An integrability theorem for power series

L. LEINDLER

In [6] we proved the following
Theorem A. Let $\lambda(t)>0$ be a nonincreassing, integrable function on the interval $0<t \leqq 1$ such that $\lambda(1 / n+1)=O(\lambda(1 / n))$, and let $A(x)$ be defined on the interval $0 \leqq x<1$ by the series $\sum_{k=0}^{\infty} a_{k} x^{k}$. with $a_{k} \geqq 0$. Furthermore let $0<p \leqq \infty$. Then $\lambda(1-x)(A(x))^{p} \in L(0,1)$ if and only if

$$
\begin{equation*}
\sum_{n=1}^{\infty} \lambda(1 / n) n^{-2}\left(\sum_{k=0}^{n} a_{k}\right)^{p}<\infty . \tag{1}
\end{equation*}
$$

If $\lambda(t)=t^{-\gamma}(\gamma<1)$, Theorem A reduces to a theorem of Khan [5], which in its turn includes a theorem of Askey ([1], $\gamma=0$) and a theorem of Heywood ([2], $p=1$).

In [6], Theorem A was stated for $p \geqq 1$ only, but it is easy to see that the proof actually holds for $0<p<1$, too.

Recently Jain [4] obtained
Theorem
B. Let

$$
B(x)=\sum_{n=0}^{\infty} b_{n} x^{n}, \quad 0 \leqq x \leqq \quad \text { and } \quad \gamma<1
$$

Suppose that there is a positive number ε ruch that

$$
b_{n}>\frac{-K}{n^{(\gamma / p)+1+\varepsilon-1 / p}} \quad(0<p<\infty, K \text { constant })
$$

for all sufficiently large values of n. Then

$$
(1-x)^{-\gamma}|B(x)|^{p} \in L(0,1)
$$

if and only if

$$
\sum_{n=1}^{\infty} n^{\gamma-2}\left(\sum_{k=1}^{n}\left|c_{k}\right|\right)^{p}<\infty .
$$

In the particular case $p=1$ Theorem \mathbf{B} was proved by Heywood [3],
In the present paper Theorem B will be generalized as follows:

Theorem. Let $\lambda(t)>0$ be a nonincreasing function on the interval $0<t \leqq 1$ such that

$$
\begin{equation*}
\sum_{n=k}^{\infty} \lambda(1 / n) n^{-2} \leqq M \lambda(1 / k) / k \tag{2}
\end{equation*}
$$

and let

$$
F(x)=\sum_{n=0}^{\infty} c_{n} x^{n}, \quad 0 \leqq x<1
$$

Suppose there is a positive monotonic sequence $\left\{\varrho_{n}\right\}$ with $\sum_{n=1}^{\infty} 1 / n \varrho_{n}<\infty$ such that

$$
\begin{equation*}
c_{n}>\frac{-K}{\left(\varrho_{n} \lambda(1 / n)\right)^{1 / p} \cdot n^{1-1 / p}} \quad(0<p<\infty, K>0) \tag{3}
\end{equation*}
$$

for all sufficiently large values of n. Then $\lambda(1-x)|F(x)|^{p} \in L(0,1)$ if and only if

$$
\begin{equation*}
\sum_{n=1}^{\infty} \lambda(1 / n) n^{-2}\left(\sum_{k=0}^{n}\left|c_{k}\right|\right)^{p}<\infty . \tag{4}
\end{equation*}
$$

It is clear that if $\lambda(t)=t^{-\gamma}(\gamma<1)$ then our Theorem reduces to Theorem B.
Proof. Let

$$
A(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \quad \text { for } \quad 0 \leqq x<1
$$

with $a_{0}=0$ and

$$
a_{n}=\frac{K}{\left(\varrho_{n} \lambda(1 / n)\right)^{1 / p} n^{1-1 / p}} \text { for } n \geqq 1
$$

First we show that these coefficients a_{n} satisfy condition (1). If $p \geqq 1$ then we use the inequality

$$
\begin{equation*}
\sum_{n=1}^{\infty} \lambda_{n}\left(\sum_{k=1}^{n} a_{k}\right)^{p} \leqq p^{p} \sum_{n=1}^{\infty} \lambda_{n}^{1-p}\left(\sum_{k=n}^{\infty} \lambda_{k}\right)^{p} a_{n}^{p} \tag{5}
\end{equation*}
$$

which holds for any $\lambda_{n}>0$ and $a_{n} \geqq 0$ (see [7], inequality (1^{\prime})), with $\lambda_{n}=\lambda(1 / n) n^{-2}$. Using (5), by (2), we have

$$
\begin{gathered}
\sum_{n=1}^{\infty} \lambda(1 / n) n^{-2}\left(\sum_{k=1}^{n} a_{k}\right)^{p} \leqq O(1) \sum_{n=1}^{\infty} \lambda(1 / n) n^{-2+p} a_{n}^{p} \leqq \\
\leqq O(1) \sum_{n=1}^{\infty} \lambda(1 / n) n^{-2+p}\left(\varrho_{n} \lambda(1 / n) n^{p-1}\right)^{-1} \leqq O(1) \sum_{n=1}^{\infty} 1 / n \varrho_{n}<\infty .
\end{gathered}
$$

If $0<p<1$, using some elementary estimates and (2), we obtain

$$
\sum_{n=2}^{\infty} \lambda(1 / n) n^{-2}\left(\sum_{k=1}^{n} a_{k}\right)^{p} \leqq \sum_{m=0}^{\infty} \sum_{n=2^{m}+1}^{2^{m+1}} \lambda(1 / n) n^{-2}\left(\sum_{a=1}^{2^{m+1}} a_{k}\right)^{p} \leqq
$$

$$
\begin{gathered}
\leqq O(1) \sum_{m=0}^{\infty} \lambda\left(1 / 2^{m+1}\right) 2^{-m}\left(\sum_{k=1}^{m+1}\left(2^{k}\right)^{1 / p}\left(\lambda\left(1 / 2^{k}\right) \varrho_{2^{k}}\right)^{-1 / p}\right)^{p} \leqq \\
\leqq O(1) \sum_{k=1}^{\infty}\left(2^{k} / \varrho_{2^{k}} \lambda\left(1 / 2^{k}\right)\right) \sum_{m=k}^{\infty} \lambda\left(1 / 2^{m}\right) 2^{-m} \leqq O(1) \sum_{k=1}^{\infty} 1 / \varrho_{2^{k}}<\infty .
\end{gathered}
$$

Hereby we proved that the coefficients of the function $A(x)$ satisfy condition (1), so by Theorem A

$$
\begin{equation*}
\lambda(1-x)(A(x))^{p} \in L(0,1) \tag{6}
\end{equation*}
$$

By (3) the coefficients $a_{n}+c_{n}$ are positive for all sufficiently large values of n, thus the function

$$
A(x)+F(x)=\sum_{n=0}^{\infty}\left(a_{n}+c_{n}\right) x^{n}
$$

has the property

$$
\begin{equation*}
\lambda(1-x)(A(x)+F(x))^{p} \in L(0,1) \tag{7}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\sum_{n=1}^{\infty} \lambda(1 / n) n^{-2}\left(\sum_{k=0}^{n}\left(a_{k}+c_{k}\right)\right)^{p}<\infty \tag{8}
\end{equation*}
$$

Hence we obtain the statement of Theorem easily. Indeed, if $\lambda(1-x)|F(x)|^{p} \in$ $\in L(0,1)$ then (6) implies (7), which implies (8). But by (3) we have

$$
\left|c_{n}\right| \leqq 2 a_{n}+c_{n}
$$

whence, by (8), (4) follows. If (4) holds, then this implies (8) and equivalently (7). From (6) and (7), $\lambda(1-x)|F(x)|^{\mathfrak{p}} \in L(0,1)$ follows obviously.

Thus Theorem is proved.

References

[1] R. Askey, L^{p} behavior of power series with positive coefficients, Proc. Amer. Math. Soc., 19 (1968), 303-305.
[2] P. Heywood, Integrability theorems for power series and Laplace transforms. I, J. London Math. Soc., 30 (1955), 302- 310.
[3] P. Heywood, Integrability theorems for power series and Laplace transforms, J. London Math. Soc., 32 (1957), 22-27.
[4] P. Jain, An integrability theorem for power series, Publ. Math. Debrecen, 20 (1973), 129-131.
[5] R. S. Khan, On power series with positive coefficients, Acta Sci. Math., 30 (1969), 255-257.
[6] L. Leindler, Note on power series with positive coefficients, Acta Sci., Math., 30 (1969), 259-261.
[7] L. Leindler, Generalization of inequalities of Hardy and Littlewood, Acta Sci. Math., 31 (1970), 279-285.

