Unitary dilations and \mathbf{C}^{*}-algebras

I. KOVÁCS and GH. MOCANU

The purpose of this Note is to present a "global", i.e., point-free characterization of the \mathscr{C}_{a}-classes of operators introduced as generalizations of the $\mathscr{C}_{\mathscr{Q}}$-classes of Sz.-Nagy and Foiaş [2] (for the details see 1). This permits us to define analogous classes in an arbitrary C^{*}-algebra. Certain properties of the \mathscr{C}_{a}-classes derive in a simpler way in this more general setting.

1.

Let H be a complex Hilbert space, $B(H)$ the C^{*}-algebra of all bounded linear operators of H. Denote by $B^{+}(H)$ the convex cone of positive elements of $B(H)$. Consider a boundedly invertible element a of $B^{+}(H)$. An element \mathbf{x} of $B(H)$ is said to admit a unitary a-dilation if there exists a Hilbert space K containing H as its subspace and a unitary element \mathbf{u} of $B(K)$ such that

$$
a^{-1 / 2} x^{n} a^{-1 / 2}=\operatorname{pr}_{H} u^{n} \quad(n=1,2, \ldots)
$$

The set of elements of $B(H)$ which admit unitary a-dilations is denoted by \mathscr{C}_{a}. LANGER characterized the \mathscr{C}_{a}-classes in the following manner (cf. [3], pp. 53-54):

An element x of $B(H)$ belongs to \mathscr{C}_{a} if and only if:
(i) the spectrum $\sigma(x)$ of x is contained in the closed disc $\mathbf{C}_{\mathbf{1}}$ of the complex number field C , and
(ii) for every $\xi \in H$ and $\mu \in \mathbf{C}_{1}$,

$$
\langle a \xi, \zeta\rangle-2 \operatorname{Re}\langle\mu(a-e) x \xi, \xi\rangle+|\mu|^{2}\langle(a-2 e) x \xi, x \xi\rangle \geqq 0
$$

(e denotes the identity operator of H).
Since

$$
\operatorname{Re}\langle y \xi, \xi\rangle=\langle(\operatorname{Re} y) \xi, \xi\rangle, \quad(y \in B(H), \xi \in H)
$$

the preceding inequality can be written as

$$
\left\langle\left(a-2 \operatorname{Re} \mu(a-e) x+|\mu|^{2} x^{*}(a-2 e) x\right) \xi, \xi\right\rangle \geqq 0,
$$

i.e.,

$$
\begin{equation*}
a-2 \operatorname{Re} \mu(a-e) x+|\mu|^{2} x^{*}(a-2 e) x \geqq 0 . \tag{1}
\end{equation*}
$$

But

$$
\begin{aligned}
& a-2 \operatorname{Re} \mu(a-e) x+|\mu|^{2} x^{*}(a-2 e) x= \\
& =a-\mu a x-\bar{\mu} x^{*} a+\mu x+\tilde{\mu} x^{*}+(\mu x)^{*} a(\mu x)-(\mu x)^{*}(\mu x)-|\mu|^{2} x^{*} x+e-e= \\
& =\left[(\mu x)^{*} a-a-(\mu x)^{*}+e\right](\mu x)-\left[(\mu x)^{*} a-a-(\mu x)^{*}+e\right]+e-|\mu|^{2} x^{*} x= \\
& =(\mu x-e)^{*}(a-e)(\mu x-e)+e-|\mu|^{2} x^{*} x .
\end{aligned}
$$

Thus (1) is equivalent to

$$
|\mu|^{2} x^{*} x \leqq e+(\mu x-e)^{*}(a-e)(\mu x-e)
$$

or, putting $\mu=1 / \lambda$, to

$$
x^{*} x \leqq|\lambda|^{2} e+(x-\lambda e)^{*}(a-e)(x-\lambda e)
$$

Thus condition (ii) is equivalent to condition

$$
\begin{equation*}
x^{*} x \leqq|\lambda|^{2} e+(x-\lambda e)^{*}(a-e)(x-\lambda e) \text { for all } \quad \lambda \in \mathbf{C},|\lambda| \geqq 1 \tag{iii}
\end{equation*}
$$

Summing up the results, we obtain
Proposition 1. Let $a \in B^{+}(H)$ be arbitrary. For an element x of $B(H)$ conditions (ii) and (iii) are equivalent.

2.

Let A be an arbitrary complex C^{*}-algebra with unity e. Denote by A^{+}the convex cone of positive elements of A. Let $a \in A^{+}$be arbitrary. Denote by C_{a} the set of the elements x of A which satisfy condition (iii).

Proposition 2. C_{a} is an increasing function of a in the sense that $a_{1}, a_{2} \in A^{+}$, $a_{1} \leqq a_{2}$ imply $C_{a_{1}} \subseteq C_{a_{1}}$.

Proof. This is a consequence of the fact that for every $y \in A$ we have $y^{*} a_{1} y \leqq$ $\leqq y^{*} a_{2} y$.

Proposition 3. If $\|a\|<2$, then for $x \in C_{a}$ we have

$$
\begin{equation*}
\|x\| \leqq\left(\|a\| /(2-\|a\|)^{1 / 2}\right. \tag{2}
\end{equation*}
$$

In particular, $\|a\|<1$ implies $\|x\|<1$ for every $x \in C_{a}$.
Proof. For $\lambda= \pm 1$, condition (iii) takes the forms

$$
x^{*} x \leqq e+(x-e)^{*}(a-e)(x-e), \quad x^{*} x \leqq e+(x+e)^{*}(a-e)(x+e) .
$$

By adding up these two inequalities, we obtain

$$
2 x^{*} x \leqq x^{*} a x+a
$$

Now, it is known that in a C^{*}-algebra $u \geqq 0, v \geqq 0, u \leqq v$ imply $\|u\| \leqq\|v\|$. Hence,

$$
2\left\|x^{*} x\right\|=2\|x\|^{2} \leqq\|x\|^{2}\|a\|+\|a\|,
$$

i.e.

$$
(2-\|a\|)\|x\|^{2} \leqq\|a\|,
$$

which is equivalent to (2). The rest of the proof is obvious.
Theorem 1. If $x \in C_{a}$, then the spectrum $\sigma(x)$ of x is contained in \mathbf{C}_{1}.
Proof. We know that $\sigma(x)$ is the union of the left-spectrum $\sigma_{l}(x)$ and the rightspectrum $\sigma_{r}(x)$ of x. Furthermore,

$$
\sup _{\lambda \in \sigma_{l}(x)}|\lambda|=\sup _{\lambda \in \sigma_{r}(x)}|\lambda| .
$$

Thus, it suffices to show that, for instance, we have $\sigma_{l}(x) \subset \mathbf{C}_{1}$. Let S_{x}^{l} be the set of all left x-multiplicative states of $A: s \in S_{x}^{l}$ if s is a state and if $s(y x)=s(y) s(x)$ for all $y \in A$. It is known ([1]) that

$$
\sigma_{l}(x)=\left\{s(x): s \in S_{x}^{l}\right\} .
$$

Let μ now be an arbitrary element of $\sigma_{l}(x)$ and s an element of S_{x}^{l} for which $\mu=s(x)$. Apply s to the inequality in (iii). We get

$$
\begin{equation*}
s\left(x^{*} x\right)=s\left(x^{*}\right) s(x)=|\mu|^{2} \leqq|\lambda|^{2}+|\mu-\lambda|^{2}(s(a)-1) \tag{3}
\end{equation*}
$$

for each $\lambda \in \mathbf{C},|\lambda| \geqq 1$. Assume that $|\mu|>1$ and consider a real number ϱ such that $0<\varrho<1-1 /|\mu|$. Put $\lambda=\mu-\varrho \mu$. Then $|\lambda|>1$. For this particular λ, relation (3) gives

$$
|\mu|^{2} \leqq|\mu|^{2}(s-\varrho)^{2}+\varrho^{2}|\mu|^{2}(s(a)-1)=|\mu|^{2}-2 \varrho|\mu|^{2}+\varrho^{2}|\mu|^{2} s(a) .
$$

This leads us to the inequality $0 \leqq-2+\varrho s(a)$. If we let ϱ tend to zero, we obtain $0 \leqq-2$: a contradiction. Thus Theorem 1 is proved.

Consider now the case $A=B(H)$. Theorem 1 allows us to formulate the following "global" characterization of the \mathscr{C}_{a} classes.

Theorem 2. An element x of $B(H)$ belongs to \mathscr{C}_{a} if and only if it satisfies condition (iii).

Proof. On account of Langer's result mentioned in 1, the necessity part of the theorem follows from.Proposition 1. The sufficiency part is a consequence of Theorem 1 and Proposition 1 (using Langer's result).

Corollary 1. \mathscr{C}_{a} is an increasing function of a.

Corollary 2. If $\|a\|<1$, then the minimal unitary dilation of every element x of \mathscr{C}_{a} is a bilateral shift with multiplicity equal to $\operatorname{dim} H$.

Froof. See proposition 3 of the present paper and [3], Cor. II. 7. 5.
Problem. We could not decide yet whether C_{a} is a strictly increasing function of a or not.

Bibliography

[1] Gh. Mocanu, Les fonctionnelles relativement multiplicatives sur les algèbres de Banach, Rev. Roum. Math. Pures et Appl., 3 (1971), 379-381.
[2] B. Sz.-Nagy-C. Foiaş, On certain classes of power-bounded operators in Hilbert space, Acta Sci. Math., 27 (1966), 17-25.
[3] B. Sz.-Nagy-C. Foias, Analyse harmonique des opérateurs de l'espace de Hilbert, Masson Akadémiai Kiadó (Paris - Budapest; 1967).

