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Rings with e as a radical element

L.C. A. VAN LEEUWEN

In [4] rings with identity e, having e as their radical element, were introduced.
Here e is said to be a radical element of the ring R, if for every x, y€ R there exists
an element b in R such that xy=bxy.

Rings having this property are close to commutative rings, but still different.
In [4], some properties of these rings are established and it is shown that for primitive
rings “every left ideal is a two-sided ideal” is equivalent to “there exists an identity
e and e is a radical element”.

A primitive ring with e as a radical element is a division ring. In general: e is a
radical element in a ring R if and only if Rxy=Ryx for all x, y¢R. In § 1 we show
that for a simple primering S the property Sxy=Syx for all x, y€ S implies that §
has an identity and is a division ring (Theorem 3).

An easy application of the Wedderburn-Artin structure theorem gives that a
nil-semisimple artinian ring R with e as a radical element is a finite direct sum of
division rings (Theorem 2). We give a general structure theorem for rings R with e
as a radical element and having no proper nilpotents (Theorem 4). This last theorem
is analogous to a similar theorem of Reid for subcommutative rings [3]. Therefore we
investigate the relationship between rings with e as a radical element and subcommu-
tativerings in § 2. Using a fundamental result of LAWVER, we are able to give a counter-
example to a conjecture in [4]. It is here that the ring D, of rational quaternions with
denominators prime to 2 is used. This ring has a proper Jacobson radical (0,
#D,) which has some interest in its own and is investigated in § 3. The Jacobson
radical J (D,) of D, is a ring such that every /-ideal or r-ideal is two-sided, but it
does not have an identity.

I would like to express my sincere thank to Dr. Gy. Polldk, who made a number
of valuable suggestions with respect to this paper.
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§ 1.

Definition. Let R be a ring with identity e. Then e is called a radical element in
R if for every x, y€ R there exists a non-zero element b€ R such that xy=>byx.

Evidently any commutative ring with identity ¢ and any division ring has ¢ as
a radical element,

Following THIERRIN [5] an ideal I of the ring R is called completely prime if
abéel implies that a€l or bl for any two elements a and b of R, and completely
semi-prime if ¢”€ I implies that a< I for any element a of R. Furthermore, R is called
completely prime (completely semi-prime) if the zero-ideal of R is completely prime
(completely semi-prime). Clearly R is completely prime if and only if R has no zero
d1v1sors ie. if R is a domain, and completely semi-prime if and only if R has no
nonzero nilpotents.

Lemma 1. Let R be a ring with e as a radical element. Then
R is prime < R is completely prime,

R is semi-prime < Ris completely semi-prime.

Proof. In [4] Proposition 4.3 it is shown that R is a prime ring implies R has no
zero-divisors, hence R is completely prime. The converse is clear. Now let R be semi-
prime and let g€ R with a"=0. If x€(Ra)" then x is a sum of elements of the form

F1G 1@ -+ Qo Fp@=F Q" ol A+ Fp_q[C,(ra@)]@ = - = ryCyFoCye Fy_1Cp  Fpa” = 0.

So (Ra)"=0. But R has no nonzero nilpotent /-ideals, hence Ra=0. Then a=0,
since a=ea€ Ra. So R has no nonzero nilpotents and R is completely semi-prime.
The converse is again clear. In the same way it may be shown that an ideal in Ris a
prime (semi-prime) ideal if and only if it is completely prime (completely semi-
prime). This means, in particular, that the intersection of all prime ideals in R coin-
cides with the intersection of all completely prime ideals.

In [4] it is shown that in a ring R with radical element e: V@={x€R: x"=0
for some natural number n} is the intersection of all completely prime ideals not
containing e i.e. the intersection of all completely prime ideals. Hence the intersection
of the completely prime ideals is the set of nilpotent elements in a ring R with radical
element e. _

Now THIERRIN [5] has defined the so-called generalized nil-radical N,, which is
the upper radical determined by the class of all rings without zero-divisors. N, is a
special radical and for any ring R one has: N,(R)= intersection of all ideals 7 in R
such that R/I has no zero-divisors i.e. I is a completely prime ideal in R. Hence for a
ring R with ¢ as a radical element, the radical N, coincides with the intersection of all
prime ideals which is the lower nil radical. Since the upper nil-radical NEN, for
any ring R, one has that for a ring R with radical element e the following ideals
coincide: :
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a) Lower nil radical f=intersection of all prime ideals,
b) Upper nil radical N, :
¢) Generalized nil radical N, =intersection of all complete]y prime ideals,
d) The ideal of all nilpotent elements
Next we show
Theorem 2. Let R be a nil-semisimple Artinian ring with e as a radzcal element.
Then R is a direct sum of a finite number of division rings.

Proof. By the Wedderburn—Artin theorem R=Re;®...® Re,, where the Re;
are minimal left ideals in T and the ‘¢;€ R satisfy e;e;=e; if i=j and e;e;=0 if i=j
G,j=1,...;n). Also e=e;+...+e¢, is an identity for R. We claim that the Re; are
division rings. Let ae;=0. Then (Re;)(ae;)#0, since (Re;)(ae)=0 would imply
(ae)?*=0, hence ae;=0, since R has no nonzero nilpotents. Also (Re;)(ae;) < Re;
and since Re; is minimal, this implies (Re;)(ae;)=Re;. So for any be;€ Re;, there
exists xe;€ Re; with (xe;)(ae;)=be;. Then Re; is a division ring.

One might expect that full matrix rings over division rings can occur as rings
with e as a radical element. Our next theorem shows that this cannot happen.

Theorem 3. Let S be a simple prime ring with Sxy= Syx for all x, y€ S. Then
S has an identity e, e is a radical element for S and S is a division ring. '

Proof. From Sxy= Syx for all x, y€ S and S is a prime ring, one can conclude
that S has no zero-divisors in the same way as in the proof of Proposition 4.3 [4].
Now let x50 in S. Then Sx is a non-zero ideal in S, since (sx)y=>byx for y€S and’
some b€ S. Hence Sx=S. Thus, S has no proper left 1deals and so it is a division
ring. The rest of the theorem follows obviously.

Let R be a ring with radical element e. If N is the ideal of nilpotent elements of
R then the ring R=R/N is a ring without nilpotent elements and with radical element
¢ = e+ N, the identity of R/N. To state our theorem on such rings, we use the fol-
lowing:

Definition. Let D be a division ring. We call a subring S of D a commutator
subring if, given 5,0, 5,0 in S, the element s, 5,5, 715, 71€ S.

Theorem 4. Let R be a ring with e as a radical element. Then R has no nil-
potents if and only if R is a subdirect sum of commutator subrings of division rings.

Proof. Let R be a ring with radical element e and without nilpotent elements.
Then the intersection of the prime ideals P in R=(0), so that R is a subdirect
sum of the rings R/P, P a prime ideal in R. The rings R/P are prime rings
and have no divisors of zero. Being homomorphic images of R they have the property-
that e=e+ P is a radical element for R/P. This last condition implies that any pair
X, ¥ of non-zero elements of R/P has a non-zero common left multiple i.e. there
exists an element d6 in R/P such that Xj=(dy)x. Hence by a well-known theorem
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of Ore there exists a division ring 4, containing R/P. For any pair a, b€ R/P, a3,
b0, the equation ab=cha has a unique solution in 4,, namely @ba='b~*. The
fact that e is a radical element for R/P implies that this solution must lie in R/P.
Hence R/P is a commutator subring of 4, as required. The converse is obvious.

From the proof it follows that a prime ring having e as a radical element is a
commutato1 subring of a division ring. This implies, in particular, Proposition 4.3 [4].

Remark. By Theorem 4 the rings with e as a radical element which are nil-
semisimple (or f-semisimple) are characterized.

Corollary. Let 4 be a division ring with identity e and let R be a subring (#0)
of 4. Then R is a commutator subring of A if and only if e is a radical element for R.

§ 2. Subcommutative rings

Definition. A ring R is said to be x-subcommutative if for every a, b€ R there is
an element c€R such that ab=bc. Similarly R is said to be (~subcommutative if for
every a, b€ R there is an element d€ R such that ab=da.

Subcommutative rings have been introduced by BUCUR [1], using the first
part of the definition. This is also used by LAWVER [2]. On the contrary, REID [3] uses
the second part of the definition, and calls such rings subcommutative. We shall
use the terms - and /-subcommutative respectively, according to the above definition.
Now let R be a ring with identity e. It can be easily seen that R is .-subcommutative
if and only if every r-ideal of R is two-sided and R is /-subcommutative if and only
if every {-ideal of R is two-sided. So a ring R is both - and /-subcommutative if and
only if any one-sided ideal is two-sided. Such rings have been considered by THIERRIN
[6] and are called duo rings.

The following result is due to REemD [3].

Theorem 5. Any [-stable subring of a direct product of division rings is [-sub-
commutative and has no proper nilpotent elements. Every [-subcommutative ring
without proper nilpotent elements is a subdirect sum of (-stable subrings of division rings.

Here an (-stable subring is defined as follows:

Let 7 be an index set and for each i€1, A; a division ring. For a€nd; (the ring
direct product), define @’ by

, 0 if =0
@) = {a,.-l if a 0. A

A subring 4 of nd, is called an /-stable subring if ada’S A4 for each a€ A. Similarly,
a subring A of w4, is called an g-stable subring if a’ AaS 4 for each a€ A, and an
analogous theorem holds for g-stable subrings of n4; and «-subcommutative rings.

Clearly, a commutator subring of a division ring 4 is an /-stable subring of 4.
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We shall give an example which shows that an /- and «-stable subring of a division
ring 4 need not be a commutator subring.

Let R be a ring with identity e, which is a radical element. For given a, bR
we have: ab=e(ab)=c(ba) for some c€ R. Hence the equation ab=xa always has a
solution in R for given g, b€R, so R is [~subcommutative and every [-ideal in R is
two-sided. In [4] it is conjectured that the converse also holds, i.e. if R is an /-sub- -
commutative ring with identity e, then R has e as a radical element. We will now
give a counterexample to this conjecture.

Let Q, be the rational numbers with denominators prime to 2. Let D be the
division algebra of rational quaternions. We will use the notation: D={(a, b, ¢, d):
a, b, ¢, deQ}, where (a, b, ¢, dy=a+bi+cj+dk and Q is the set of rational numbers.

In [2] LAWVER characterizes r-stable subrings of D. In the main theorem it is said,
among others, that an «-stable non-commutative subring R of D with identity has rank
4 and has one of the following forms: R=D, R=D,={(a, b, ¢, d): a, b, ¢, d€Q,} or
R=R(m)={(a, b, ¢, d): acQ,, b, ¢, dc2™Q,} for some positive integer m.

In [3] it is shown that D, is {-stable in D, hence D, is /-subcommutative.
Therefore D, is both /- and «-stable in D, so both /- and «-subcommutative, or D,
is a duo ring,

We want to show that the identity (1, 0, 0, 0)€D, is not a radical element for D,.
Choose x=(0,2,0,2) and y=(0,0,2,2) in D,. Then xy=(—3,3,3, —3) V%,
but (—3,3 3, —5éDs. So for x=(0,2,0,2), y=(0,0,2,2)cD, there does not
exist an element €D, such that (1,0, 0,0) xy=byx or (1,0, 0, 0) is not a radical
element. Since D, is /~subcommutative, this provides the counterexample.

This also shows that, although D, is an {-and ¢-stable subring of D, it is not a
commutator subring, since xyx~'y~'=(—14,1, 1,—1) is not in D,.

In fact, we have the following result:

Theorem 6. Let R be a subring of D (0, %= D). The the following are equivalent:
a) R is a commutator subring of D,

b) R is commutative and e€ R (e = identity of D,

) e is a radical element in R.

Proof.

a)=b). Let R be a commutator subring of D. Then e€ R by the definition of
commutator subring. Also R is an /-stable subring of D. Although in [2] g-stable
subrings of D are characterized (main theorem), it is clear that the class of /-stable
subrings of D with e coincides with the class of «-stable subrings of D with e. Suppose
that R is non-commutative. Then either R=D, or R=R(m) for some positive integer
m. But D, is not a commutator subring of D, as we have seen, and the same argument
can be used with respect to R(m) for any positive integer m. This contradiction implies
that R must be commutative.
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b)—c). Clear from the definition of radical element.
c)—~a). See the corollary of Theorem 4. In fact, the equivalence of a) and ¢)
is true for any division ring 4, which is the content of the corollary of Theorem 4.

§ 3. The Jacobson radical

Our next object is to consider the Jacobson radical of the ring D,. Let K be the
set of all elements in D, which do not have inverses in D,. It can easily be seen that
the element (q, b, ¢, d)€D, (20) does not have an inverse in D, if and only if an even

2
number (0, 2 or 4) of the rationals a, b, ¢, d have the form l, with p, g€ Z, q odd,

i.e. belong to 2Q,. A straightforward calculation shows that these elements form
an ideal in D,. Then it is well known, that K is the Jacobson radical J(D,) of D,.
As the elements not in K all have inverses in D,, it follows that D,/J(D,) is a division
ring and D, is a local ring with J(D,) as its unique maximal ideal. In fact, D,/J(D,) ==
=~ Z,, as can easily be checked. It is easy to see that J(D,) can be also characterized
as the set of those elements (a, b, ¢, d) which have anorm N (a, b, ¢, d)=a?+ b%+ 2+ d?

2
with even numerator: J(D,)= {x€D,: N(x) =2 .0, 9€Z, g odd}. Now let a, be J(Dy)
2 q
with a=0. Then N(a~'ba)=N(b) =2 , hence a~'bacJ(D,). Therefore a=J(D,)
: q

aCJ(D,) and similarly aJ(D,)a S I([D,), So J(D,) is an /-and ,-stable subring
of D and Theorem S implies that J(D,) is /- and «-subcommutative. Since both x=
=(0,2,0,2) and y=(0, 0, 2,2) are in J(D,), but xyx~'y~1¢ J(D,), J(D,) is not a

" commutator subring of D,. Also a commutator subring of a division ring must have
an identity and J(D,) does not have an identity.
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