An inequality for functions

MASAMI OKADA and KÔZÔ YABUTA

1. The main purpose of this note is to prove the following:

Theorem 1. Let (X, Σ, m) be a probability measure space and 0 .Let $f \in L^q(m)$, $\int |f|^q dm = 1$ and $A_0^p = \int |f|^p dm$. Suppose $0 < A < A_0$ and let c > 0, y > 1satisfy the equation

(1)
$$\frac{1}{c} = \frac{y^q - A^q}{1 - A^q} = \frac{y^p - A^p}{A_0^p - A^p}.$$

Then

$$m\{x\in X; |f(x)| > A\} \ge c.$$

Equality holds if and only if there exists a measurable set S with m(S)=1-c and |f|=A on S and |f|=y on $X \setminus S$.

This result shows that the above constant c is the best possible for the function class $\{f \in L^q(m); \|f\|_q = 1 \text{ and } \|f\|_p = A_0\}$ and is a refinement of an inequality given in BURKHOLDER and GUNDY [1, p. 258, Lemma 2. 3]. Applications of inequalities of this type are also found in ZYGMUND [3, p. 216-p. 217]. Also this is a generalization of an inequality for analytic functions in KAMOWITZ [2, p. 236, Theorem B]. His result follows from the next theorem, which is an immediate corollary of his Lemma 3 in the case of non-atomic measure space, and which also in the general setting can be proved in the same way as in the proof of Theorem 1.

Theorem 2. Let (X, Σ, m) be a probability measure space and 0 . Let $f \in L^p(m)$, $\int |f|^p dm = 1$ and $\log |f| \in L^1(m)$, $A_0 = \exp \int \log |f| dm$. Suppose $0 < A < A_0$ and let c > 0, v > 1 satisfy the equation

(2)
$$\frac{1}{c} = \frac{y^p - A^p}{1 - A^p} = \frac{\log y - \log A}{\log A_0 - \log A}.$$

$$m\{x \in X; |f(x)| > A\} \ge c.$$

10 A

Received June 25, 1975.

Equality holds if and only if there exists a measurable set S with m(S)=1-c and |f|=A on S and |f|=y on $X \setminus S$.

As for Kamowitz's results we shall discuss them in the last section. To prove Theorems 1 and 2 we have improved the method of the proof of Kamowitz's theorem in [2]. We shall prove in the next section Theorem 1 only and omit the proof of Theorem 2.

2. We state first three elementary lemmas.

Lemma 1. Given $0 < A < A_0 < 1$, 0 , there exist unique c and y such that <math>0 < c < 1, y > 1 and

(3)
$$1 = (1-c)A + cy$$
 and $A_0^p = (1-c)A^p + cy^p$.

Further y satisfies the equation

(4)
$$\frac{y-A}{1-A} = \frac{y^p - A^p}{A_0^p - A^p}.$$

Also, for fixed A, the solution y of (4) (y>1) decreases when A_0 increases and, for fixed A_0 , it increases when A increases.

Proof. It is obvious that the equation (4) has a unique solution for y>1, since y=A is a solution of (4) and $1<(1-A^p)(A_0^p-A^p)^{-1}$. Let $c=(1-A)(y-A)^{-1}$, for this y. Then c and y satisfy equation (3) and 0< c<1. Also by elementary calculation one sees that the last assertions hold.

Lemma 2. Let (X, Σ, m) be a finite positive measure space. If $0 , <math>G \in L^{\infty}(m)$ and $|G| \le A$, then

$$p\left(m(X)A - \int\limits_X |G| \, dm\right) \leq m(X)A^p - \int\limits_X |G|^p \, dm.$$

Equality holds only when |G| = A.

Proof. By elementary computation one has the inequality $p(A-t) \leq A^p - t^p$ for $0 < t \leq A$. Integrating the both sides of the inequality $p(A-|G|) \leq A^p - |G|^p$, we have the desired one. It is then clear that the equality holds only when |G| = A.

Lemma 3. Let 0 < A < 1, $0 , <math>\beta \ge 1$, y > 1 and $0 \le pa \le b$. Then

$$b+\beta y^p-(\beta-1)A^p \ge (a+\beta y-(\beta-1)A)^p.$$

Equality holds if and only if $\beta = 1$ and a = b = 0.

Proof. Note that

$$b + \beta y^{p} - (\beta - 1)A^{p} = b + y^{p} + (\beta - 1)(y^{p} - A^{p}),$$

$$a + \beta y - (\beta - 1)A = a + y + (\beta - 1)(y - A).$$

146

An inequality for functions

Let

$$g(y) = \{ (y^p + b + (\beta - 1)(y^p - A^p))^{1/p} - (y + a + (\beta - 1)(y - A)) \} / y.$$

Then we get

$$g(y) = \{1 + s + (\beta - 1)(1 - B^p)\}^{1/p} - \{1 + t + (\beta - 1)(1 - B)\},\$$

where t = a/y, $s = b/y^p$ and B = A/y. Now we have clearly

$$g(y) \ge 1 + (s + (\beta - 1)(1 - B^{p}))/p - (1 + t + (\beta - 1)(1 - B)) = (s - pt)/p + (\beta - 1)(1 - B^{p} - p(1 - B))/p.$$

Further by the assumption $b \ge ap$ we have

$$s-pt = (by^{1-p}-ap)/y \ge (b-ap)/y \ge 0,$$

and as in Lemma 2 we see $1-B^{p} \ge p(1-B)$. Hence we have $g(y) \ge 0$. It is then obvious that g(y)=0 if and only if $\beta=1$ and ap=b=0.

3. Now we are in the position to prove Theorem 1 for q=1.

Proof. Assume $d=m\{|f|>A\}< c$. Let $S=\{|f|\leq A\}$ and $S'=X\setminus S$. Then we have by Lemma 1

(5)
$$\int_{S} |f| + \int_{S'} |f| = 1 = (1-c)A + cy = (1-d)A + cy - (c-d)A,$$
$$\int_{S} |f|^{p} + \int_{S'} |f|^{p} = A_{0}^{p} = (1-c)A^{p} + cy^{p} = (1-d)A^{p} + cy^{p} - (c-d)A^{p}$$

By Hölder's inequality one gets

(6)
$$\int_{S'} \frac{|f|^p}{d} dm \leq \left(\int_{S'} \frac{|f|}{d} dm\right)^p.$$

Combining this with (5) we have

$$\frac{(1-d)A^{p}-\int_{S}|f|^{p}}{d}+\frac{c}{d}y^{p}-\left(\frac{c}{d}-1\right)A^{p} \leq \left(\frac{(1-d)A-\int_{S}|f|}{d}+\frac{c}{d}y-\left(\frac{c}{d}-1\right)A\right)^{p}.$$
(7)

However by Lemmas 2 and 3 we have the converse inequality and hence the equality, which implies c=d, a contradiction. Next suppose the equality holds in (6) and let $S = \{|f| \le A\}$ and $S' = \{|f| > A\}$. Then we have m(S) = 1 - c and we see by the above argument that the equality holds in (7), which implies $\int_{S} |f| dm = (1-c) A$ and that the equality holds in (6). Hence we get |f| = A on S and |f| is constant on S'. This value is y by (5). The proof is complete.

10*

4. Now Theorem 1 follows immediately from the special case above. In fact, let $g = |f|^q$ in the setting of Theorem 1. Then

$$\int g dm = 1, \quad \int g^{p/q} dm = \int |f|^p dm = (A_0^q)^{p/q} \quad \text{and} \quad \{|f| > A\} = \{g > A^q\}.$$

Theorem 1 results if we replace the y of the case $q = 1$, by y^q .

5. Application. Let f(z) be an analytic function in the open unit disc in the complex plane which lies in the Hardy space H^p for some 0 , i.e., let

$$||f||_{p} = \sup_{0 < r < 1} \left(\frac{1}{2\pi} \int_{0}^{2\pi} |f(re^{i\theta})|^{p} d\theta \right)^{1/p} < \infty, \text{ and } F(\theta) = \lim_{r \to 1} f(re^{i\theta}).$$

Then $\log |F(\theta)|$ is integrable unless $F(\theta) \equiv 0$ and one has by Jensen's inequality for H^p functions

$$\log |f(0)| \leq \frac{1}{2\pi} \int_{0}^{2\pi} \log |F(\theta)| \, d\theta.$$

One sees easily that the constant c in Theorem 2 is an increasing function of A_0 for fixed A. Hence applying Theorem 2 we have the following theorem of Kamowitz.

Theorem 3. Let $f \in H^p$, $0 and <math>||f||_{H^p} = 1$. If 0 < A < |f(0)|, then $m\{0 \le \theta \le 2\pi; |F(\theta)| > A\} \ge c$, where $c = (1 - A^p)(y^p - A^p)^{-1}$ and y is determined by the equation (2) in Theorem 2 for $A_0 = |f(0)|$. This constant is the best possible. Here m denotes the normalized Lebesgue measure on $[0, 2\pi]$.

That the constant c is the best possible is shown by the H^{∞} outer function defined by

$$\exp\frac{1}{2\pi}\int_{0}^{2\pi}\frac{e^{i\theta}+z}{e^{i\theta}-z}\log g(\theta)\,d\theta,$$

where $g(\theta) = A$ for $0 < \theta \le 2\pi(1-c)$ and = y for $2\pi(1-c) < \theta \le 2\pi$.

One can also formulate Theorem 1 for H^p functions, and also in this case i. is shown by the above function that the arising constant c is the best possiblet Finally we remark that Kamowitz uses the inner-outer factorization theorem for H^p functions and he states Theorem 3 only for $1 \le p < \infty$.

References

- D. L. BURKHOLDER and R. F. GUNDY, Extrapolation and interpolation of quasi-linear operators on martingales, *Acta Math.*, 124 (1970), 249-304.
- [2] HERBERT KAMOWITZ, An inequality for analytic functions, Proc. Amer. Math. Soc., 46 (1974), 234-238.
- [3] ANTONI ZYGMUND, Trigonometric series, Cambridge, 1959.

MATH. INSTITUTE TÕHOKU UNIVERSITY SENDAI, JAPAN