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Rings with e as a radical element 
L. C. A. VAN LEEUWEN 

In [4] rings with identity e, having e as their radical element, were introduced. 
Here e is said to be a radical element of the ring R, if for every x,y£R there exists 
an element b in R such that xy=bxy. 

Rings having this property are close to commutative rings, but still different. 
In [4], some properties of these rings are established and it is shown that for primitive 
rings "every left ideal is a two-sided ideal" is equivalent to "there exists an identity 
e and e is a radical element". 

A primitive ring with e as a radical element is a division ring. In general: e is a 
radical element in a ring R if and only if Rxy=Ryx for all x, y£R. In § 1 we show 
that for a simple primering S the property Sxy=Syx for all x, y£S implies that S 
has an identity and is a division ring (Theorem 3). 

An easy application of the Wedderburn-Artin structure theorem gives that a 
nil-semisimple artinian ring R with e as a radical element is a finite direct sum of 
division rings (Theorem 2). We give a general structure theorem for rings R with e 
as a radical element and having no proper nilpotents (Theorem 4). This last theorem 
is analogous to a similar theorem of Reid for subcommutative rings [3]. Therefore we 
investigate the relationship between rings with e as a radical element and subcommu-
tative rings in § 2 . Using a fundamental result of LAWVER, we are able to give a counter-
example to a conjecture in [4]. It is here that the ring D2 of rational quaternions with 
denominators prime to 2 is used. This ring has a proper Jacobson radical (T^O, 

which has some interest in its own and is investigated in § 3. The Jacobson 
radical J (D2) of D2 is a ring such that every ¿-ideal or *-ideal is two-sided, but it 
does not have an identity. 

I would like to express my sincere thank to Dr. Gy. Pollak, who made a number 
of valuable suggestions with respect to this paper. 
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§ 1 . 

D e f i n i t i o n . Let R be a ring with identity t. Then t is called a radical element in 
R if for every x, y£R there exists a non-zero element b£R such that xy—byx. 

Evidently any commutative ring with identity t and any division ring has t as 
a radical element. 

Following THIERRIN [5] an ideal / of the ring R is called completely prime if 
abÇ.1 implies that a£l or èÇ/ for any two elements a and b of R, and completely 
semi-prime if a" £ / implies that a£l for any element a of R. Furthermore, R is called 
completely prime (completely semi-prime) if the zero-ideal of R is completely prime 
(completely semi-prime). Clearly R is completely prime if and only if R has no zero 
divisors i.e. if R is a domain, and completely semi-prime if and only if R has no 
nonzero nilpotents. 

L e m m a 1. Let R be a ring with e as a radical element. Then 
R is prime <=> R is completely prime, 

R is semi-prime o R is completely semi-prime. 
P r o o f . In [4] Proposition 4.3 it is shown that R is a prime ring implies R has no 

zero-divisors, hence R is completely prime. The converse is clear. Now let R be semi-
prime and let a£R with <f=0. If x£(Ra)" then x is a sum of elements of the form 

Wr2a ••• a-r„a= rxa-r2a ••• a• ^ [ c ^ a f t a = ••• = rica—rn-1cn-rncf = 0. 

So (Ra)"=0. But R has no nonzero nilpotent ¿-ideals, hence Ra=0. Then <2=0, 
since a=ea£Ra. So R has no nonzero nilpotents and R is completely semi-prime. 
The converse is again clear. In the same way it may be shown that an ideal in R is a 
prime (semi-prime) ideal if and only if it is completèly prime (completely semi-
prime). This means, in particular, that the intersection of all prime ideals in R coin-
cides with the intersection of all completely prime ideals. 

In [4] it is shown that in à ring R with radical element e: /(Ô) = x" = 0 
for some natural number n) is the intersection of all completely prime ideals not 
containing e i.e. the intersection of all completely prime ideals. Hence the intersection 
of the completely prime ideals is the set of nilpotent elements in a ring R with radical 
element e. 

Now THIERRIN [ 5 ] has defined the so-called generalized nil-radical N 9 , which is 
the upper radical determined by the class of all rings without zero-divisors. Na is a 
special radical and for any ring R one has: N a ( R ) = intersection of all ideals / in R 
such that R/I has no zero-divisors i.e. / is a completely prime ideal in R. Hence for a 
ring R with t as a radical element, the radical Nfl coincides with the intersection of all 
prime ideals which is the lower nil radical. Since the upper nil-radical for 
any ring R, one has that for a ring R with radical element e the following ideals 
coincide: 
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a) Lower nil radical /?=intersection of all prime ideals, 
b) Upper nil radical N, 
c) Generalized nil radical N9=intersection of all completely prime ideals, 
d) The ideal of all nilpotent elements. 

Next we show 
T h e o r e m 2. Let Rbe a nil-semisimple Artinian ring with e as a radical element. 

Then R is a direct sum of a finite number of division rings. 

P r o o f . By the Wedderburn—Artin theorem R=Re1 e . . . e Re„, where the 
are minimal left ideals in T and the e.dR satisfy e f i j = i f i=j and ^ = 0 if (Vy 
(/,7 = 1 , « ) . Also e=e1 + ...+e„ is an identity for R. We claim that the Rei are 
division rings. Let a e ^ O . Then ( R e ^ a e ^ O , since (Rei)(ae,)=0 would imply 
(aet)2—0, hence ae;=0, since R has no nonzero nilpotents. Also (Re^ae^QRet 
and since Ret is minimal, this implies (Rei)(aei)=Rei. So for any be^Re^ there 
exists xe^Rei with (xe,) (ae/)=bet. Then is a division ring. 

One might expect that full matrix rings over division rings can occur as rings 
with e as a radical element. Our next theorem shows that this cannot happen. 

T h e o r e m 3. Let S be a simple prime ring with Sxy = Syx for all x, yd S. Then 
S has an identity e, e is a radical element for S and S is a division ring. 

P r o o f . From Sxy—Syx for all x, yd S and S is a prime ring, one can conclude 
that S has no zero-divisors in the same way as in the proof of Proposition 4.3 [4]. 
Now let x^O in S. Then Sx is a non-zero ideal in S, since (sx)y=byx for ydS and 
some b dS. Hence Sx—S. Thus, S has no proper left ideals and so it is a division 
ring. The rest of the theorem follows obviously. 

Let R be a ring with radical element e. If N is the ideal of nilpotent elements of 
R then the ring R=R/N is a ring without nilpotent elements and with radical element 
e= e+N, the identity of R/N. To state our theorem on such rings, we use the fol-
lowing: 

D e f i n i t i o n . Let D be a division ring. We call a subring S of D a commutator 
subring if, given .s^O, in S, the element s 1 i 2 j 1

_ 1 s 2
_ 1 65 . 

T h e o r e m 4. Let R be a ring with e as a radical element. Then R has no nil-
potents if and only if R is a subdirect sum of commutator subrings of division rings. 

P r o o f . Let R be a ring with radical element e and without nilpotent elements. 
Then the intersection of the prime ideals P in R=(0), so that R is a subdirect 
sum of the rings R/P, P a prime ideal in R. The rings RjP are prime rings 
and have no divisors of zero. Being homomorphic images of R they have the property-
that e=e+P is a radical element for R/P. This last condition implies that any pair 
x, y of non-zero elements of R/P has a non-zero common left multiple i.e. there 
exists an element U ^ o in R/P such that xy=(3y)x. Hence by a well-known theorem 
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of Ore there exists a division ring Ap containing RjP. For any pair a, BdR/P, a^d, 
E?±o, the equation aB = c5a has a unique solution in Ap, namely a£>a_16_1. The 
fact that e is a radical element for RIP implies that this solution must lie in RjP. 
Hence R/P is a commutator subring of Ap as required. The converse is obvious. 

From the proof it follows that a prime ring having e as a radical element is a 
commutatoi subring of a division ring. This implies, in particular, Proposition 4.3 [4]. 

R e m a r k . By Theorem 4 the rings with e as a radical element which are nil-
semisimple (or /?-semisimple) are characterized. 

C o r o l l a r y . Let A be a division ring with identity e and let R be a subring ( ^ 0 ) 
of A. Then R is a commutator subring of A if and only if e is a radical element for R. 

D e f i n i t i o n . A ring R is said to be ^-subcommutative if for every a, bdR there is 
an element c£R such that ab=bc. Similarly R is said to be L-subcommutative if for 
every a, b£R there is an element ddR such that ab—da. 

Subcommutative rings have been introduced by B U C U R [1], using the first 
part of the definition. This is also used by LAWVER [2]. On the contrary, R E I D [3] uses 
the second part of the definition, and calls such rings subcommutative. We shall 
use the terms ¿- and ¿-subcommutative respectively, according to the above definition. 
Now let R be a ring with identity e. It can be easily seen that R is ¿-subcommutative 
if and only if every ¿-ideal of R is two-sided and R is ¿-subcommutative if and only 
if every ¿-ideal of R is two-sided. So a ring R is both ¿- and ¿-subcommutative if and 
only if any one-sided ideal is two-sided. Such rings have been considered by THIERRIN 

[6] and are called duo rings. 
The following result is due to R E I D [3]. 

T h e o r e m 5. Any ¿-stable subring of a direct product of division rings is ¿-sub-
commutative and has no proper nilpotent elements. Every ¿-subcommutative ring 
without proper nilpotent elements is a subdirect sum of ¿-stable subrings of division rings. 

Here an ¿-stable subring is defined as follows: 
Let I be an index set and for each /£/ , At a division ring. For adnAt (the ring 

direct product), define a' by 

A subring A of nA[ is called an ¿-stable subring if aAa'QA for each ad A. Similarly, 
a subring A of nAi is called an ¿-stable subring if a' AaQ A for each ad A, and an 
analogous theorem holds for ¿-stable subrings of nAt and ¿-subcommutative rings. 

Clearly, a commutator subring of a division ring A is an ¿-stable subring of A. 

§ 2. Subcommutative rings 
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We shall give an example which shows that an Z- and ¿-stable subring of a division 
ring A need not be a commutator subring. 

Let R be a ring with identity e, which is a radical element. For given a, b£R 
we have: ab—e(ab) = c(ba) for some c£R. Hence the equation ab—xa always has a 
solution in R for given a, b£R, so R is Z-subcommutative and every ¿-ideal in R is 
two-sided. In [4] it is conjectured that the converse also holds, i.e. if R is an Z-sub-
commutative ring with identity e, then R has e as a radical element. We will now 
give a counterexample to this conjecture. 

Let Q2 be the rational numbers with denominators prime to 2. Let D be the 
division algebra of rational quaternions. We will use the notation: D = { ( a , b, c, d): 
a, b, c, d£ Q}, where (a, b, c, d)—a+bi+cj+dk and Q is the set of rational numbers. 

In [2] LAWVER characterizes ¿-stable subrings of D. In the main theorem it is said, 
among others, that an ¿-stable non-commutative subring R o f D with identity has rank 
4 and has one of the following forms: R=D, i ? = D 2 = { ( a , b, c, d): a, b, c, d£Q2} or 
R=R(m)= {(a, b,c,d):a£Q2, b, c, d£2mQ2} for some positive integer m. 

In [3] it is shown that D2 is ¿-stable in D, hence D2 is Z-subcommutative. 
Therefore D2 is both Z- and ¿-stable in D, so both Z- and ¿-subcommutative, or D2 

is a duo ring. 
We want to show that the identity (1, 0, 0, 0)6 D2 is not a radical element for D 2 . 

Choose x = ( 0 , 2, 0, 2) and j = ( 0 , 0 , 2 , 2) in D 2 . Then xy={-\, yx, 
but ( - f , i , f , - | ) $ D 2 . SO for JT=(0, 2, 0, 2), J = ( 0 , 0, 2, 2)<ED2 there does not 
exist an element Z>£D2 such that (1, 0, 0, 0) xy—byx or (1, 0, 0, 0) is not a radical 
element. Since D2 is Z-subcommutative, this provides the counterexample. 

This also shows that, although D2 is an Z-and ¿-stable subring of D, it is not a 
commutator subring, since xyx~1y~1 = ( — ^,i, — £) is not in D2 . 

In fact, we have the following result: 

T h e o r e m 6. Let R be a subring of D ( ^ O ^ D ) . Thethe following are equivalent: 
a) R is a commutator subring of D, 
b) R is commutative and e£R (t = identity ofD, 
c) e is a radical element in R. 

P r o o f . 
a)=>-b). Let R be a commutator subring o f D . Then e£R by the definition of 

commutator subring. Also R is an Z-stable subring of D. Although in [2] ¿-stable 
subrings of D are characterized (main theorem), it is clear that the class of Z-stable 
subrings of D with e coincides with the class of ¿-stable subrings o f D with e. Suppose 
that R is non-commutative. Then either i ? = D 2 or R—R(m) for some positive integer 
m. But D2 is not a commutator subring of D, as we have seen, and the same argument 
can be used with respect to R(m) for any positive integer m. This contradiction implies 
that R must be commutative. 



102 L. C. A. van Leeuwen: Rings with e as a radical element 

b) — c). Clear from the definition of radical element. 
c) a). See the corollary of Theorem 4. In fact, the equivalence of a) and c) 

is true for any division ring A, which is the content of the corollary of Theorem 4. 

§ 3. The Jacobson radical 

Our next object is to consider the Jacobson radical of the ring D2 . Let K be the 
set of all elements in D2 which do not have inverses in D2 . It can easily be seen that 
the element (a, b, c, d)Ç_D2 (T^O) does not have an inverse in D2 if and only if an even 

2p 
number (0, 2 or 4) of the rationals a, b, c, d have the form — , with p,q£Z, q odd, 

i.e. belong to 2Q2. A straightforward calculation shows that these elements form 
an ideal in D2 . Then it is well known, that K is the Jacobson radical J(D2) of D2 . 
As the elements not in K all have inverses in D2 , it follows that D2/J(D2) is a division 
ring and D2 is a local ring with J(D2) as its unique maximal ideal. In fact, D2/J(D2) s 
^ Z2 , as can easily be checked. It is easy to see that J(D2) can be also characterized 
as the set of those elements (a, b,c,d) which have a norm N (a, b, c, d)=a2+b2+c2+d2 

2 p 
with even numerator: J(D2) = {x£D2: N(x)=—,p, q£ Z, q odd}. Now let a, J(D2) 

2 p « 
with a^0. Then N(a~1ba)=N(b)=—, hence a _ 1 6a€J(D 2 ) . Therefore a _ 1 J (D 2 ) 

q 
ûQJ(D 2 ) and similarly a J ( D 2 ) a - 1 ^ J(D2), So J(D2) is an ¿-and ¿-stable subring 
of D and Theorem 5 implies that J(D2) is L- and ¿-subcommutative. Since both x= 
= (0, 2, 0, 2) and j>=(0, 0, 2, 2) are in J(D2), but J (Da), J(D2) is not a 
commutator subring of D2 . Also a commutator subring of a division ring must have 
an identity and J(D2) does not have an identity. 
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