A note on reductive operators

BHUSHAN L. WADHWA

A bounded linear operator T on a Hilbert space H is called a reductive operator if every invariant subspace of T reduces T. In this note, we shall study a local spectral theoretic condition which is satisfied by certain types of reductive operators. Consequently we shall obtain a set of conditions which are sufficient for a reductive operator to be equal to the sum of a normal operator and a commuting quasinilpotent operator. This will provide alternative proofs of some of the results of Jafarian [2], Nordgren-Radjavi-Rosenthal [3] and Radjabalipour [4]. We shall be using the notation and terminology of Dunford and Schwartz [1].

If an operator T has the single valued extension property, called property (A), then it satisfies Dunford's condition (B) if $\sigma(T, x) \cap \sigma(T, y)=\varphi$ implies that $\|x\| \leqq$ $\leqq K\|x+y\|$, where K is independent of x and y. In [5], StampFLI introduced an orthogonality version of condition (B), that is, $\sigma(T, x) \cap \sigma(T, y)=\varphi$ implies that $(x, y)=0$, for all vectors x and y in the Hilbert space H. An operator T with property (A) satisfies Dunford's condition (C) if for each closed set $\delta, H(\delta)=\{x \in H: \sigma(T, x) \subset \delta\}$ is closed subspace. A basic theorem of Dunford [1, page 2147] asserts that an operator, T on a Hilbert space H is spectral (i.e., $T=S+Q$ where S is similar to a normal operator, Q is quasinilpotent and $S Q=Q S$) if and only if T satisfies conditions (A), (B), (C), and (D). It is easy to prove that if in this result the condition (B) is replaced by the orthogonality version of condition (B) then S will be a normal operator and conversely [5, Lemma 7].

Proposition 1. If T is a reductive operator and if T satisfies (A) and (C) then T satisfies the orthogonality version of condition (B).

Proof. For any closed set δ, since T is reductive, $T P_{\delta}=P_{\delta} T$ where P_{δ} denotes the projection of H onto $H(\delta)$. Thus $\sigma\left(T, P_{\delta} x\right) \subset \sigma(T, x)$ for all $x \in H$. If $\sigma(T, x) \cap$ $\cap \sigma(T, y)=\varphi$ then $\sigma\left(T, P_{\delta} y\right) \subset \sigma(T, y) \cap \delta$ where $\delta \doteq \sigma(T, x)$. Thus $\sigma\left(T, P_{\delta} y\right)=0$, and hence $P_{\delta} y=0$.

Received May 13, 1975.

Corollary 1. If T is a reductive spectral operator then $T=N+Q$ where N is normal, Q is quasinilpotent and $N Q=Q N$.

Corollary 2. [3] If T is a reductive operator which is similar to a normal operator then T is normal.

Corollary 3. If T is reductive and if $\sigma(T)$ (the spectrum of T) is totally disconnected then $T=N+Q$.

Proof. If $\sigma(T)$ is totally disconnected then T is spectral if and only if T satisfies the Dunford condition (B) [1, page 2149]. Since T is reductive, the result follows from the proposition.

If T is a reductive operator and if T satisfies conditions (A) and (C), then for each closed set $\delta, \sigma\left(T, P_{\delta} x\right) \subset \sigma(T, x)$ for all $x \in H$, where P_{δ} is the projection of H onto $H(\delta)$. This is the condition (I), introduced by the author in [6], where in it was shown that a decomposable operator T which satisfies condition (I), (in particular if T is reductive decomposable operator), then T is the sum of a normal operator and a commuting quasinilpotent operator. The next theorem is a generalization of this result.

Theorem 1. If T satisfies conditions (A), (C), (I), and if for each closed set δ, $H=H(\delta)+H\left(\bar{\delta}^{\prime}\right)\left[\bar{\delta}^{\prime}\right.$ denotes the closure of the complement of $\left.\delta\right]$ then $T=N+Q$ where N is normal, Q is quasinilpotent, and $N Q=Q N$.

Proof. By Dunford's theorem, we only need to show that T satisfies Dunford's condition (D). In order to show this, it is enough to show that for each closed set δ, $H=H(\delta) \oplus \overline{H\left(\delta^{\prime}\right)}$. Since T satisfies condition (I), it satisfies the orthogonality version of condition (B) and hence $H\left(\delta^{\prime}\right) \subset H^{\perp}(\delta)$ where $H^{\perp}(\delta)$ is the orthogonal complement of $H(\delta)$ in H. Now for any $x \in H^{\perp}(\delta)$, let $x=u+v$, where $u \in H(\delta)$ and $v \in H\left(\delta^{\prime}\right)$. Thus $0=P_{\dot{\delta}} x=u+P_{\delta} v$ and $\sigma(T, u)=\sigma\left(T, P_{\delta} v\right) \subset \delta \cap \sigma(T, v)$. Hence $x \in$ $\in H\left(\delta^{\prime}\right)$. Thus for any closed set $\delta, \overline{H\left(\delta^{\prime}\right)} \subset H^{\perp}(\delta) \subset H\left(\delta^{\prime}\right)$. Now for any open set G which contains $\delta, H^{\perp}(\bar{G}) \subset H\left(\delta^{\prime}\right)$ and hence $H^{\perp}\left(\delta^{\prime}\right) \subset \cap H(\bar{G})=H(\delta)$, where the intersection is taken over all open sets G which contain δ.

Corollary 4. If T is a reductive operator and if T satisfies conditions (A) and (C) and if for each closed set $\delta, H=H(\delta)+H\left(\bar{\delta}^{\prime}\right)$ then $T=N+Q$ where N is a normal operator, Q is quasinilpotent and $N Q=Q N$.

This result appears to be a generalization of Theorem 1.1 of Jafarian [2].
Let $g: s^{1}=\{z:|z|=1\} \rightarrow J$ be an arc length parametrization of a rectifiable Jordan curve. Since J is rectifiable, $g^{\prime}(s)$ exists almost everywhere (with respect to Lebesgue measure) on the unit circle s^{1}. An operator T satisfies the growth condition (G_{m}) if
$\left\|(\lambda-T)^{-1}\right\| \leqq M[\operatorname{dist}(\lambda, \sigma(T))]^{-m}$ for all $\lambda \in \varrho(T)$ and $|\lambda| \leqq\|T\|+1$, where $\varrho(T)$ denotes the resolvent set of T.

Theorem 2. Let T be an operator such that $\sigma(T)$ is contained in a rectifiable Jordan curve J. If T satisfies the growth condition $\left(G_{m}\right)$ and the condition (I) then $T=N+Q$ where N is normal operator, Q is quasinilpotent and $N Q=Q N$.

Proof. Since T satisfies the growth condition $\left(G_{m}\right)$ and $\sigma(T)$ lies on J, it follows from [7, Theorem 11] that $H(\delta)$ is closed subspace of H for every closed set δ. Also from the proof of [7, Theorem 10], it follows that for any $w_{1}, w_{2} \in J, w_{i}=g\left(s_{i}\right)$ are such that $g^{\prime}\left(s_{i}\right)$ exists, $H=H\left[w_{1}, w_{2}\right]+H\left[w_{2}, w_{1}\right]$ where $\left[w_{1}, w_{2}\right]=\left\{g(s): s_{1} \leqq s \leqq s_{2}\right\}$. By Theorem 1, we only need to show that for each closed set $\delta, H=H(\delta)+H\left(\bar{\delta}^{\prime}\right)$, i.e., $H^{\perp}(\delta) \subset H\left(\bar{\delta}^{\prime}\right)$. Now suppose that there exist $x \in H^{\perp}(\delta)$ such that $\sigma(T, x) \cap \delta^{0} \neq \varphi$ (δ^{0} denotes the interior of δ). Then we can find $w_{1}, w_{2} \in J$ such that $w_{i}=g\left(s_{i}\right)$ and $g^{\prime}\left(s_{i}\right)$ exists, $\sigma(T, x) \cap\left[w_{1}, w_{2}\right] \neq \varphi$ and $\left[w_{1}, w_{2}\right] \subset \delta$. Let $x=x_{1}+x_{2}$ where $x_{1} \in H\left[w_{1}, w_{2}\right]$ and $x_{2} \in H\left[w_{2}, w_{1}\right]$, then $0=P_{\delta} x=x_{1}+P_{\delta} x_{2}$. Thus $\sigma\left(T, x_{1}\right)=\sigma\left(T, P_{\delta} x_{2}\right) \subset \delta \cap \sigma\left(T, x_{2}\right)$, i.e., $\sigma(T, x) \subset \delta$.

References

[1] N. Dunford and J. T. Schwartz, Linear operators. III, Spectral operators, Wiley-Interscience (New York, 1971).
[2] A. A. Jafarian, On reductive operators, Indiana University Math. J., 23 (1974), 607-613.
[3] E. Nordgren, H. Radjavi and P. Rosenthal, On operators with reducing invariant subspace, to appear.
[4] M. Radjabalipour, Growth conditions, spectral operators and reductive operators, Indiana University Math. J., 23 (1974), 981—990.
[5] J. G. Stampfli, Analytic extensions and spectral localization, J. Math. Mech., 16 (1966), 287-296.
[6] B. L. Wadhwa, Decomposable and spectral operators on a Hilbert space, Proc. Amer. Math. Soc., 40 (1973), 112—114.
[7] B. L. Wadhwa, Operators with spectrum in a C^{1}-Jordan curve, Duke Math. J., 41 (1974), 645-654.

