

Uniformly distributed sequences in quotient groups

HARALD RINDLER

Let G be a compact topological group with countable base, H a closed normal subgroup, $p: G \rightarrow G/H$ the canonical homomorphism. If a sequence (x_n) is uniformly distributed in G , then it is easy to prove that $p(x_n)$ is u.d. in G/H . If $G = K \times H$, and (y_n) is, u.d. in K , then as is proved in [1], for almost every sequence (z_n) , $z_n \in H$ (with respect to the product-measure on H^∞) the sequence (y_n, z_n) is u.d. in G . We prove the following

Theorem 1. *If (y_n) is u.d. in G/H , then there exists a u.d. sequence (x_n) in G such that $p(x_n) = y_n$.*

Remark. The result in [1] is based on a Theorem of Hlawka ([3], Th. 11) using a theorem of Hill on infinite matrices. Here we are going to use a different method.

The main result of this paper is the following

Proposition. *Let G be a locally compact group, H a closed normal amenable subgroup such that G/H is compact. If (y_n) is u.d. in $G/H = K$, then for any $f \in L^1(G)$, $\int f(x) dx = 0$ (dx = left Haar measure on G) there exists a sequence (x_n) in G , satisfying $p(x_n) = y_n$ and $\lim_{N \rightarrow \infty} \left\| \frac{1}{N} \sum_{n=1}^N x_n f \right\|_1 = 0$ ($\|g\|_1 = \int |g(x)| dx$ and $yf(x) = f(y^{-1}x)$).*

Theorem 1 then follows from the following

Lemma 1. *Let G be a compact metric group, then there exists an $f \in L^1(G)$ such that $\int f(x) dx = 0$ and $\frac{1}{N} \left\| \sum_{n=1}^N x_n f \right\|_1 \rightarrow 0$ implies: (x_n) is u.d. in G .*

Proof. We may choose an $f \in L^2(G)$ such that $\int f(x) dx = 0$ and $\int f(x) D(x) dx$ is a non-singular matrix for any non-trivial continuous irreducible unitary representation D of G (there are only countably many inequivalent ones) and then apply Th. 2 of [6].

If G is compact so is G/H and H , H is amenable ([4], Ch. 8) and Theorem 1 follows from the Proposition and Lemma 1.

Proof of the Proposition

Lemma 2. *Given $\varepsilon > 0$, there exists a sequence (x_n) such that (i) $p(x_n) = y_n$ and (ii) $\limsup_{N \rightarrow \infty} \left\| \frac{1}{N} \sum_{n=1}^N x_n f \right\|_1 \leq \varepsilon$.*

Proof. Let $T_H: L^1(G) \rightarrow L^1(G/H)$, $[T_H f](p(x)) = \int_H f(xy) dy$ be the canonical morphism onto $L^1(K)$, dy = left Haar-measure on H , and put $g = T_H f$, then $\int_K g(x) dx = 0$ by Weil's formula ([4], Ch. 3, §4. 4, 5). Choose a neighbourhood of U of the neutral element of G such that

$$(1) \quad \|xf - f\|_1 < \varepsilon \quad \text{for all } x \in U, \quad \text{put } V = p(U) \quad ([4], §5.5).$$

There exist finitely many elements b_1, \dots, b_m in $K = G/H$ such that

$$\bigcup_{i=1}^m b_i V = K. \quad \text{Put } B_l = b_l V - \bigcup_{i=1}^{l-1} b_i V \quad (l = 1, \dots, m).$$

Then B_1, \dots, B_m constitute a partition of K into measurable sets. Let χ_i denote the characteristic function of B_i . Then we have

$$(2) \quad \sum_{i=1}^m \chi_i * g = 1 * g = \int g(x) dx = 0.$$

If $v \in V$, choose $u \in U$ such that $p(u) = v$, then by means of the relation $T_H(uf) = vT_H f$ and by (1) we obtain

$$\|(b_i v)g - b_i g\|_1 = \|vg - g\|_1 = \|T_H(uf - f)\|_1 \leq \|uf - f\|_1 \leq \varepsilon,$$

thus we have

$$(3) \quad \left\| \chi_i * g - \left(\int \chi_i \right) b_i g \right\|_1 \leq \int_{b_i V} \chi_i(y) \|yg - g\|_1 dy < \varepsilon \left(\int \chi_i \right).$$

Choose elements a_1, \dots, a_m from G in such a way that $p(a_i) = b_i$ and set $f_1 = \sum_{i=1}^m \left(\int \chi_i \right) a_i f$. Then we have $\|T_H f_1\|_1 < \varepsilon$ ((2)+(3)). We have assumed that H was amenable, therefore there exist elements $s_1, \dots, s_r \in H$ such that

$$(4) \quad \frac{1}{r} \left\| \sum_{k=1}^r s_k f_1 \right\|_1 < \varepsilon \quad ([4], Ch. 8, §4.3, §6.5).$$

We may suppose that the boundary of V has measure 0. (If not, replace V by a neighbourhood V' of the neutral element of K that is contained in V and whose boundary has measure 0, also replace U by $U \cap p^{-1}(V')$). Then we have

$$(5) \quad \lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N \chi_i(y_n) = \int_K \chi_i(x) dx \quad ([2], Th. 13).$$

For $i=1, \dots, m$ and $j=1, 2, \dots$ let $n(j, i)$ be that index n of y for which $y_n \in B_i$ and exactly j members of the sequence y_1, \dots, y_n belong to B_i . Then we have

$$(6) \quad y_{n(j, i)} = b_i v_{n(j, i)}, \quad v_{n(j, i)} \in V.$$

Define the sequence (z_n) in G by $z_{n(j, i)} = s_k a_i$ if $j \equiv (k-1) \pmod{r}$, then by (4) and (5) we obtain:

$$(7) \quad \limsup_{N \rightarrow \infty} \left\| \frac{1}{N} \sum_{n=1}^N z_n f \right\|_1 \leq \varepsilon.$$

Choose finally $u_n \in U$ such that $p(u_n) = v_n$, $x_n = z_n u_n$, then $\|z_n f - x_n f\|_1 = \|u_n f - f\|_1$ and by (1) we obtain that $\limsup_{N \rightarrow \infty} \left\| \frac{1}{N} \sum_{n=1}^N x_n f \right\|_1 \leq 2\varepsilon$. This completes the proof of Lemma 2. Now let $x_{n,k}$ be the sequence obtained by Lemma 2 for $\varepsilon = 1/2k$, then we can find a strictly increasing sequence of positive integers N_k satisfying

$$(8) \quad \text{a) } \left\| \frac{1}{N} \sum_{n=1}^N x_{n,k} f \right\|_1 \leq \frac{1}{k}, \quad N \geq N_k, \quad \text{b) } N_1 + \dots + N_k \leq N_{k+1}.$$

We define: $x_n = x_{n,k+1}$ if $N_k < n \leq N_{k+1}$; $k = 0, 1, \dots, N_0 = 0$, then (8) a) implies that $\left\| \sum_{n=M+1}^N x_{n,k} f \right\|_1 \leq (N+M)/k$, $N > M \geq N_k$, thus by (8) b) we obtain that for $N_k < N \leq N_{k+1}$ we have

$$\begin{aligned} \left\| \sum_{n=1}^N x_n f \right\|_1 &\leq N_1 \|f\|_1 + (N_1 + N_2) + (N_2 + N_3)/2 + \dots + (N_{k-1} + N_k)/(k-1) + \\ &\quad + (N_k + N)/k = o(N) \end{aligned}$$

and the proof of the Proposition is complete.

As a further application of the Proposition we obtain

Theorem 2. *If (y_n) is a uniformly distributed sequence modulo 1, then there exists a sequence (x_n) such that $x_n \equiv y_n \pmod{1}$ and (x_n) is u.d. modulo a for all $a > 0$.*

Proof. We apply the Proposition to $f \in L^1(R)$ satisfying $\hat{f}(t) \neq 0$ iff $t \neq 0$, then there exists a sequence (x_n) such that $p(x_n) = y_n$ and $\lim_N \left\| \frac{1}{N} \sum_{n=1}^N x_n f \right\|_1 = 0$, and by direct computation we obtain that $\lim_N \frac{1}{N} \sum_{n=1}^N \exp(iyx_n) = 0$ for all $y \neq 0$, which proves Theorem 2 by means of Weyl's criterion.

Example. If z is an arbitrary irrational number then the sequence (nz) is u.d. mod 1, therefore there exists a sequence (x_n) congruent to (nz) mod 1 and such that (x_n) is u.d. mod a for all $a > 0$, whereas (nz) is u.d. mod a iff a is an irrational multiple of z .

Remarks. A stronger version of the Proposition is true: there exists a single sequence that satisfies the relation in the Proposition for all $f \in L^1(G)$, $\int f = 0$ (compare [7], Th. 1, Th. 2). This gives a partial answer to a question in [5], (starting from a countable dense set of $L^0(G) = \{f: f \in L^1(G), \int f = 0\}$ a similar proof leads to this result. G must be second countable.) Theorem 1 remains valid if G is compact and H has a countable dense subset. It can be shown that there exists a sequence (s_n) such that $\lim \left\| \frac{1}{r} \sum_{n=1}^r s_n f \right\|_1 = \|T_H f\|_1$ for all $f \in L^1(G)$ (construction and proof as in [8]). The same proof as that of the Proposition (compare (4)!) shows that there exists a sequence (x_n) , $p(x_n) = y_n$ such that $\lim \left\| \frac{1}{N} \sum_{n=1}^N x_n f \right\|_1 = 0$ for all $f \in L^1(G)$, $\int f = 0$, which implies that (x_n) is u.d. in G ([7], Th. 2).

Finally, it should be noted that the condition that H is amenable in the assumptions of the Proposition is necessary ([4], Ch. 8, § 4.3).

Additional Remark (by proof-reading). Th. 1 implies immediately: *Let G , G_1 be compact metric groups, $p: G \Rightarrow G_1$ a continuous homomorphism. If (y_n) is u. d. in $p(G)$, then there exist x_n , $p(x_n) = y_n$, (x_n) is u. d. in G .*

Acknowledgement. The author wishes to thank the referee for suggestions making the proof clearer.

References

- [1] P. GERL, Relative Gleichverteilung in lokalkompakten Räumen, *Math. Z.*, **121** (1971), 23–50.
- [2] G. HELMBERG, Gleichverteilte Folgen in lokalkompakten Räumen, *Math. Z.*, **86** (1964), 107–119.
- [3] E. HLAWKA, Folgen auf kompakten Räumen, *Abh. math. Sem. Univ. Hamburg*, **20** (1956), 223–241.
- [4] H. REITER, *Classical harmonic analysis and locally compact groups*, Clarendon Press (Oxford, 1968).
- [5] H. RINDLER, Ein Gleichverteilungsbegriff für mittelbare Gruppen, *Sitzungsber. math.-naturwiss. Kl. Akad. Wiss. Wien. Abt. IIa*, **182** (1974), 107–119.
- [6] H. RINDLER, Zur L^1 -Gleichverteilung auf abelschen und kompakten Gruppen, *Archiv der Math.* to appear.
- [7] H. RINDLER, Gleichverteilte Folgen von Operatoren, *Compositio Math.*, **29** (1974), 201–212.
- [8] H. RINDLER, Uniform distribution on locally compact groups, *Proc. A. M. S.*, to appear.