r«' rwn 

S'r(cr,xe) = c r , 

8'r (c!r> *,x) = s; (c[r> *, xe) = Ciw* and <5; ( c ^ ' , x) = Ci'> * (0 i < r). 

Moreover, let C(r) = (Ar, Cr', <5") be the automaton for which 

№ > ' , xe) = x) = c/»', W * . xe) = c^*, and W * , *) = c$.'1) ( inodr ) . 

(ii) If Bf is the elevator E(2) then we define the following two automata: E2 = 
= (X, Ei, (5'(2)) and EJ = (X, Ei, <5"2)), where X={x, x j , Ei = {e{, e$, 4 } and 

X Xe 
S'(2) x Xe 

ei el 
/ ei ei e[ ei 

et et et et ei et 
<?2 e'2 ei ei ei ei 

Let us form the oc0-products 

D' = (Z, D', S'D) = n B/ [Z, cp'] and D = (Z, D', ¿'¿) = ff Bf[Z, cp"} 
i=1 ¡=1 

such that for any (b1} ..., bn)£D and z'£Z, 

cp'(dx, ...,dn,z') = (p"(d1: ...,dn,z') = cp(blt ...,b„,z'), 

where d(=b\ or b* 0 = 1, . . . , «)• Moreover, take the . temporal product G = 
= (ZXZ, G, 8g) of D' by D" with respect to the identity mapping y' on Z x Z . 
One can show that the mappings x': Z — Z X Z and rj\ D—D' with x'(z')=(z',z') 
and »/((¿i, . . . , b„)) = (b'1, ...,b'n) (z '€Z, (6 ls . . . , b„)ZD) is an isomorphism of D 
into G. 

It is obvious that E (2) can be represented isomorphically by a temporal power 
of the automaton A satisfying the conditions of Theorem 11. Moreover, the well 
ordering c ^ ' - ^ c ^ ^ . - . c c ^ ^ c ^ * of the state set of C(r), and the well ordering 
4 r )* < c ^ ' < . . . < < 4 r ) ' of the state set of C ^ satisfy the conditions of Lemma 
4. Therefore, C'(r) and C('r) can be represented isomorphically by an a0-power of 
E (2 ) . Similarly, the well ordering of the state sets of E2 and E2 show that 
E2 and E2 can be represented isomorphically by a0-powers of E (2 ) . Since the forma-
tion of the a0-product is associative, thus we got that D', D"£ 2! 2-
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Now let В=(У, B, 8') be an arbitrary automaton, and for every yd Y take Zy= 
= { y, ye} and denote by By=(Zy, B, 8y) the automaton whose transition function is 
defined by <5y(b, y)=8'(b, y) and 8y(b, ye)=b for any bdB. 

"y 
For all By take an a0-product T>y=(Zy, Dy, 3y)= ]JB\y)[Zy, <py] of prime 

i=i 
automata C ( r ) and E (2) such that ij/y: B—Dy is an isomorphism of By into Dy. Without 
loss of generality we may assume that Dy=Dy,(=D) and фу(Ь)=фу,(Ь)(=ф(b)) 
for any y, y'd Y and bdB. Indeed, if C ( r ) is a factor in some Dy with multiplicity 
m' and mr is the maximal number of occurrences of C ( r ) in the a0-products Dy 
then Dy can be replaced by a suitable a0-product of by Similar state-
ment is valid for E(2). (Observe that xe always induces the identity mappings of the 
state sets of C ( r ) and E (2).) The requirement фу(Ь) = фу. (b) can be satisfied by a 
suitable renaming of the elements of the Dy. 

Now for all ydY construct the a0-products D y = { Z y , D'y, 8y) and D"= 
= {Zy, Dy, 8y) (as for D at the beginning of the proof). It is obvious, by the construc-
tion of D^ and D^, that \D'y\ = \D'y,\ for any у, y'd Y. Moreover, these automata 
T>y and Dy are in and Dy is isomorphic to a subaiitomaton of the temporal 
product Gy of D; by Dy, under some mappings xy: Zy-*ZyXZy and t]y: Dy-+Dy. 
Again, by a suitable renaming of the elements of Dy, we can achive that D'y=Dy, 
( = £ ' ) and rjy(d)=riy,(d)(=ri(d)) for all y, y'dY and ddDy. 

Assume that Y= {уг, yk). Take the temporal product F = ( 2 , D', S) of the 
automata D' , D'', . . . , D ' , D'' with respect to Z and y, where Z = Z „ XZV X.. . У1 ' ' Ук _ '1 2.1 

... XZy^XZy^ and У is the identity mapping of Z. Define a mapping X: Y-»Z with 

У-(Уд = ( Ы е > (}'l)e, (yt-l)e. ( Л - l ) , , ^ ( J i ) > ( Л + l)e, (yi + l ) e , •••, (Ук)е, ( л ) е ) 

for all ytd Y. A short computation shows that the pair x: Y-~Z and фу: B^-D' 
is an isomorphism of В into F. Moreover, F£ which ends the proof of Theorem 11. 

C o r o l l a r y . A system 2 °f automata is homomorphically complete with respect 
to the (T,.a0)-product if and only if it is isomorphically complete with respect to the 
(T, a0)-product. 

Now we are ready to present a stronger result. First we prove 

L e m m a 5. Let В = (У, В, 8) be an automaton with Y={y,ye} such that ye induces 
the identity mapping of B. If for any bdB, the cycle (b, y) in В is of type (0, t), where 
t— 1 or t is a power of r and r is a fixed prime number, then В can be represented iso-
morphically by an <xQ-power of C ( r ) . 

P r o o f . Like in the proof of Lemma 4, В can be given as a union of pairwise 
disjoint subsets B1,...,Bk such that В ;=(У, Bt, <5() (i—l,...,k) are connected 
subautomata of B. By our assumption, В has no initial states. Therefore, every Bt 
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is a cycle of type (0, ?,), where t = 1 or rl. For any / ( = 1 , .. . , k) define the partitions 
7ij(=7ri0) as in Lemma 4. 

Let us distinguish the following three cases: 
(1) t,=k = 1. Then B is a one-state automaton. Obviously, it can be represented 

isomorphically by an a0-power of C ( r ) (having a single factor). 
(2) tt=r' and k= 1. Then, by the proof of Lemma 4, B is an a0-power of C ( r ) . 
(3) If t~l then B/ni has two states and both input signals induce the 

identity mapping of its state set. Therefore, B/7t( is isomorphic to an a0-power of 
C ( r ) (having one factor only). Now if then B/nt can be represented isomorphi-
cally by an a0-power of C ( r ) having / + 1 factors. This can be proved in the same 
way as the corresponding statement in Lemma 4. The only difference is that here we 
need C ( r ) instead of E (2 ) . 

Since the intersection H (ni\i= 1, ...,k) is the trivial partition of B having one-
element blocks only, thus B can be represented isomorphically by an a0-power of C(r). 

T h e o r e m 12. Let 2 be a system of automata. An automaton B can be represented 
homomorphically by a (T, a0)-product of automata from 2 if and only if B can be 
represented isomorphically by a (T, a0)-product of automata from 

P r o o f . Assume that B = ( y , B, <5') can be represented homomorphically by a 
(T, a0)-product of automata from If there are bf_B and yd Y such that for the 
type («, v) of the cycle (b, y) in B we have m>0 then, by the proof of the necessity of 
Theorem 10, there exist A = (X, A, S)d2> "1,a2£A and pdF{X) with a1^a2 and 
a1p=a2p = a2. Therefore, by Theorem 11, is isomorphically complete with respect 
to the (T, a0)-product. 

Thus, we may assume that for all b£B and yd Y the cycles (b,y) in B are of 
type (0, t). If t— \ for all cycles in B and | 5 | > 1 then there exists an Ad2 having 
at least two states. Obviously, B can be represented isomorphically by an a0-power 
of A. Furthermore, it is also obvious that if \B\ = 1 then B can be represented iso-
morphically by an a0-power of any automaton from 

Now we can suppose that there exists at least one cycle (b, in B of type (0, t) 
such that t > 1. Moreover, it can also be assumed that 2 is n o t homomorphically 
complete with respect to the (T, a0)-product. Thus, there exist an A = {X', A, <5)6 
ad A and x'dX' such that the cycle (a, x') is of type (0, /) with />1 . 

Let Y={yt, ..., and denote by B; = (Z ; , B, ¿¡¡) the automaton for which 
Z j = {yh ze}, <5;(6, y.) = 5'(b, yt) for all bdB, and ze induces the identity mapping of B. 
Every Bj can be given as a union of pairwise disjoint connected subautomata Bi;— 
= (Z,-, By, djj) ( 7 = 1 , ..., m,) such that each B i ; is ^¡-cyclic of type (0, tu). Set 
/M=max {w, | /=l , . . . , i} and i=max{/ ,7 | i '=l , . . . , s; j= 1, ..., m,}. We show that 
there are automata D'i = (Z;,Dh S-) and D'i=(Zit Di, 5") {i=l, ...,s) in such 
that B; is isomorphic to a subautomaton of a temporal product of D- by Df . 
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For the sake of simplicity, assume that mt = u and = Vj. Moreover, let 

Bu = { 4 ° , • • •, J and Su (cy>, yd = c{i\ D (mod Vj). 

Take a prime r with r\l, and let w be a power of r such that w^2t. For every k 
{k = 1 , . . . , m) define an automaton C t = (Z ; , Ck, Sk), where 

ck = { 4 k \ j , sk(dik\yd = d\%X)(modw) 

and 
5 M k \ z e ) = d P for all D = (0 , . . . , w — 1). 

Assume that these sets Ck are pairwise disjoint. Define Dt by Dt = U(Ck\k= l,...,m), 
(dik\ z) = z) for all Z6Z ( . 

Df is defined similarly. It differs f rom D/ only in that for all j= 1 , . . . , u, if w>2vj 
then 

№0J-i, yd = 4», W > , yd = dg), yd = d$x 

whenever 2 v j ^ v < w — 1, and ¿¡(dwli) = d[J). In all other cases the transitions 
are the same as in D- . By Lemma 5, both D/ and D" are in 2 2> s i n c e Qr) 
is isomorphic to a subautomaton of an a„-power of A. 

Now take the temporal product D ( = ( F j , D t , 5 f ) of D, by Df with respect 
to Vi and v,-, where Vi=ZiXZi and yi is the identity mapping of Vt. A routine 
computation shows that the pair of mappings %,•: z—(z, z) (z6Z f) and 1¡/¡: 
is an isomorphism of B( into D f . 

Observe that the cardinality of Di is independent of i ( /=1 , ..., s). Therefore, 
by a suitable renaming of the elements of D( we can achive that DX = ...=DS (=D) 
and \J/i(b)=ij/j(b) for all i,j= 1> •••, s. Using the same idea as in the proof of Theorem 
11, one can show that B is isomorphic to a subautomaton of a temporal product of 
D ^ , . . . , D ' S , D;'. This ends the proof of Theorem 12. 

We say that an automaton A = { X , A, <5) is completely isolated if <5 (a, x)—a 
for any a£A and x€X. 

T h e o r e m 13. A set 2 °f automata is homomorphically complete with respect 
.to the T-product or (T, ad-product (¡ = 1, 2, ...) if and only if there is an automaton in 
2 which is not completely isolated. 

P r o o f . Since the products and temporal products of completely isolated auto-
mata are completely isolated thus the conditions of Theorem 13 are obviously 
necessary. 

Conversely, assume that there exists an A=(X, A, S) in 2 which is not com-
pletely isolated. Then the following two cases can occur: 

(i) There are a, b£A a n d p ( L F { X ) such that a^b and ap=bp=b. Then, by Theo-
rem 11, 2 is isomorphically complete with respect to the (T, a0)-product. Therefore, 
it is isomorphically complete with respect to the T-product or any (T, a,)-product 
</=0, 1, ...). 
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(ii) There are p£F(X), x£X and a0, ...,at-1 such that cij^ak if j^k 
фШ]\k<t), aJp=a(J+1)(mod() and <5(aj, x ) = a } . Then the cyclic automaton C ( 0 

of type (0, /) can be represented isomorphically by a temporal power of A. Further-
more, it is obvious that the elevator E(2) can be represented isomorphically by an 
ax-power of C ( ( ) . Therefore, since the a0-product of a t-products is an a t-product, 
thus, by Theorem 11, we get that 2 i s o m o r p h i c a l l y complete with respect to the 
(T, aj-product. This completes the proof of Theorem 13. 

From the proof of Theorem 13 we get the following 

C o r o l l a r y . A set 2 of automata is homomorphically complete with respect to the 
T-product or (T^-products ( />0) if and only if it is isomorphically complete with 
respect to the T-product or (T, ^-products with />0 . 
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