Rings with e as a radical element

L. C. A. VAN LEEUWEN

In [4] rings with identity e, having e as their radical element, were introduced. Here e is said to be a radical element of the ring R, if for every $x, y \in R$ there exists an element b in R such that xy=bxy.

Rings having this property are close to commutative rings, but still different. In [4], some properties of these rings are established and it is shown that for primitive rings "every left ideal is a two-sided ideal" is equivalent to "there exists an identity e and e is a radical element".

A primitive ring with e as a radical element is a division ring. In general: e is a radical element in a ring R if and only if Rxy=Ryx for all $x, y \in R$. In § 1 we show that for a simple primering S the property Sxy=Syx for all $x, y \in S$ implies that S has an identity and is a division ring (Theorem 3).

An easy application of the Wedderburn-Artin structure theorem gives that a nil-semisimple artinian ring R with e as a radical element is a finite direct sum of division rings (Theorem 2). We give a general structure theorem for rings R with e as a radical element and having no proper nilpotents (Theorem 4). This last theorem is analogous to a similar theorem of Reid for subcommutative rings [3]. Therefore we investigate the relationship between rings with e as a radical element and subcommutative rings in § 2. Using a fundamental result of LAWVER, we are able to give a counter-example to a conjecture in [4]. It is here that the ring D_2 of rational quaternions with denominators prime to 2 is used. This ring has a proper Jacobson radical ($\neq 0$, $\neq D_2$) which has some interest in its own and is investigated in § 3. The Jacobson radical J (D_2) of D_2 is a ring such that every ℓ -ideal or κ -ideal is two-sided, but it does not have an identity.

I would like to express my sincere thank to Dr. Gy. Pollák, who made a number of valuable suggestions with respect to this paper.

7 A

Received March 1, 1975.

Definition. Let R be a ring with identity e. Then e is called a radical element in R if for every x, $y \in R$ there exists a non-zero element $b \in R$ such that xy = byx.

Evidently any commutative ring with identity e and any division ring has e as a radical element.

Following THIERRIN [5] an ideal I of the ring R is called completely prime if $ab \in I$ implies that $a \in I$ or $b \in I$ for any two elements a and b of R, and completely semi-prime if $a^n \in I$ implies that $a \in I$ for any element a of R. Furthermore, R is called completely prime (completely semi-prime) if the zero-ideal of R is completely prime (completely semi-prime). Clearly R is completely prime if and only if R has no zero divisors i.e. if R is a domain, and completely semi-prime if and only if R has no nonzero nilpotents.

Lemma 1. Let R be a ring with e as a radical element. Then R is prime \Leftrightarrow R is completely prime,

R is semi-prime \Leftrightarrow R is completely semi-prime.

Proof. In [4] Proposition 4.3 it is shown that R is a prime ring implies R has no zero-divisors, hence R is completely prime. The converse is clear. Now let R be semiprime and let $a \in R$ with $a^n = 0$. If $x \in (Ra)^n$ then x is a sum of elements of the form

$$r_1a \cdot r_2a \cdots a \cdot r_na = r_1a \cdot r_2a \cdots a \cdot r_{n-1}[c_n(r_na)]a = \cdots = r_1c_2 \cdot r_2c_3 \cdots r_{n-1}c_n \cdot r_na^n = 0.$$

So $(Ra)^n = 0$. But R has no nonzero nilpotent *l*-ideals, hence Ra=0. Then a=0, since $a=ea \in Ra$. So R has no nonzero nilpotents and R is completely semi-prime. The converse is again clear. In the same way it may be shown that an ideal in R is a prime (semi-prime) ideal if and only if it is completely prime (completely semi-prime). This means, in particular, that the intersection of all prime ideals in R coincides with the intersection of all completely prime ideals.

In [4] it is shown that in a ring R with radical element $e: \sqrt{(0)} = \{x \in R: x^n = 0 \text{ for some natural number } n\}$ is the intersection of all completely prime ideals not containing e i.e. the intersection of all completely prime ideals. Hence the intersection of the completely prime ideals is the set of nilpotent elements in a ring R with radical element e.

Now THIERRIN [5] has defined the so-called generalized nil-radical N_g , which is the upper radical determined by the class of all rings without zero-divisors. N_g is a special radical and for any ring R one has: $N_g(R)$ = intersection of all ideals I in R such that R/I has no zero-divisors i.e. I is a completely prime ideal in R. Hence for a ring R with e as a radical element, the radical N_g coincides with the intersection of all prime ideals which is the lower nil radical. Since the upper nil-radical $N \subseteq N_g$ for any ring R, one has that for a ring R with radical element e the following ideals coincide:

- a) Lower nil radical β = intersection of all prime ideals,
- b) Upper nil radical N,
- c) Generalized nil radical N_a = intersection of all completely prime ideals,
- d) The ideal of all nilpotent elements.

Next we show

Theorem 2. Let R be a nil-semisimple Artinian ring with e as a radical element. Then R is a direct sum of a finite number of division rings.

Proof. By the Wedderburn—Artin theorem $R = Re_1 \oplus ... \oplus Re_n$, where the Re_i are minimal left ideals in T and the $e_i \in R$ satisfy $e_i e_j = e_i$ if i = j and $e_i e_j = 0$ if $i \neq j$ (i, j = 1, ..., n). Also $e = e_1 + ... + e_n$ is an identity for R. We claim that the Re_i are division rings. Let $ae_i \neq 0$. Then $(Re_i)(ae_i) \neq 0$, since $(Re_i)(ae_i) = 0$ would imply $(ae_i)^2 = 0$, hence $ae_i = 0$, since R has no nonzero nilpotents. Also $(Re_i)(ae_i) \subseteq Re_i$ and since Re_i is minimal, this implies $(Re_i)(ae_i) = Re_i$. So for any $be_i \in Re_i$, there exists $xe_i \in Re_i$ with $(xe_i)(ae_i) = be_i$. Then Re_i is a division ring.

One might expect that full matrix rings over division rings can occur as rings with e as a radical element. Our next theorem shows that this cannot happen.

Theorem 3. Let S be a simple prime ring with Sxy=Syx for all x, $y \in S$. Then S has an identity e, e is a radical element for S and S is a division ring.

Proof. From Sxy = Syx for all $x, y \in S$ and S is a prime ring, one can conclude that S has no zero-divisors in the same way as in the proof of Proposition 4.3 [4]. Now let $x \neq 0$ in S. Then Sx is a non-zero ideal in S, since (sx)y = byx for $y \in S$ and some $b \in S$. Hence Sx = S. Thus, S has no proper left ideals and so it is a division ring. The rest of the theorem follows obviously.

Let R be a ring with radical element e. If N is the ideal of nilpotent elements of R then the ring $\overline{R} = R/N$ is a ring without nilpotent elements and with radical element $\overline{e} = e + N$, the identity of R/N. To state our theorem on such rings, we use the following:

Definition. Let D be a division ring. We call a subring S of D a commutator subring if, given $s_1 \neq 0$, $s_2 \neq 0$ in S, the element $s_1 s_2 s_1^{-1} s_2^{-1} \in S$.

Theorem 4. Let R be a ring with e as a radical element. Then R has no nilpotents if and only if R is a subdirect sum of commutator subrings of division rings.

Proof. Let R be a ring with radical element e and without nilpotent elements. Then the intersection of the prime ideals P in R=(0), so that R is a subdirect sum of the rings R/P, P a prime ideal in R. The rings R/P are prime rings and have no divisors of zero. Being homomorphic images of R they have the property that $\overline{e}=e+P$ is a radical element for R/P. This last condition implies that any pair \overline{x} , \overline{y} of non-zero elements of R/P has a non-zero common left multiple i.e. there exists an element $\overline{d} \neq \overline{o}$ in R/P such that $\overline{x}\overline{y}=(\overline{d}\overline{y})\overline{x}$. Hence by a well-known theorem of Ore there exists a division ring Δ_p containing R/P. For any pair $\bar{a}, \bar{b} \in R/P, \bar{a} \neq \bar{o}, \bar{b} \neq \bar{o}$, the equation $\bar{a}\bar{b}=\bar{c}\bar{b}\bar{a}$ has a unique solution in Δ_p , namely $\bar{a}\bar{b}\bar{a}^{-1}\bar{b}^{-1}$. The fact that \bar{e} is a radical element for R/P implies that this solution must lie in R/P. Hence R/P is a commutator subring of Δ_p as required. The converse is obvious.

From the proof it follows that a prime ring having e as a radical element is a commutatol subring of a division ring. This implies, in particular, Proposition 4.3 [4].

Remark. By Theorem 4 the rings with e as a radical element which are nilsemisimple (or β -semisimple) are characterized.

Corollary. Let Δ be a division ring with identity e and let R be a subring $(\neq 0)$ of Δ . Then R is a commutator subring of Δ if and only if e is a radical element for R.

§ 2. Subcommutative rings

Definition. A ring R is said to be *r*-subcommutative if for every $a, b \in R$ there is an element $c \in R$ such that ab = bc. Similarly R is said to be *l*-subcommutative if for every $a, b \in R$ there is an element $d \in R$ such that ab = da.

Subcommutative rings have been introduced by BUCUR [1], using the first part of the definition. This is also used by LAWVER [2]. On the contrary, REID [3] uses the second part of the definition, and calls such rings subcommutative. We shall use the terms κ - and ℓ -subcommutative respectively, according to the above definition. Now let R be a ring with identity e. It can be easily seen that R is κ -subcommutative if and only if every κ -ideal of R is two-sided and R is ℓ -subcommutative if and only if every ℓ -ideal of R is two-sided. So a ring R is both κ - and ℓ -subcommutative if and only if any one-sided ideal is two-sided. Such rings have been considered by THIERRIN [6] and are called duo rings.

The following result is due to REID [3].

Theorem 5. Any *l*-stable subring of a direct product of division rings is *l*-subcommutative and has no proper nilpotent elements. Every *l*-subcommutative ring without proper nilpotent elements is a subdirect sum of *l*-stable subrings of division rings.

Here an *l*-stable subring is defined as follows:

Let I be an index set and for each $i \in I$, Δ_i a division ring. For $a \in \pi \Delta_i$ (the ring direct product), define a' by

$$(a')_i = \begin{cases} 0 & \text{if } a_i = 0 \\ a_i^{-1} & \text{if } a_i \neq 0. \end{cases}$$

A subring A of $\pi \Delta_i$ is called an *l*-stable subring if $aAa' \subseteq A$ for each $a \in A$. Similarly, a subring A of $\pi \Delta_i$ is called an *r*-stable subring if $a' Aa \subseteq A$ for each $a \in A$, and an analogous theorem holds for *r*-stable subrings of $\pi \Delta_i$ and *r*-subcommutative rings.

Clearly, a commutator subring of a division ring Δ is an *l*-stable subring of Δ .

We shall give an example which shows that an l- and κ -stable subring of a division ring Δ need not be a commutator subring.

Let R be a ring with identity e, which is a radical element. For given $a, b \in R$ we have: ab = e(ab) = c(ba) for some $c \in R$. Hence the equation ab = xa always has a solution in R for given $a, b \in R$, so R is *l*-subcommutative and every *l*-ideal in R is two-sided. In [4] it is conjectured that the converse also holds, i.e. if R is an *l*-subcommutative ring with identity e, then R has e as a radical element. We will now give a counterexample to this conjecture.

Let Q_2 be the rational numbers with denominators prime to 2. Let **D** be the division algebra of rational quaternions. We will use the notation: $D = \{(a, b, c, d): a, b, c, d \in Q\}$, where (a, b, c, d) = a + bi + cj + dk and Q is the set of rational numbers.

In [2] LAWVER characterizes ϵ -stable subrings of **D**. In the main theorem it is said, among others, that an ϵ -stable non-commutative subring R of **D** with identity has rank 4 and has one of the following forms: R=D, $R=D_2=\{(a, b, c, d): a, b, c, d\in Q_2\}$ or $R=R(m)=\{(a, b, c, d): a\in Q_2, b, c, d\in 2^mQ_2\}$ for some positive integer m.

In [3] it is shown that D_2 is *l*-stable in D, hence D_2 is *l*-subcommutative. Therefore D_2 is both *l*- and *r*-stable in D, so both *l*- and *r*-subcommutative, or D_2 is a duo ring.

We want to show that the identity $(1, 0, 0, 0) \in \mathbf{D}_2$ is not a radical element for \mathbf{D}_2 . Choose x=(0, 2, 0, 2) and y=(0, 0, 2, 2) in \mathbf{D}_2 . Then $xy=(-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, -\frac{1}{2})$ yx, but $(-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, -\frac{1}{2}) \notin \mathbf{D}_2$. So for x=(0, 2, 0, 2), $y=(0, 0, 2, 2) \in \mathbf{D}_2$ there does not exist an element $b \in \mathbf{D}_2$ such that (1, 0, 0, 0) xy=byx or (1, 0, 0, 0) is not a radical element. Since \mathbf{D}_2 is *l*-subcommutative, this provides the counterexample.

This also shows that, although D_2 is an l-and κ -stable subring of D, it is not a commutator subring, since $xyx^{-1}y^{-1} = (-\frac{1}{2}, \frac{1}{2}, -\frac{1}{2})$ is not in D_2 .

In fact, we have the following result:

Theorem 6. Let R be a subring of $\mathbf{D} (\neq 0, \neq \mathbf{D})$. The the following are equivalent:

a) R is a commutator subring of D,

b) R is commutative and $e \in R$ (e = identity of **D**,

c) e is a radical element in R.

Proof.

a) \Rightarrow b). Let R be a commutator subring of D. Then $e \in R$ by the definition of commutator subring. Also R is an l-stable subring of D. Although in [2] κ -stable subrings of D are characterized (main theorem), it is clear that the class of l-stable subrings of D with e coincides with the class of κ -stable subrings of D with e. Suppose that R is non-commutator subring of D, as we have seen, and the same argument can be used with respect to R(m) for any positive integer m. This contradiction implies that R must be commutative.

b) \rightarrow c). Clear from the definition of radical element.

c) \rightarrow a). See the corollary of Theorem 4. In fact, the equivalence of a) and c) is true for any division ring Δ , which is the content of the corollary of Theorem 4.

§ 3. The Jacobson radical

Our next object is to consider the Jacobson radical of the ring D_2 . Let K be the set of all elements in D_2 which do not have inverses in D_2 . It can easily be seen that the element $(a, b, c, d) \in \mathbf{D}_2$ ($\neq 0$) does not have an inverse in \mathbf{D}_2 if and only if an even number (0, 2 or 4) of the rationals a, b, c, d have the form $\frac{2p}{a}$, with p, $q \in \mathbb{Z}$, q odd, i.e. belong to $2Q_2$. A straightforward calculation shows that these elements form an ideal in D_2 . Then it is well known, that K is the Jacobson radical $J(D_2)$ of D_2 . As the elements not in K all have inverses in D_2 , it follows that $D_2/J(D_2)$ is a division ring and \mathbf{D}_2 is a local ring with $\mathbf{J}(\mathbf{D}_2)$ as its unique maximal ideal. In fact, $\mathbf{D}_2/\mathbf{J}(\mathbf{D}_2) \cong$ $\cong Z_2$, as can easily be checked. It is easy to see that $J(D_2)$ can be also characterized as the set of those elements (a, b, c, d) which have a norm $N(a, b, c, d) = a^2 + b^2 + c^2 + d^2$ with even numerator: $\mathbf{J}(\mathbf{D}_2) = \{x \in \mathbf{D}_2 : N(x) = \frac{2p}{q}, p, q \in \mathbf{Z}, q \text{ odd}\}$. Now let $a, b \in \mathbf{J}(\mathbf{D}_2)$ with $a \neq 0$. Then $N(a^{-1}ba) = N(b) = \frac{2p}{q}$, hence $a^{-1}ba \in \mathbf{J}(\mathbf{D}_2)$. Therefore $a^{-1}\mathbf{J}(\mathbf{D}_2)$ $a \subseteq \mathbf{J}(\mathbf{D}_2)$ and similarly $a \mathbf{J}(\mathbf{D}_2) a^{-1} \subseteq \mathbf{J}(\mathbf{D}_2)$, So $\mathbf{J}(\mathbf{D}_2)$ is an ℓ -and κ -stable subring of **D** and Theorem 5 implies that $J(D_2)$ is l- and κ -subcommutative. Since both x ==(0, 2, 0, 2) and y=(0, 0, 2, 2) are in $J(D_2)$, but $xyx^{-1}y^{-1} \notin J(D_2)$, $J(D_2)$ is not a commutator subring of D_2 . Also a commutator subring of a division ring must have an identity and $J(D_2)$ does not have an identity.

References

- I. BUCUR, Sur le théorème de décomposition de Lasker-Noether dans les anneaux subcommutatifs, Rev. Math. Pures Appl., 8 (1963), 565-568.
- [2] D. A. LAWVER, Abelian groups in which endomorphic images are fully invariant, J. of Algebra, 29 (1974), 232-245.
- [3] J. D. REID, On subcommutative rings, Acta Math. Acad. Sci. Hung., 16 (1965), 23-26.
- [4] M. SATYANARAYANA and H. AL-AMIRI, Completely prime radical and primary ideal representations in non-commutative rings, *Math. Z.*, 121 (1971), 181–187.
- [5] G. THIERRIN, Sur les idéaux complètement premiers d'un anneau quelconque, Bull. Acad. Roy. Belg., 43 (1957), 124-132.
- [6] G. THIERRIN, On duo rings, Canad. Math. Bull., 3 (1960), 167-172.

DEPARTMENT OF MATH. UNIVERSITY OF GRONINGEN GRONINGEN, G. P. O. 800, THE NETHERLANDS