Finite type representations of infinite symmetric groups

ARTHUR LIEBERMAN

The group G(S) of all permutations of a set S of infinite cardinality d is a topological group in the topology of pointwise convergence on S. The author has shown [3] that any continous unitary representation of G(S) is the direct sum of irreducible representations, each (non-trivial) of which acts on a Hilbert space of dimension d. The author, on account of Theorem 1 below, conjectures that any unitary representation of G(S) on a Hilbert space of dimension d is continuous (and thus any unitary representation on a Hilbert space of dimension less than d is trivial). Our results and conjecture seem analogous to certain theorems for Lie groups [2 and 5].

A representation of a group is of finite type if the von Neumann algebra generated by the range of the representation is of finite type [1, definition 5, p. 97].

Theorem. Let S be an infinite set and let G(S) be the group of all permutations of S. Any non-trivial unitary representation of G(S) of finite type acts on a Hilbert space of dimension greater than the cardinal of S. In particular, the permutation group of the integers has no non-trivial unitary representation of finite type on separable Hilbert space.

Proof. Let S_1 , S_2 , and S_3 be pairwise disjoint subsets of S, with cardinal $(S_i) =$ =cardinal (S) = d for i=1, 2, 3. Let φ be a 1--1 correspondence between S_1 and S_2 . If $s \in S_1$, let p(s) be the permutation which interchanges s with $\varphi(s)$ and leaves all other members of S fixed. Let Z be the set of all subsets of S_1 which have cardinality d. If $Y \in Z$ let $p(Y) = \pi_{s \in Y} p(s)$. Define an equivalence relation \sim on Z by $Y_1 \sim Y_2$ iff the cardinal of the symmetric difference $Y_1 \Delta Y_2$ is less than d. Let T be a subset of Zwhich contains exactly one member of each equivalence class of Z under \sim ; then cardinal $(T) = 2^d$. If $t_1, t_2 \in T$, then $p(t_1)$ is contained in no proper normal subgroup of G [4, p. 306], $p(t_1) = p(t_1)^{-1}$, $p(t_1) p(t_2) = p(t_1 \Delta t_2)$, and $p(t_1)$ and $p(t_1 \Delta t_2)$ are conjugate to each other since each of these permutations is the product of d 2-cycles and also leaves S_3 elementwise fixed.

Received December 30, 1974.

8 A

Let U be a unitary representation of G on a Hilbert space H such that the von Neumann algebra U(G)'' generated by U(G) is of finite type [1, definition 5, p. 97]. Assume that no subrepresentation of U is trivial. There is an ultraweakly continuous trace tr on U(G)'' such that $tr(I_H) = 1$, where I_H is the identity operator on H. Without loss of generality, we may assume that there is a vector $v \in H$, ||v|| = 1, such that tr(W) == (Wv, v) for all $W \in U(G)''$. (If not, replace U(g) by the representation $g \rightarrow U(g) \otimes I_K$, where K is an infinite dimensional separable Hilbert space and $U(g) \otimes I_K$ acts on $H \otimes K$. [See 1, Theorem 1, p. 51].) We may assume that tr is faithful. (If not, replace U by the restriction of U to the closed subspace spanned by U(G)v.)

Let V be the representation of U(G)'' determined by the vector state $W \rightarrow (Wv, v)$ of U(G)'' by the Gelfand—Segal construction. If $g \in G$, let $V_1(g) = V(U(g))$. Then V_1 is a representation of G and is unitarily equivalent to the subrepresentation of U on the closure of U(G)''v. V_1 acts on the Hilbert space which is the completion of U(G)'' with respect to the inner product $\langle W_1, W_2 \rangle = tr(W_2 * W_1)$.

If $g \in G$, then $\langle U(g), U(g) \rangle = tr(U(g) * U(g)) = tr(I_H) = 1$. If $t_1, t_2 \in T$ with $t_1 \neq t_2$, then $\langle U(p(t_1)), U(p(t_2)) \rangle = tr(U(p(t_2))^* U(p(t_1))) = tr(U(p(t_2)) U(P(t_1))) = tr(U(p(t_2)p(t_1))) = tr(U(p(t_1\Delta t_2)))$. Let $tr(U(p(t_1))) = \alpha$. We have $\alpha \neq 1$ since for $g \in G$, the equality tr(U(g)) = 1 is equivalent to $U(g) = I_H$, and thus $\alpha = 1$ would imply the triviality of U, because $p(t_1)$ is contained in no proper normal subgroup of G.

Since $p(t_1)$ is conjugate to $p(t_1 \Delta t_2)$, we have $tr(U(p(t_1 \Delta t_2))) = \alpha$. A simple computation shows that $||U(p(t_1)) - U(p(t_2))|| = (2(1-\alpha))^{1/2}$; the norm on the Hilbert space on which V_1 acts. Consequently, the open balls of radius $((1-\alpha)/2)^{1/2}$ centered at the U(p(t)) with $t \in T$ are mutually disjoint open sets in the Hilbert space on which V_1 acts. Consequently, the dimension of this Hilbert space, and therefore the dimension of H, is at least G^d .

The author would like to thank Professor Robert Kallman for several useful conversations.

References

[1] J. DIXMIER, Les algèbres d'opérateurs dans l'espace Hilbertien, 2. ed., Gauthier-Villars (Paris, 1969).

[2] R. R. KALLMAN, A theorem on compact simple Lie groups, unpublished manuscript.

- [3] A. L. LIEBERMAN, The structure of certain unitary representations of infinite symmetric groups, Trans. Amer. Math. Soc., 164 (1972,) 189-198.
- [4] W. R. SCOTT, Group Theory, Prentice-Hall (Englewood Cliffs, New Jersey 1964).

[5] I. E. SEGAL and J. VON NEUMANN, Representations of semisimple Lie groups, Ann. Math., 52 (1950), 509-517.

DEPARTMENT OF MATHEMATICS CLEVELAND STATE UNIVERSITY CLEVELAND, OHIO 44115, USA