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Uniformly distributed sequences in quotient groups 
HARALD RINDLER 

Let G be a compact topological group with countable base, H a closed normal 
subgroup,/?: G-*GjH the canonical homomorphism. If a sequence (xn) is uniformly 
distributed in G, then it is easy to prove that p(x„) is u.d. in G/H. If G=KXH, and 
(yn) is, u.d. in K, then as is proved in [I], for almost every sequence (z„), zn£H (with 
respect to the product-measure on H°°) the sequence (yn, z„) is u.d. in G.We prove 
the following 

T h e o r e m 1, If(y„) is u.d. in G/H, then there exists a u.d. sequence (x„) in G such 
that p(x„)=yn. 

R e m a r k . The result in [1] is based on a Theorem of HLAWKA ([3], Th. 11) 
using a theorem of Hill on infinite matrices. Here we are going to use a different 
method. 

The main result of this paper is the following 

P r o p o s i t i o n . Let G be a locally compact group, H a closed normal amenable 
subgroup such that G/H is compact If (y„) is u.d. in G/H = K, then for any f£L^(G), 
Jf(x)dx — 0 (dx = left Haar measure on G) there exists a sequence (x„) in G, satisfying 

1 " ' = 0 ( | | g | | i = / | g ( x ) \ d x and yf{x)=Ky-^x)). p(x„)=yn and lim 
Ar-« N Â X J  

Theorem 1 then follows from the following 
L e m m a 1. Let G be a compact metric group, then there exists an f^L1 (G) 

N 
such that Jf(x)dx = 0 and 

=i 
-0 implies: (x„) is u.d. in G. 

P r o o f . We may choose an f£L2(G) such that J f ( x ) dx=0 and Jf(x)D(x)dx is a 
non-singular matrix for any non-trivial continuous irreducible unitary representation 
D of G (there are only countably many inequivalent ones) and then apply Th. 2 of [6]. 

If G is compact so is G/H and H, H is amenable ([4], Ch. 8) and Theorem 1 
follows from the Proposition and Lemma 1. 
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Proof of the Proposition 

L e m m a 2. Given e=-0, there exists a sequence (x„) such that (i) p(x„)=y„ 
1 £ 

and (ii) l imsup 
N-

N 2 xnf 

P r o o f . Let TH: L1(G)^L1(G/H), [TBf](p(x))= Jf(xy)dy be the canonical 
H 

morphism onto L}(K), dy= left Haar-measure on H, and put g=THf, then 
f g(x)dx=0 by Weil's formula ([4], Ch. 3, §4. 4, 5). Choose a neighbourhood of U 
K 
of the neutral element of G such that 

(1) l l*/- / l l i < e for all U, put V = p(U) ([4], §5.5). 

There exist finitely many elements bx, ..., bm in K— G/H such that 
m l-l 
U b,V= K. Put B, = b,V- U by (/ = 1, ..., ni). 

;=i ¡=i 

Then Bx, ..., Bm constitute a partition of K into measurable sets. Let Xi denote the 
characteristic function of Bt. Then we have 

<2) ZXi*g= 1 *g = f g(x) dx = 0. 

If v£ V, choose «6 U such that p(u)—v, then by means of the relation TH(uf)=vTHf 
and by (1) we obtain 

Ub^g-biglh = U^-jrlli = \\TH(uf-f)\\x Wuf-fW, ^ 6, 

thus we have 

(3) \\xt*g~{f Xi}btg11^ f Xi(y)\\yg-g\\idy < s [ f X,). 
b,V 

Choose elements a1,...,am from G in such a way that p(a^—bi and set 
m . 

/1= 2" (jXi)aif- Then we have H ^ / J ^ e ((2)+(3)). We have assumed that H was 

amenable, therefore there exist elements sl9 ...,sr£H such that 

(4) 2 s k f i 
k=1 

e ([4], Ch. 8, §4.3, §6.5). 

We may suppose that the boundary of V has measure 0. (If not, replace F by a neigh-
bourhood V of the neutral element of K that is contained in V and whose boundary 
has measure 0, also replace U by UC\p~l(V)). Then we have 

<5) Hm jr ZXi(yn)= fXi(.x)dx ([2], Th. 13). N—oo J. y n = l K 
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For i = l, . . . , m and7 = 1, 2, ... let n(j, i) be that index n of y for which y„(zBi and 
exactly j members of the sequence ylt •••, y„ belong to Bt. Then we have 

(6) ynU.i) = biVnUJ), v„0ii)eV. 

Define the sequence (z„) in G by z„0>0=^a,- if j=(k— 1) mod r, then by (4) and (5) 
we obtain: 

(7) lim sup 1 N 

i Y 71 = 1 

Choose finally un£U suh that p(un) = v„, xn=znun, then WzJ-xJW^WuJ-fW^ 
1 « 

T 7 2 X J and by (1) we obtain that lim sup 
N n=i 

;2e. This completes the proof of 

Lemma 2. Now let xnk be the sequence obtained by Lemma 2 fo re = 1/2k, then 
we can find a strictly increasing sequence of positive integers Nk satisfying 

(8) a) 
1 N 

"T7 2 xn,kf •<* n = 1 k ' N*Nt, b) J V i - 1 - . . . + J V i k ë i W 

We define: xn=xn,k+1 if Nk<n^Nk+1; k=0, 1, . . . , iVo=0, then (8) a) implies 
N 

^(N+M)/k, N>M*sNk, thus by (8) b) we obtain that for that 2 x-,kf n = M+1 
N k < - N ^ N k + i we have 

N 

2 x„f 
n=l 

^ Aill/lli + (JVi + N2) + (N2 + N3)I2 + ...+(Nk_1 + Nk)l(k- 1) + 
L 

+ (Nk + N)/k = o(N) 

and the proof of the Proposition is complete. 
As a further application of the Proposition we obtain 

T h e o r e m 2. If (y„) is a uniformly distributed sequence modulo 1, then there 
exists a sequence (xn) such that x„=y„ (mod 1) and (x„) is u.d. modulo a for all a > 0 . 

P r o o f . We apply the Proposition to f£L1(R) s a t i s f y i n g / ( 0 ^ 0 iff t^O, then 

=0 , and by di-
1 N 

— 2 xnf Nn=i 
there exists a sequence (x„) such that p (x„) =y„ and lim 

JV 
1 N rect computation we obtain that lim— 2 exp(/yx„)=0 for all jMO, which proves 

N i>=i 
Theorem 2 by means of Weyl's criterion. 

E x a m p l e . If z is an arbitrary irrational number then the sequence (nz) is u.d. 
mod 1, therefore there exists a sequence (x„) congruent to (nz) mod 1 and such that 
(xn) is u.d. mod a for all a>0, whereas (nz) is u.d. mod a iff a is an irrational mul-
tiple of z. 



156 H. Rindler: Uniformly distributed sequences in quotient groups 

R e m a r k s . A stronger version of the Proposition is true: there exists a single 
sequence that satisfies the relation in the Proposition for all f£L\G), J f= 0 (compare 
[7], Th. 1, Th. 2). This gives a partial answer to a question in [5], (starting from a 
countable dense set of L°(G) = { f : fdL}(G). J/=0} a similar proof leads to this 
result. G must be second countable.) Theorem 1 remains valid if G is compact and 
H has a countable dense subset. It can be shown that there exists a sequence (sn) 

1 r 
such that hm — 2* snf = H ^ H / I I I f ° r all fdL1(G) (construction and proof as in 

r n=l i 
[8]). The same proof as that of the Proposition (compare (4)!) shows that there 

exists a sequence (x„), p(x„)=y„ such that lim 
1 N 

N Z*nf 
n = 1 

= 0 for all f£Ll{G), 

Finally, it should be noted that the condition that H is amenable in the assump-
tions of the Proposition is necessary ([4], Ch. 8, § 4.3). 

A d d i t i o n a l R e m a r k (by proof-reading). Th. 1 implies immediately: Let 
G, Gj be compact metric groups, p'.G=>G± a continuous homorphism. If (y„) 
is u. d. in p(G), then there exist x„, p (x„)=yn, (xn) is u. d. in G. 

A c k n o w l e d g e m e n t . The author wishes to thank the referee for suggestions 
making the proof clearer. 
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