Idempotent reducts of abelian groups

ÁGNES SZENDREI

1. Introduction. The aim of this paper is to describe all idempotent reducts of abelian groups, in particular all minimal nontrivial idempotent reducts and to characterize the lattice of all subclones of the clone of the full idempotent reduct of abelian groups. These results extend a theorem of Plonka (see [2], [3]) which states that the clones of the idempotent reducts of a (not necessarily abelian) group form a chain if and only if the group is abelian and of prime power exponent. Moreover, if an abelian group is of exponent p^{k} for a prime $p(k \in N)$ then this chain consists of $k+1$ elements. Our main result (Theorem 1) gives a representation for any idempotent reduct of the group of integers as a finite intersection of reducts of a very simple type. Hence the further results mentioned above can be deduced easily.

Basic universal algebraic concepts are from [1]. We are only interested in algebras up to equivalence. Let $\langle A ; P\rangle$ be an algebra where P can be supposed to be the set of all polynomials. Reducts of $\langle A ; P\rangle$ are defined to be algebras of the form $\langle A ; R\rangle$ with $R \subseteq P$. By an idempotent reduct of $\langle A ; P\rangle$ we mean a reduct $\langle A ; J\rangle$ with all operations in J idempotent. The maximal idempotent reduct of $\langle A ; P\rangle$, i.e. the reduct $\langle A ; I\rangle$ where I contains all the idempotent operations of P, will be called the full idempotent reduct.

We adopt the definition of a clone due to Taylor. In [5] a clone is defined to be a heterogeneous algebra $\left\langle A_{k} ; C_{m}^{n}, e_{i}^{n}\right\rangle_{k, m, n, i \in N, i \leq n}$ with heterogeneous operations

$$
C_{m}^{n}: A_{n} \times A_{m}^{n} \rightarrow A_{m}
$$

called substitutions and

$$
e_{i}^{n}:\{\emptyset\} \rightarrow A_{n}
$$

called projections, satisfying the identities:

$$
\begin{gathered}
C_{m}^{p}\left(z, C_{m}^{n}\left(y_{1}, x_{1}, \ldots, x_{n}\right), \ldots, C_{m}^{n}\left(y_{p}, x_{1}, \ldots, x_{n}\right)\right)= \\
=C_{m}^{n}\left(C_{n}^{p}\left(z, y_{1}, \ldots, y_{p}\right), x_{1}, \ldots, x_{n}\right), \quad n, m, p \in N=\{1,2, \ldots\} ; \\
C_{m}^{n}\left(e_{i}^{n}, x_{1}, \ldots, x_{n}\right)=x_{i}, \quad m, n, i \in N, \quad i \leqq n ; \\
C_{n}^{n}\left(y, e_{1}^{n}, \ldots, e_{n}^{n}\right)=y, \quad n \in N .
\end{gathered}
$$

Received June 28, 1975.

The concepts of isomorphism, subalgebra, subalgebra generated by a subset, etc. can naturally be generalized for heterogeneous algebras, in particular for clones, too (see [5]).

Note that for any algebra $\langle A ; P\rangle$ the set of all polynomials P is a clone and the reducts of $\langle A, P\rangle$ are determined up to equivalence by the subclones of P.

The following notations will be used in the paper. N_{0} or N will stand for the set of nonnegative or positive integers, respectively. Z and Z_{m} will mean the set of integers and the set of integers modulo $m\left(m \in N_{0}\right)$, respectively. The greatest common divisor of natural numbers m and n will be denoted by (m, n). If e is an element of a lattice L we shall write $[e)_{L}$ for the dual principal ideal of L generated by e. The subclone of a clone C generated by the subset H of C will be denoted by [H].

Any n-ary $(n \in N)$ polynomial of an abelian group $\langle G ;+,-, 0\rangle$ is of the form $\left\langle g_{1}, \ldots, g_{n}\right\rangle \mapsto c_{1} g_{1}+\ldots+c_{n} g_{n}$ where $c_{1}, \ldots, c_{n} \in Z$. It will be denoted by $c_{1} x_{1}+\ldots$ $\ldots+\left.c_{n} x_{n}\right|_{G}$. Such a polynomial is idempotent if $c_{1}+\ldots+c_{n}=1$. In particular, $c_{1} x_{1}+\ldots+\left.c_{n} x_{n}\right|_{z}$ is idempotent if and only if $c_{1}+\ldots+c_{n}=1$.
2. The main theorem. Let n be a natural number. Consider the set of all idempotent polynomials $c_{1} x_{1}+\ldots+\left.c_{m} x_{m}\right|_{z}$ with the property that all the coefficients c_{i} but one are divisible by n. Obviously, they form a clone for which we shall write $C l(n)$. In particular, the clone of the full idempotent reduct of $\langle Z ;+,-, 0\rangle$ coincides with $C l(1)$, while $C l(0)$ is the clone consisting of all the projections only. Note that $C l(n)$ consists exactly of those polynomials $c_{1} x_{1}+\ldots+\left.c_{m} x_{m}\right|_{z}$ for which $c_{1} x_{1}+\ldots$ $\ldots+\left.c_{m} x_{m}\right|_{Z_{n}}$ is a projection.

Theorem 1. For any clone C with $C l(1) \supset C \supset C l(0)$ there exist uniquely determined pairwise relatively prime numbers $p_{1}, \ldots, p_{k}>1$ such that

$$
\begin{equation*}
C=\cap\left(C l\left(p_{i}\right) \mid l \leqq i \leqq k\right) \tag{1}
\end{equation*}
$$

We prepare the proof of the theorem by stating several lemmas. For simplicity subscript Z in polynomials will be omitted.

Lemma 1. If $(C l(1) \supseteqq) C \ni x+(-n) y+n z\left(n \in N_{0}\right)$ then C together with any polynomial $c_{1} x_{1}+\ldots+c_{m} x_{m}$ contains each polynomial $\left(c_{1}+t_{1} n\right) x_{1}+\ldots+\left(c_{m}+t_{m} n\right) x_{m}$ with $t_{1}, \ldots, t_{m} \in Z$ and $t_{1}+\ldots+t_{m}=0$. In particular, $\mathrm{Cl}(n)$ is generated by the polynomial $x+(-n) y+n z$ and, consequently,

$$
\begin{equation*}
[C l(m) \cup C l(n)]=C l((m, n)), \quad m, n \in N_{0} \tag{2}
\end{equation*}
$$

Proof. First we prove our claim for $C=[\{x+(-n) y+n z\}]$, i.e. we prove $[\{x+(-n) y+n z\}]=C l(n)$. Inclusion \subseteq is obvious. Inclusion in the opposite direction follows in two steps. By induction on t we get

$$
x+(-t n) y+t n z \in C
$$

then by induction on r we can prove that for any $d_{1} x_{1}+\ldots+d_{r} x_{r} \in C l(n)$ and $i \neq j$

$$
d_{1} x_{1}+\ldots+d_{r} x_{r}=\left(\sum_{\substack{k=1 \\ k \neq i}}^{r} d_{k} x_{k}+d_{i} x_{j}\right)+\left(-d_{i}\right) x_{j}+d_{i} x_{i} \in C
$$

as required.
Let C stand now for an arbitrary clone containing the polynomial $x+(-n) y+n z$. Obviously $C \supseteqq C l(n)$; hence if $c_{1} x_{1}+\ldots+c_{m} x_{m} \in C$ and $t_{1}, \ldots, t_{m} \in Z$ with $t_{1}+\ldots$ $\ldots+t_{m}=0$ then

$$
\begin{gathered}
\left(c_{1}+t_{1} n\right) x_{1}+\ldots+\left(c_{m}+t_{m} n\right) x_{m}= \\
=\left(c_{1} x_{1}+\ldots+c_{m} x_{m}\right)+t_{1} n x_{1}+\ldots+t_{m} n x_{m} \in C
\end{gathered}
$$

which was to be proved.
As for (2) we note that

$$
x+(-(m, n)) y+(m, n) z=(x+(-u m) y+u m z)+(-v n) y+v n z
$$

where $u, v \in Z$ and $u m+v n=(m, n)$. This implies inclusion \supseteqq in (2). Inclusion \cong is obvious, thus the proof of the lemma is complete.

Lemma 2. If $(C l(1) \supseteqq) C \supset C l(p)$, where p is a prime, then $C=C l(1)$.
Proof. If C is properly contained in $C l(1)$ then the polynomials $c_{1} x_{1}+\ldots$ $\ldots+\left.c_{m} x_{m}\right|_{z_{p}}$ where $c_{1} x_{1}+\ldots+c_{m} x_{m} \in C$ constitute a proper subclone in the clone of the full idempotent reduct of $\left\langle Z_{p} ;+,-, 0\right\rangle$. This contradicts the theorem of Płonka quoted in the introduction.

Lemma 3. Let $n \in N, n \geqq 2$ and let $p_{1}, \ldots, p_{n}>1$ be pairwise relatively prime numbers. If

$$
(C l(1) \supseteqq) C \supset C l\left(p_{1} p_{n}\right) \cap\left(\cap\left(C l\left(p_{j}\right) \mid 2 \leqq j \leqq n-1\right)\right)
$$

and C contains a polynomial

$$
d_{1} x_{1}+\ldots+d_{m} x_{m} \in \cap\left(C l\left(p_{j}\right) \mid 1 \leqq j \leqq n\right)
$$

such that there exist two coefficients in $\left\langle d_{1}, \ldots, d_{m}\right\rangle$ not divisible by $p_{1} p_{n}$ (for brevity we will say that this polynomial separates p_{1} and p_{n}) then

$$
C \supseteqq \cap\left(C l\left(p_{j}\right) \mid 1 \leqq j \leqq n\right) .
$$

Proof. Set $p=p_{1} \ldots p_{n}$. By Lemma 1, we can assume $p \nmid d_{i}, i=1, \ldots, m$. Moreover, we can suppose $d_{i}=e_{i} q_{i}$, where

$$
q_{i}=\frac{p}{p_{i_{i-1}+1} \ldots p_{j}} \quad(i=1, \ldots, m)
$$

and $0=j_{0}<j_{1}<\ldots<j_{m}=n$. First we show that

$$
\begin{equation*}
\frac{p}{p_{1}} u_{1} x_{1}+\ldots+\frac{p}{p_{n}} u_{n} x_{n} \in C \tag{3}
\end{equation*}
$$

whenever $\sum_{i=1}^{n} \frac{p}{p_{i}} u_{i}=1$. This is obvious for $n=2$. Suppose $n \geqq 3$. Let

$$
f_{i} q_{j}=\sum_{j=j_{i_{-1}+1}^{j_{i}}}^{j_{1}} \frac{p}{p_{j}} u_{j} \quad(i=1, \ldots, m)
$$

We have $\sum_{i=1}^{m} e_{i} q_{i}=\sum_{i=1}^{m} f_{i} q_{i}=1$ and $\left(q_{1}, \ldots, q_{i-1}, q_{i+1}, \ldots, q_{m}\right)=\frac{p}{q_{i}}$, thus $p \mid\left(e_{i}-f_{i}\right) q_{i}$, $i=1, \ldots, m$. As $C l(p) \cong C$ we can apply Lemma 1 to have

$$
f_{1} q_{1} x_{1}+\ldots+f_{m} q_{m} x_{m} \in C
$$

Choose integers v_{1}, v_{2} such that $v_{1} p_{1} p_{n}+v_{2} p_{2} \ldots p_{n-1}=1$. Clearly

$$
\begin{gathered}
v_{1} p_{1} p_{n} x+v_{2} p_{2} \ldots p_{n-1} y \in C \\
\left(\frac{p}{p_{1}} u_{1}+\frac{p}{p_{n}} u_{n}\right) x_{1}+\frac{p}{p_{2}} u_{2} x_{2}+\ldots+\frac{p}{p_{n-1}} u_{n-1} x_{n-1} \in C,
\end{gathered}
$$

thus

$$
\begin{gathered}
v_{2} p_{2} \ldots p_{n-1}\left(f_{1} q_{1} x_{1}+\left(1-f_{1} q_{1}\right) x_{n}\right)+ \\
+v_{1} p_{1} p_{n}\left(\left(\frac{p}{p_{1}} u_{1}+\frac{p}{p_{n}} u_{n}\right) x_{1}+\frac{p}{p_{2}} u_{2} x_{2}+\ldots+\frac{p}{p_{n-1}} u_{n-1} x_{n-1}\right)= \\
=\left(v_{2} p_{2} \ldots p_{n-1}\left(\frac{p}{p_{1}} u_{1}+\ldots+\frac{p}{p_{j_{1}}} u_{j_{1}}\right)+v_{1} p_{1} p_{n}\left(\frac{p}{p_{1}} u_{1}+\frac{p}{p_{n}} u_{n}\right)\right) x_{1}+ \\
+\left(1-v_{2} p_{2} \ldots p_{n-1}\right) \frac{p}{p_{2}} u_{2} x_{2}+\ldots+\left(1-v_{2} p_{2} \ldots p_{n-1}\right) \frac{p}{p_{n-1}} u_{n-1} x_{n-1}+ \\
+\left(v_{2} p_{2} \ldots p_{n-1}\left(\frac{p}{p_{j_{1}+1}} u_{j_{1}+1}+\ldots+\frac{p}{p_{n-1}} u_{n-1}\right)+\left(1-v_{1} p_{1} p_{n}\right) \frac{p}{p_{n}} u_{n}\right) x_{n}= \\
=\left(\frac{p}{p_{1}} u_{1}+t_{1} p\right) x_{1}+\ldots+\left(\frac{p}{p_{n}} u_{n}+t_{n} p\right) x_{n} \in C
\end{gathered}
$$

where t_{1}, \ldots, t_{n} are integers with $t_{1}+\ldots+t_{n}=0$. This implies (3) by Lemma 1 .
Finally we drop the assumption $n \geqq 3$ and prove that

$$
\begin{equation*}
\left[C l(p) \cup\left\{\frac{p}{p_{1}} u_{1} x_{1}+\ldots+\frac{p}{p_{n}} u_{n} x_{n}\right\}\right]=\cap\left(C l\left(p_{i}\right) \mid 1 \leqq i \leqq n\right) \tag{4}
\end{equation*}
$$

Let we denote the clone on the left by D. Suppose

$$
d_{1}^{\prime} x_{1}+\ldots+d_{m}^{\prime} x_{m} \in \cap\left(C l\left(p_{i}\right) \mid 1 \leqq i \leqq n\right)
$$

Using the above notations we can suppose $d_{i}^{\prime}=e_{i} q_{i}(i=1, \ldots, m)$, because (4) is: symmetric in p_{1}, \ldots, p_{n}. Applying $p \mid\left(e_{i}-f_{i}\right) q_{i}$ and

$$
f_{1} q_{1} x_{1}+\ldots+f_{m} q_{m} x_{m} \in D
$$

we have

$$
d_{1}^{\prime} x_{1}+\ldots+d_{m}^{\prime} x_{m} \in D
$$

proving that $D \supseteqq \cap\left(C l\left(p_{i}\right) \mid 1 \leqq i \leqq n\right)$. Inclusion \subseteq is obvious. The proof of the lemma is complete.

Lemma 4. Let $m \in N$ and let $q_{1}, \ldots, q_{m}, q>0$ be pairwise relatively prime numbers. If

$$
\begin{equation*}
(C l(1) \supseteqq) C \supset C l\left(q_{1}^{k_{1}} \ldots q_{m}^{k_{m}} q\right) \tag{5}
\end{equation*}
$$

and C contains the polynomial

$$
v q_{1}^{j_{1}} \ldots q_{m}^{j_{m}} q x+\left(1-v q_{1}^{j_{1}} \ldots q_{m}^{j_{m}} q\right) y
$$

where $v \in Z,\left(v, q_{1} \ldots q_{m}\right)=1$ and $1 \leqq j_{i}<k_{i}(i=1, \ldots m)$, then

$$
C \supseteqq C l\left(q_{1}^{j_{1}} \ldots q_{m}^{j_{m}} q\right)
$$

Proof. Let us introduce the notations

$$
p=q_{1}^{j_{1}} \ldots q_{m}^{j_{m}} q, \quad p^{\prime}=q_{1}^{k_{1}} \ldots q_{m}^{k_{m}} q, \quad t=\frac{p^{\prime}}{p}
$$

First suppose $p^{\prime} \mid p^{2}$. By induction on r we show that

$$
P_{r}\left(x_{0}, \ldots, x_{r}\right)=(1-r v p) x_{0}+v p x_{1}+\ldots+v p x_{r} \in C
$$

$P_{1}\left(x_{0}, x_{1}\right)$ is the polynomial given above, and for $r \geqq 2$ we have

$$
\begin{gathered}
P_{r}\left(x_{0}, \ldots, x_{r}\right)=\left((1-v p) P_{r-1}\left(x_{0}, \ldots, x_{r-1}\right)+v p x_{r}\right)+ \\
+(1-r) v^{2} p^{2} x_{0}+v^{2} p^{2} x_{1}+\ldots+v^{2} p^{2} x_{r-1}
\end{gathered}
$$

where $p^{\prime} \mid p^{2}$. Thus

$$
x_{0}+v p x_{1}+(-v p) x_{2}=P_{t}\left(x_{0}, x_{1}, x_{2}, \ldots, x_{2}\right)+v p^{\prime} x_{0}+\left(-v p^{\prime}\right) \dot{x}_{2} \in C .
$$

Applying Lemma 1 and $\left(v p, p^{\prime}\right)=p$, we have $C \supseteqq C l(p)$, as was to be proved.
By the assumption of the lemma there exists a natural number k such that $p^{\prime} \mid p^{2^{k}}$. We can choose k to be minimal with this property. We prove the lemma by induction on k. For $k=1$, the statement was proved in the preceding paragraph. Suppose $k \geqq 2$ and the lemma is true for $k-1$. Obviously

$$
v^{2} p^{2} x+\left(1-v^{2} p^{2}\right) y=v p(v p x+(1-v p) y)+(1-v p) y \in C
$$

$\left(v^{2}, q_{1} \ldots q_{m}\right)=1$ and $p^{\prime} \mid\left(p^{2}\right)^{2 k-1}$, which implies

$$
C \supseteqq C l\left(q_{1}^{2 j_{1}} \ldots q_{m}^{2 j_{m}} q\right)
$$

We can now apply the lemma (case $k=1$) for (5) substituted by (5^{\prime}), hence we have

$$
C \supseteqq C l\left(q_{1}^{j_{1}} \ldots q_{m}^{j_{m}} q\right)
$$

completing the proof of the lemma.
Lemma 5. Let $p>2, q \geqq 1$ be relatively prime numbers. If

$$
(C l(1) \supseteqq) C \supset C l(p q)
$$

and C contains a polynomial

$$
v q x+(1-v q) y
$$

with $v \in Z,(v, p)=(1-v q, p)=1$, then $C \supseteqq C l(q)$.
Proof. Let φ denote Euler's function. Using congruences

$$
(1-v q)^{\varphi(p)} \equiv 1 \quad(\bmod p)
$$

implied by $(1-v q, p)=1$ and
we have

$$
(1-v q)^{\varphi(p)} \equiv 1 \quad(\bmod q)
$$

Clearly

$$
(1-v q)^{\varphi(p)}=1+v^{\prime} p q, \quad v^{\prime} \in Z
$$

$$
\begin{aligned}
& (1-v q)^{\varphi(p)-1}((1-v q) x+v q y)+\left(1-(1-v q)^{\varphi(p)-1}\right) z= \\
= & \left(1+v^{\prime} p q\right) x+(1-v q)^{\varphi(p)-1} v q y+\left(1-(1-v q)^{\varphi(p)-1}\right) z \in C
\end{aligned}
$$

therefore by Lemma 1 and $C l(p q) \subseteq C$ we have

$$
x+u q y+(-u q) z \in C
$$

where $u=(1-v q)^{\varphi(p)-1} v$ and $(u, p)=1$. Applying again Lemma 1 we conclude $C \supseteqq C l(q)$, which completes the proof of the lemma.

Lemma 6. Let $p_{1}, p_{2}, p_{3} \geqq 1$ be pairwise relatively prime odd numbers. If

$$
(C l(1) \supseteqq) C \supset C l\left(2 p_{1} p_{2} p_{3}\right)
$$

and C contains a polynomial

$$
v_{1} p_{2} p_{3} x_{1}+v_{2} p_{1} p_{3} x_{2}+v_{3} p_{1} p_{2} x_{3},
$$

where $v_{i}, i=1,2,3$ are odd integers, then $C \supseteqq C l\left(p_{1} p_{2} p_{3}\right)$.
Proof. We have

$$
\begin{aligned}
& v_{3} p_{1} p_{2}\left(v_{1} p_{2} p_{3} x_{1}+v_{2} p_{1} p_{3} x_{2}+v_{3} p_{1} p_{2} x_{3}\right)+\left(1-v_{3} p_{1} p_{2}\right) x_{3}= \\
= & \left(v_{1} v_{3} p_{2}\right) p_{1} p_{2} p_{3} x_{1}+\left(v_{2} v_{3} p_{1}\right) p_{1} p_{2} p_{3} x_{2}+\left(1-2 t p_{1} p_{2} p_{3}\right) x_{3} \in C
\end{aligned}
$$

with $v_{1} v_{3} p_{2}$ and $v_{2} v_{3} p_{1}$ odd and $C \supseteqq C l\left(2 p_{1} p_{2} p_{3}\right)$, therefore by Lemma 1 we have

$$
x_{3}+u p_{1} p_{2} p_{3} x_{1}+\left(-u p_{1} p_{2} p_{3}\right) x_{2} \in C
$$

where $u=v_{1} v_{3} p_{2}$. We can apply again Lemma 1 to complete the proof.
We remark that Lemma 2 for $p>2$ is the special case $q=1$ of Lemma 5 and Lemma 2 for $p=2$ is the special case $p_{1}=p_{2}=p_{3}=1$ of Lemma 6.

Lemma 7. For any clone C with $C l(1) \supseteq C \supset C l(0)$ there exists a natural number $n>0$ such that $C \supseteqq C l(n)$.

Proof. By assumption C does not coincide with the trivial clone containing projections only and thus contains a polynomial $(1-k) x+k y$ for an integer $k \geqq 2$. If $k=2$ then

$$
C \supseteqq[\{(-1) x+2 y\}]=[\{(-1)(2 x+(-1) y)+2 z\}]=C l(2) .
$$

Suppose now $k \geqq 3$. By induction on r it follows that

$$
P_{r}(x, y)=r k^{r-1}(1-k) x+\left(1-r k^{r-1}(1-k)\right) y \in C
$$

This is clear for $r=1$ and supposing to be true for r it is true also for $r+1$, because

$$
P_{r+1}(x, y)=k P_{r}(x, y)+(1-k)\left(k^{r} x+\left(1-k^{r}\right) y\right)
$$

and $k^{r} x+\left(1-k^{r}\right) y$ is obviously contained in C. Clearly $n=k^{k-2}(1-k)^{2}$ is even and

$$
\begin{aligned}
n x+(1-n) y= & (1-k)^{2}\left(k^{k-2} x+\left(1-k^{k-2}\right) y\right)+\left(1-(1-k)^{2}\right) y \in C \\
& (-n) x+(1+n) y=P_{k-1}(x, y) \in C .
\end{aligned}
$$

To show the inclusion $C \supseteqq C l(n)$ observe that

$$
\begin{gathered}
n(n x+(1-n) y)+(1-n)((1+n) x+(-n) z)=x+n(1-n) y+n(n-1) z \in C \\
(-n)((-n) x+(1+n) z)+(1+n)((1-n) x+n y)=x+n(1+n) y+n(-n-1) z \in C
\end{gathered}
$$

and $(n(n-1), n(n+1))=n$, which by Lemma 1 completes the proof of the lemma.
Proof of the theorem. By Lemma 7, there exists a natural number $n \geqq 1$ such that $C \supseteqq C l(n)$. First we show the existence of p_{1}, \ldots, p_{k} in (1) under the assumption

$$
\begin{equation*}
\left.C \subseteq \cap\left(C l\left(q_{j}^{\prime}\right)\right) \mid 1 \leqq j \leqq m\right) \tag{6}
\end{equation*}
$$

where q_{1}, \ldots, q_{m} are distinct primes and the prime factorization of n is $n=q_{1}^{t_{1}} \ldots q_{m}^{t_{m}}$. To show (1) it suffices to prove the following statement: if $p_{1}, \ldots, p_{k}>1(k \in N)$ are pairwise relatively prime numbers with $p_{1} \ldots p_{k}=n$ and

$$
C \supset \cap\left(C l\left(p_{j}\right) \mid 1 \leqq j \leqq k\right)
$$

then there exists an $i \in N$ with $1 \leqq i \leqq k$ and integers $p_{i}^{\prime}, p_{i}^{\prime \prime}>1$ such that $\left(p_{i}^{\prime}, p_{i}^{\prime \prime}\right)=1$, $p_{i}^{\prime} p_{i}^{\prime}=p_{i}$ and

$$
C \supseteqq \cap\left(C l\left(p_{j}\right) \mid 1 \leqq j \leqq k, j \neq i\right) \cap C l\left(p_{i}^{\prime}\right) \cap C l\left(p_{i}^{\prime \prime}\right) .
$$

Suppose the conditions of this statement are satisfied by C and

$$
d_{1} x_{1}+\ldots+d_{r} x_{r} \in C-\cap\left(C l\left(p_{j}\right) \mid 1 \leqq j \leqq k\right) \quad(r \geqq 2)
$$

This means that there exist two coefficients $d_{i_{1}}, d_{i_{2}}, 1 \leqq i_{1}<i_{2} \leqq r$ and an index i, $1 \leqq i \leqq k$ such that $p_{i} \nmid d_{i_{2}}, d_{i_{2}}$. By symmetry we can assume $i_{1}=1, i_{2}=2$. Now (6) implies that for each $j(1 \leqq j \leqq m)$ all the coefficients but one in $\left\langle d_{1}, \ldots, d_{r}\right\rangle$ are divisible by $q_{j}^{i_{j}}$. Consequently, $\left(p_{i}, d_{1}\right)$ or (p_{i}, d_{2}) is greater than 1 , say $\left(p_{i}, d_{1}\right)=p_{i}^{\prime \prime}>1$. Moreover, if we set $p_{i}^{\prime}=\frac{p_{i}}{p_{i}^{\prime \prime}}$ and $d_{1}^{\prime}=\frac{d_{1}}{p_{i}^{\prime \prime}}$, then we obtain $p_{i}^{\prime} \mid d_{j}$ for $j=2, \ldots, r$, hence $p_{i}^{\prime} \mid d_{2}+\ldots+d_{r}=1-d_{1}$ and obviously $p_{i}^{\prime}>1$. Choose integers u, v such that $u \frac{n}{p_{i}}+$ $+v p_{i}=1$. Since

$$
u \frac{n}{p_{i}}\left(d_{1}^{\prime} p_{i}^{\prime \prime} x+\left(1-d_{1}\right) y\right)+v p_{i} y=u d_{1}^{\prime} \frac{n}{p_{i}^{\prime}} x+\left(\left(1-d_{1}\right) u \frac{n}{p_{i}}+v p_{i}\right) y \in C
$$

and this polynomial separates p_{i}^{\prime} and $p_{i}^{\prime \prime}$, by Lemma 3 the proof of the statement is complete.

It has remained to prove that (6) holds if n is chosen to be minimal with the property $C \supseteqq C l(n)$. Suppose, otherwise,

$$
H=C-\cap\left(C l\left(q_{j}^{\prime}\right) \mid 1 \leqq j \leqq m\right) \neq \emptyset
$$

First we show that H contains a binary polynomial. Assume that either all primes $q_{i}(i=1,2, \ldots, m)$ are odd or $4 \mid q_{1}^{t_{1}} \ldots q_{m}^{\tau_{m}}$. Let $d_{1} x_{1}+\ldots+d_{t} x_{t} \in H, t \geqq 2$. Then there are at least two coefficients not divisible by one of the prime powers $q_{i}^{t_{i}}$, say by $q_{1}^{t_{1}}$. Suppose all the coefficients not divisible by $q_{1}^{t_{1}}$ are $d_{1}, \ldots, d_{r}(r \geqq 2)$ and d_{1}, \ldots, d_{s} ($s \geqq 1$) are not even divisible by q_{1}. If $s=1$ then $q_{1}^{t_{1}} \nmid d_{2}, q_{1} \nmid 1-d_{2}$, hence $d_{2} x+\left(1-d_{2}\right) y \in$ $\in H$. If $s>1$ and, say, $d_{1} \not \equiv 1\left(\bmod q_{1}\right)$, then $q_{1}^{t_{1}} \nmid d_{1}, q_{1} \nmid 1-d_{1}$, thus $d_{1} x+\left(1-d_{1}\right) v \in H$, while if $d_{i} \equiv 1\left(\bmod q_{1}\right)$ for all $i, 1 \leqq i \leqq s$. then $s \geqq q_{1}+1 \geqq 3$, hence $d_{1}+d_{2} \equiv 2\left(\bmod q_{1}\right)$ implies $\left(d_{1}+d_{2}\right) x+\left(1-d_{1}-d_{2}\right) y \in H$.

We reduce the remaining case $q_{1}^{t_{1}}=2$ to the one settled in the previous paragraph by proving that

$$
\left.(H \supseteqq) H^{\prime}=C-\cap\left(C l\left(q_{j}^{\mathrm{j}}\right)\right) \mid 2 \leqq j \leqq m\right) \neq \emptyset
$$

Suppose that, in contrary to our claim, $q_{1}^{t_{1}}=2$ and $C \subseteq \cap\left(C l\left(q_{j}^{t_{j}}\right) \mid 2 \leqq j \leqq m\right)$. Then H contains a ternary polynomial which can naturally be supposed to have form

$$
u_{1} p_{2} p_{3} x+u_{2} p_{1} p_{3} y+u_{3} p_{1} p_{2} z
$$

where $u_{i}(i=1,2,3)$ are odd integers and $p_{i}=q_{r_{i-1}+1}^{t_{i}+1+1} \ldots q_{r_{i}}^{t_{r_{i}}}$ with $1=r_{0} \leqq r_{1} \leqq r_{2} \leqq r_{3}=$ $=m$. Applying Lemma 6 we have $C \supseteqq C l\left(q_{2}^{t_{2}} \ldots q_{m}^{t_{1}}\right)$, contradicting the minimality of n. Any binary polynomial in H can be written in the form

$$
\begin{equation*}
u_{1} q_{1}^{s_{1}} \ldots q_{r}^{s_{r}} x+u_{2} q_{r+1}^{s_{r}+1} \ldots q_{k}^{s_{k}} y \tag{7}
\end{equation*}
$$

with $0 \leqq r \leqq k \leqq m,\left(u_{1}, n\right)=\left(u_{2}, n\right)=1$ and $s_{i} \geqq 1,(i=1,2, \ldots, k)$. For brevity, we introduce the following notations:

$$
\begin{gathered}
p_{1}=q_{1}^{t_{1}} \ldots q_{r}^{t_{r}}, \quad p_{2}=q_{r+1}^{i_{+1}} \ldots q_{k}^{t_{k}}, \quad p_{3}=q_{k+1}^{t_{k+1}} \ldots q_{m}^{t_{m}}=\frac{n}{p_{1} p_{2}} \\
p_{1}^{\prime}=q_{1}^{s_{1}} \ldots q_{r}^{s_{r}}, \quad p_{2}^{\prime}=q_{r+1}^{s_{r+1}^{1}} \ldots q_{k}^{s_{k}}
\end{gathered}
$$

(a) If both $r=k=0$, i.e. $p_{1}^{\prime}=p_{2}^{\prime}=1$, then applying Lemma 5 we get $C=C l(1)$ which contradicts the minimality assumption. Hence we can suppose $r \geqq 1$.
(b) If $k=m$, then there exists an index i with $s_{i}<t_{i}, 1 \leqq i \leqq m$. Set $v_{j}=m$ in $\left(s_{j}, t_{j}\right)(j=1,2, \ldots, m)$. Since

$$
u_{1} u_{2} p_{1}^{\prime} p_{2}^{\prime} x+\left(1-u_{1} u_{2} p_{1}^{\prime} p_{2}^{\prime}\right) y \in C
$$

by Lemma 4 we have $C \supseteqq C l\left(q_{1}^{v_{1}} \ldots q_{m}^{v_{m}}\right)$, contradicting the minimality of n.
(c) Let $k<m$, i.e. $p_{3}>1$. Clearly,

$$
p_{2}^{\prime} p_{3} \mid 1-\left(u_{1} p_{1}^{\prime}\right)^{\varphi\left(p_{3}\right)}
$$

for $u_{1} p_{1}^{\prime}+u_{2} p_{2}^{\prime}=1$, thus (b) applies to polynomial

$$
\left(u_{1} p_{1}^{\prime}\right)^{\varphi\left(p_{3}\right)} x+\left(1-\left(u_{1} p_{1}^{\prime}\right)^{\varphi\left(p_{3}\right)}\right) y \in C
$$

provided the product of the two coefficients are not divisible by n. In the opposite case by Lemma 3 we have

$$
\begin{equation*}
C \supseteqq C l\left(p_{1}\right) \cap C l\left(p_{2} p_{3}\right) \tag{8}
\end{equation*}
$$

If $s_{i}<t_{i}$ is satisfied for an $i, 1 \leqq i \leqq k$, say for $i=1$, then by (8) we can choose integers v_{1}, v_{2} such that

$$
v_{1} p_{2} p_{3}\left(u_{1} p_{1}^{\prime} x+u_{2} p_{2}^{\prime} y\right)+v_{2} p_{1} y \in C,
$$

hence again applies (b). (In case $i>r$ the role of p_{1} and p_{2} has to be interchanged in (8), too.)

Finally, if $p_{i} \mid p_{i}^{\prime}(i=1,2)$ then we rewrite the polynomial (7) in the form $u_{1}^{\prime} p_{1} x+$ $+u_{2}^{\prime} p_{2} y$, where $\left(u_{1}^{\prime}, p_{2} p_{3}\right)=1,\left(u_{2}^{\prime}, p_{1} p_{3}\right)=1$. Applying again (8) we have

$$
v_{2} p_{1}\left(u_{1}^{\prime} p_{1} x+u_{2}^{\prime} p_{2} y\right)+v_{1} p_{2} p_{3} x \in C,
$$

where $\left(v_{2} p_{1} u_{1}^{\prime} p_{1}+v_{1} p_{2} p_{3}, p_{3}\right)=\left(v_{2}, p_{3}\right)=1,\left(v_{2} p_{1} u_{2}^{\prime} p_{2}, p_{3}\right)=1$, thus obviously $p_{3} \neq 2$. Hence by Lemma 5 we have $C \supseteqq C l\left(p_{1} p_{2}\right)$ which contradicts the minimality of n. The existence of p_{1}, \ldots, p_{k} in Theorem 1 is proved.

To prove uniqueness is suffices to show that for any two sequences of pairwise relatively prime numbers $p_{1}, \ldots, p_{k}(\mathrm{k} \geqq 1)$ and $\bar{p}_{1}, \ldots, \bar{p}_{m}(m \geqq 1)$ the inclusion

$$
\cap\left(C l\left(p_{i}\right) \mid 1 \leqq i \leqq k\right) \leqq \cap\left(C l\left(\bar{p}_{j}\right) \mid 1 \leqq j \leqq m\right)
$$

implies that each \bar{p}_{j} divides one of the $p_{i}-s$.
Let we denote the clones above by C and \bar{C}, respectively. Set $p=p_{1} \ldots p_{k}$ and $\bar{p}=\bar{p}_{1} \ldots \bar{p}_{m}$. Choose integers $u_{i}, 1 \leqq i \leqq k$ such that $\sum_{i=1}^{k} \frac{p}{p_{i}} u_{i}=1$. Since

$$
\frac{p}{p_{1}} u_{1} x_{1}+\ldots+\frac{p}{p_{k}} u_{k} x_{k} \in C \subseteq \bar{C}
$$

all the coefficients but one of this polynomial are divisible by \bar{p}_{j}. Assume

$$
\begin{equation*}
\bar{p}_{j} \left\lvert\,\left(\frac{p}{p_{2}} u_{2}, \ldots, \frac{p}{p_{k}} u_{k}\right)=u p_{1} .\right. \tag{9}
\end{equation*}
$$

Applying the obvious inclusion $C l(p) \subseteq \bar{C}$ and the fact that $\bar{p}_{1}, \ldots, \bar{p}_{m}$ are pairwise relatively prime we have

$$
\begin{equation*}
\bar{p} \mid p \tag{10}
\end{equation*}
$$

Suppose $\bar{p}_{j} \backslash p_{1}$. Now (9) and (10) together with the equations (p_{1}, p_{i}) $=1,(i=2, \ldots, k)$ imply u to have a prime factor v with $v \nmid p_{1}$ and $v \mid \bar{p}_{j}$ and hence with $v \left\lvert\, \frac{p}{p_{1}}\right.$. Then

$$
v \left\lvert\, \frac{p}{p_{1}} u_{1}+\left(\frac{p}{p_{2}} u_{2}+\ldots+\frac{p}{p_{k}} u_{k}\right)=1\right.
$$

This contradiction implies $\bar{p}_{j} \mid p_{1}$, hence the proof of Theorem 1 is complete.
3. Applications. Next we state two propositions that reduce the problem of describing all idempotent reducts of an arbitrary abelian group to that of the infinite cyclic group $\langle Z ;+,-, 0\rangle$. Sometimes it will be convenient to use notation Z_{0} instead of Z.

Proposition 1. The clone of an abelian group $\langle G ;+,-, 0\rangle$ is isomorphic to that of $\left\langle Z_{i} ;+,-, 0\right\rangle$, where $i=0$ or $i=m(\geqq 1)$ according to whether $\langle G ;+,-, 0\rangle$ satisfies no nontrivial identity or is of exponent m. In both cases the following map is an isomorphism:

$$
c_{1} x_{1}+\ldots+\left.c_{n} x_{n}\right|_{G} \mapsto c_{1} x_{1}+\ldots+c_{n} x_{n} \mid z_{i}
$$

for every $\left\langle c_{1}, \ldots, c_{n}\right\rangle \in Z_{i}^{n}$.
In particular, this map is an isomorphism between the clones of the full idempotent reducts of $\langle G ;+,-, 0\rangle$ and $\left\langle Z_{i} ;+,-, 0\right\rangle$.

Proposition 2. For every $n \in N$ the lattice L_{n} of all subclones of the clone of the full idempotent reduct of $\left\langle Z_{n} ;+,-, 0\right\rangle$ is isomorphic to the dual principal ideal $[\mathrm{Cl}(n))_{L_{0}}$ of L_{0} generated by $\mathrm{Cl}(n)$, where L_{0} is the lattice of all subclones of the clone of the full idempotent reduct of $\langle Z ;+,-, 0\rangle$. The following map is an isomorphism:

$$
(C l(n) \subseteq) C \mapsto\left\{d_{1} x_{1}+\ldots+d_{m} x_{m}\left|z_{n}\right| d_{1} x_{1}+\ldots+\left.d_{m} x_{m}\right|_{Z} \in C\right\}
$$

The proof of these propositions is straightforward and is therefore left to the reader.

Theorem 2. Let $\langle G ; I\rangle$ denote the full idempotent reduct of the abelian group $\langle G ;+,-, 0\rangle$.
(i) If $\langle G ;+,-, 0\rangle$ satisfies no nontrivial identity, then the lattice received from the lattice of all subclones of I by omitting the least element (i.e., the clone of projections) is dually isomorphic to the subdirect product of the partition lattice $E(N)$ of the set N and countably infinite samples of the chain $Q=\{0 \leqq 1 \leqq \ldots\}$ defined as follows:
$\mathscr{L}_{0}=\left\{\langle\pi, s\rangle \mid \pi \in E(N), s \in Q^{N}\right.$, all but a finite number of components of s equal 0, $s(i)=0$ implies that i constitutes in π a class in itself $\}$
(ii) If $\langle G ;+,-, 0\rangle$ is of exponent $n(>1)$ with prime factorization $n=p_{1}^{t_{1}} \ldots p_{m}^{t_{m}}$, then the lattice of subclones of the clone I is dually isomorphic to the subdirect product of the partition lattice $E(m)$ of the set $\{1,2, \ldots, m\}$ and the chains $Q_{i}=\left\{0 \leqq 1 \leqq \ldots \leqq t_{i}\right\}$, $i=1,2, \ldots, m$ defined as follows:
$\mathscr{L}_{m}^{\left(t_{1}, \ldots, t_{m}\right)}=\left\{\left\langle\pi, s_{1}, \ldots, s_{m}\right\rangle \mid \pi \in E(m), s_{i} \in Q_{i}, s_{i}=0\right.$ implies that i constitutes in π a class in itself $\}$

Proof. First we prove (i). By Proposition 1 it suffices to prove it for the group $\langle Z ;+,-, 0\rangle$. By Lemma 7 the subset obtained from L_{0} by omitting its least element constitutes a sublattice of L_{0} which will be denoted by \tilde{L}_{0}. Consider the following map:

$$
\begin{gather*}
\psi: \mathscr{L}_{0} \rightarrow \tilde{L}_{0} \\
\langle\pi, s\rangle \mapsto \cap\left(C l\left(\prod_{i \in c} p_{i}^{s(i)}\right) \mid c \in \mathbb{C}(\pi)\right) \tag{11}
\end{gather*}
$$

where $\mathbb{C}(\pi)$ means the set of classes corresponding to π and $\left\{p_{1}, \ldots, p_{k}, \ldots\right\}$ is the set of all primes.

By the definition of \mathscr{L}_{0} all but a finite number of terms in the meet in (11) equal $C l(1)$, thus ψ is a map into \tilde{L}_{0}. Obviously, ψ is a monotone order reversing map. Theorem 1 implies ψ to be onto, moreover, in the proof of Theorem 1 we showed uniqueness just by proving that ψ is invertible and ψ^{-1} is also monotonic. Hence ψ is an isomorphism which was to be proved.

By Propositions 1 and 2 (ii) is an easy consequence of (i).

Theorem 3. An abelian group satisfying no nontrivial identity has no minimal nontrivial idempotent reduct.

Let $n>1$ be a natural number with prime factorization $n=p_{1}^{t_{1}} \ldots p_{m}^{t_{m}}$. The clones of the minimal nontrivial idempotent reducts of any abelian group $\langle G ;+,-, 0\rangle$ of exponent n are the following ones:
(a) $\left[\left\{x+n_{i} y+\left.\left(-n_{i}\right) z\right|_{G}\right\}\right]$ for $n_{i}=\frac{n}{p_{i}} 1 \leqq i \leqq m$, provided either $p_{i}^{2} \mid n$ or $m=1$ and $n=p_{1}$;
(b) $\left[\left\{u_{1} q_{1} x+\left.u_{2} q_{2} y\right|_{G}\right\}\right]$ for all pairs of integers $q_{1}, q_{2}>1$ with $\left(q_{1}, q_{2}\right)=1, q_{1} q_{2}=n$ and $u_{1} q_{1}+u_{2} q_{2}=1\left(u_{1}, u_{2} \in Z\right)$.

Proof. Our first assertion is an obvious consequence of Theorem 2. To prove the second statement observe that by Theorem 2 and by Lemma 3 the clones covering $C l(n)$ in L_{0} (i.e. the clones $C \supset C l(n)$ having the property that there does not exist any clone $C^{\prime} \in L_{0}$ with $\left.C \supset C^{\prime} \supset C l(n)\right)$ are the following ones:
(a) ${ }^{\prime}$

$$
C l\left(n_{i}\right)=\left[\left\{x+n_{i} y+\left.\left(-n_{i}\right) z\right|_{z}\right\}\right],
$$

(b) ${ }^{\prime}$
$C l\left(q_{1}\right) \cap C l\left(q_{2}\right)=\left[C l(n) \cup\left\{u_{1} q_{1} x+\left.u_{2} q_{2} y\right|_{z}\right\}\right]$.
We used the same notation as in (a) and (b). Now we can apply Propositions 1 and 2 to complete the proof of the theorem.

Remark. Since ψ given in the proof of Theorem 2 is an isomorphism, for any sequence p_{1}, \ldots, p_{n} of pairwise relatively prime numbers the interval $\left[C l\left(\prod_{i=1}^{n} p_{i}\right)\right.$, $\left.\cap\left(C l\left(p_{i}\right) \mid 1 \leqq i \leqq n\right)\right]_{L_{0}}$ is dually isomorphic to the partition lattice $E(n)$. Hence we can apply the result of SACHS [4] to obtain that the lattice L_{0} generates the variety of all lattices.

The author expresses her thanks to Dr. B. Csákány for his kind help in the preparation of this paper.

References

[1] G. Grätzer, Universal Algebra, Van Nostrand (Princeton, 1968).
[2] J. Plonka, R-prime idempotent reducts of groups, Arch. Math.; 24 (1973), 129-132.
[3] J. Plonka, On groups in which idempotent reducts form a chain, Colloq. Math., 29 (1974), 87-91.
[4] D. Sachs, Identities in finite partition lattices, Proc. Amer. Math. Soc., 12 (1961), 944-945.
[5] W. Taylor, Characterizing Mal'cev conditions, Alg. Univ. 3/3 (1973), 351-397.

