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An inequality for functions

MASAMI OKADA and KOZO YABUTA

1. The main purpose of this note is to prove the following:

Theorem 1. Let (X, X, m) be a probability measure space and 0<p<g—< oo
Let fe L(m), f|fl"dm=1 and Ag=f|fl"dm. Suppose 0<A <A, and let ¢c=0, y>1
satisfy the equation
o i= yiI— A1 _ yP— AP
¢ 1-A7  Ap-AF
Then

m{x€X;|f(x)| = 4} = c.

Equality holds if and only if there exists a measurable set S with m(S)=1—c and
|fl=4 on S and | f]=y on X\S.

This result shows that the above constant ¢ is the best possible for the function
class { f€eL*(m); || fll,=1 and || f]|,=4,} and is a refinement of an inequality given in
BUrkHOLDER and GUNDY [l, p. 258, Lemma 2. 3]. Applications of inequalities of
this type are also found in ZyGMUND [3, p. 216—p. 217]. Also this is a generalization
of an inequality for analytic functions in Kamowitz [2, p. 236, Theorem B]. His
result follows from the next theorem, which is an immediate corollary of his Lemma 3
in the case of non-atomic measure space, and which also in the general setting can
be proved in the same way as in the proof of Theorem 1.

Theorem 2. Let (X, Z, m) be a probability measure space and O<p-< . Let
ferr(my, [|fIPdm=1 and log | fI€L*(m), dy=exp [ log | fldm. Suppose 0<A =<4,
and let ¢=>0, y=1 satisfy the equation
1 yP—A4? - logy—logd

@ ¢ 1—47  logd,—logd °
Then

m{xeX; |f(x)] > 4} = c.
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Equality holds if and only if there exists a measurable set S with m(S)=1-c and
| fl=A on S and | fl=y on X\S.

As for Kamowitz’s results we shall discuss them in the last section. To prove
Theorems 1 and 2 we have improved the method of the proof of Kamowitz’s theorem
in [2). We shall prove in the next section Theorem 1 only and omit the proof of
Theorem 2.

2. We state first three elementary lemmas.

Lemma 1. Given 0<A<Ay,<1, O<p<1, there exist unique ¢ and y such that
O<c<l, y>1 and

3 l=(N0-c)A+cy and A =(1—c)AP+ ).
Further y satisfies the equation

y__A _ yP_AP
“) 1—A4  Ap—A4r’

Also, for fixed A, the solution y of (4) (y=>1) decreases when A, increases and, for
fixed A,, it increases when A increases.

Proof. It is obvious that the equation (4) has a unique solution for y=1, since
y=A is a solution of (4) and 1<(1—4P)(42—A4")~". Let c=(1—A)(y—A4)~?, for
this y. Then ¢ and y satisfy equation (3) and O0<c~<1. Also by elementary calculation
one sees that the last assertions hold. °

Lemma 2. Let (X, Z, m) be a finite positive measure space. If0<p<1,0<4=1,
GEL>(m) and |G| = A, then

p(mX)A— [1G|dm) = m(X)4?— [|G|rdm.

X x
Equality holds only when |G|=A.

Proof. By ele'mentary computation one has the inequality p(4—t)=4"—¢°
for 0<t=A. Integrating the both sides of the inequality p(4—|G|)=A4"—|G?, we
have the desired one. It is then clear that the equality holds only when |G|=A4.

Lemma 3. Let 0<A<1,0<p=<1, =1, y=>1 and 0=pa=b. Then
b+By?—(B—1)A? = (a+By—(B—1)A).
Equality holds if and only if B=1 and a=b=0.
Proof. Note that ‘
b+ByP—(B—1)4? = b+ y?+(B— 1) (37— 47,
a+py—(f—14 =a+y+(B-D(y—A).
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Let
g ={(3?+b+(B-1)(pP— AP —(y+a+(B~D(y—A)}/y.

Then we get
g0) = {I+s+(B-D(1 B} {1 +1+(B-1D(1-B)},
where t=a/y, s=b/y? and B=A[y. Now we have clearly
g = 1+(+B-DA-B))p—(1+t+(B-1D(1-B) =
(s—plp+(B—1)(1~B?—p(1 - B))/p.
Further by the assumption b=ap we have
s—pt =y " —ap)ly = (b—ap)ly = 0,

and as in Lemma 2 we see 1—BP=p(1—B). Hence we have g(»)=0. It is then
obvious that g(y)=0 if and only if =1 and ap=56=0.

'3. Now we are in the position to prove Theorem 1 for g=1.

Proof. Assume d=m{|f|>A}<c. Let S={|f|=4} and §’=X\S. Then we
have by Lemma 1 '

“ S+ fifl=1=0-94+ey = (-DAd+ey—(c~d)4,
s s’

[1P+ [IfP =45 = 1-) 47+ = (1 =D AP+ ey —(c—d) A",
N S’ B

By Holder’s inequality one gets
VP, o plfl
Combining this with (5) we have

(A-dyar— [|fJp . . (-dyd— [If] o (e »
I L 3 VY M S P

Q)

However by Lemmas 2 and 3 we have the converse inequality and hence the equality,
which implies ¢=d, a contradiction. Next suppose the equality holds in (6) and let
S={|f|=A4}and S"={| f|>A4}. Then we have m(S)=1—c and we see by the above
argument that the equality holds in (7), which implies f | fldm=(1—c) A and that

N
the equality holds in (6). Hence we get | f|=4 on S and | f] is constant on §’. This
value is y by (5). The proof is complete.
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o

) 4, Now Theorem 1 follows immediately from the special case above. In fact,
let g=|f|? in the setting of Theorem 1. Then

[gdm =1, [gradm = {|fPdm = (49" and {f]> 4} = {g> A1).
Theorem 1 results if we replace the y of the case g=1, by y%

5. Application. Let f(z) be an analytic function in the open unit disc in the
complex plane which lies in the Hardy space H? for some 0<p <<, i.e., let

2 1p
Ifllp = sup [% S/ If(re“’)l”d(?] <<, and F(9) = lim f(re").

Then log |F(0)] is integrable unless F(6)=0 and one has by Jensen’s inequality for
HP functions

mwwéﬁjmwww

One sees easily that the constant ¢ in Theorem 2 is an increaSing function of A4, for
fixed 4. Hence applying Theorem 2 we have the following theorem of Kamowitz,

Theorem 3. Let feH?, O<p<eco and (flg=1. If 0<A<|f(0)|, then
m{0=0=2xr; |F(0)|>A4}=c, where c=(1—AP)(y*—A")"! and y is determined by the
equation (2) in Theorem 2 for Ay=|f(0)|. This constant is the best possible. Here m
denotes the normalized Lebesgue measure on [0, 2n].

That the constant c is the best possible is shown by the H= outer function
defined by

2% i
exp 21—”6/‘ —g%j— log g(6) d6,
where g(0)=A4 for 0<8=2n(1-¢) and = -y for 2n(1 —c)<O=2n.

One can also formulate Theorem 1 for H? functions, and also in this case i.
is shown by the above function that the arising constant ¢ is the best possiblet
Finally we remark that Kamowitz uses the inner-outer factorization theorem for
HP functions and he states Theorem 3 only for 1 =p<ee.
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