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Commutants of C0(N) contractions 
P E I Y U A N W U 

1. Introduction. Let § be a complex separable Hilbert space and T a bounded 
linear operator on § . Let Lat T denote the lattice of all closed subspaces invariant 
under T. Let s f T , {T}", and {T}' denote the smallest weakly closed subalgebra of 
38 (§) containing T and /, the double commutant of T, and the commutant of T, 
respectively. P. ROSENTHAL and D. SARASON, independently, asked the question: 
If A^{T}' and Lat Ta Lat A, is A in j / r ? An affirmative answer to this would 
imply affirmative answers to other unsolved problems (cf. [ 3 ] ) . BRICKMAN and FILL-

MORE [1] showed that this is true if T is an operator on a finite dimensional Hilbert 
space. Imitating their proof, it is not difficult to show that this also holds for 
algebraic operators. Recently, A. FEINTUCH [4] proved that if T is a compact opera-
tor with infinite spectrum then we also have the conclusion. In this paper we add one 
more class of operators to this list. We show that this holds for C0(N) contractions. 
We also show that such contractions are in class (dc) as defined in [14], that is, they 
satisfy s/T={T}". Our proofs are largely dependent on the remarkable work of 
B . SZ.-NAGY and C . FOIA§ on the structure of C0(N) contractions, namely, the func-
tional models and Jordan models for such operators. A very brief description of 
these models will be given in § 2. The main reference for this part will be [13] and [11]. 
From time to time definitions and results will be taken from there without specifica-
tion. § 3 contains the proofs of our main theorems. 

An operator T is reflexive if Lat Ta Lat A implies A £ . The questions con-
cerning reflexive operators asked by J. DEDDENS in [3] can now be answered for 
C0(N) contractions. These are contained in § 4, along with some characterizations 
for multiplicity-free contractions (cf. [10]). This provides more evidence of the analogy 
between C0(N) contractions and operators on finite dimensional spaces. We also 
give sufficient conditions for such contractions to be reflexive. 

Finally, we conclude in § 5 with some remarks and open questions related to the 
previously given results. 
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The author wishes to thank Dr. John B. Conway for several interesting dis-
cussions concerning some topics in this paper. 

In the following C will denote the complex plane and D the open unit disk in C. 

2. Preliminaries. Let T be a contraction on the Hilbert space T is of class 
C0(N), JVs 1, if T"-*0 and r * " - 0 in the strong operator topology as n-<*,, and the 
defect indices — 

dT = Rank (.I-T*T)112 and dT* = R a n k ( / - 7 T + ) 1 / 2 

are both equal to N. Let 0T(A) denote the characteristic function of T. Note that if 
T is of class C 0 ( J V ) , 6>r(A) is an inner function ("inner f rom both sides" in the ter-
minology of [13]), that is, 0T(e") is a unitary operator on CN for almost all t. With 
respect to a fixed orthonormal basis of CN, 0 r ( A ) can be represented as an N by N 
matrix over H°° (the space of complex bounded analytic functions defined on D). 
Let Hx denote the space of analytic functions from D to C'v which are square-
integrable. 

Now we assume T is a C0(N) contraction. Then T is unitarily equivalent to the 
compression of the shift on the space H ^ Q 0 T H ^ , that is, the operator T defined by 

(T*/ ) W = f ( X ) ~ m for A€D and fiH2
NQ0TH2. 

This will be called the functional model for T. From now on we will always consider 
the C0(N) contraction T as in its functional model. Moreover, to each factorization 
0T(A) = 02(X)01 (A) of 0T(A) as a product of two inner functions there corresponds a 
subspace 

02H%Q0tH2
n 

invariant under T and all the invariant subspaces for T can be obtained in this way. 
A contraction T is of class C0 if T is completely non-unitary (c.n.u.) and there 

exists a function u^0 in H™ such that u(T)=0; in this case u can be taken to be an 
inner function which is minimal in the sense that it will be a divisor of any inner 
function v for which v(T)=0. Such an inner function is unique up to a constant factor 
of modulus one; it will be called the minimal function of T and denoted by mT. 
Note that a C0(N) contraction is of class C„ and det 0T, the determinant of its cha-
racteristic function 6>r(A), is also an inner function; moreover m T divides d e t 0 r , 
and det 0T divides m1^. 

For a c.n.u. contraction J on § , a functional calculus can be defined for some 
functions. Indeed, let NT denote the class of functions which are of the form <p=v~1u 
where u, v£H°° and v(T) is an injective operator with dense range in § (called a quasi-
affinity); for such a function <p define 

cp(T) = v{T)-H(T). 
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This definition does not depend on the particular choice of the representation 
<p=u/v and, in general, <p(T) may not be a bounded operator. If (p(T) is a bounded 
operator, then <p(T) is in the double commutant {T}" of T. For C0(N) contractions, 
we have the converse: 

T h e o r e m 2.1. (see [11]) If T is a C0(N) contraction for some TVs 1, then 
{T}"(z{(p(T): <p£NT). 

Two operators Ti and T2 are quasi-similar if there exist quasi-affinities X and Y 
such that 

T1X=XT2 and T2Y=YT1. 

A C0 contraction T on H is called multiplicity-free if one of the following equiv-
alent conditions holds (cf. [10] and [12]): 

(i) T has a cyclic vector, i.e. a vector x0 such that § is spanned by T"x0 (n = 
= 0 , 1 , 2 , . . . ) ; 

(ii) T i s quasi-similar to the operator S(mT) defined on §>(mT) = H2Q mTH2 by 

( S ( m r ) * / ) f f l - / ( A ) ~ / ( Q ) for A€D and / € § ( w r ) . 

Every C0(N) contraction T is quasi-similar to a uniquely determined operator 
of the form 

(2) Sim,) © S(m2) © • • • © S(mk), 

where m1,m2, . . . , mk are nonconstant inner functions each of which is a divisor of its 
predecessor. This operator (2) is called the Jordan model of T. In the proof of our 
main theorem we will need another version of the Jordan model, which we state as 

T h e o r e m 2.2. (see [11]) Let T be a contraction of class C0{N), N^l on the 
space §>. Then there exist invariant subspaces § i , $ 2 f ° r T such that § = V , 

( V S , ) n ( V S y ) = {0} 
•ei jiJ 

for any non-empty disjoint decomposition {I, / } of the set {1,2, . . . , k), and Ti=T\9) { 

is multiplicity-free. Moreover, if mt is the minimal function of T{, then mt is a divisor 
of mi_1for all i and m, coincides with the minimal function of T. 

Another result needed in the sequel is the following. 

T h e o r e m 2.3. Let T be a contraction of class C0{N) with the minimal functionmT. 
Let u = uiuebe the canonical factorization of a function u£H°° as the product of its 
outer factor ue and inner factor ut. Then u(T) is a quasi-affinity if and only if u{ and 
mT have no non-trivial common inner factors. 

13' 
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The proof of this theorem is essentially contained in [13] Prop. III. 4.7 (b) 
with minor changes; also compare [6] Theorem 2.5. We leave the details to the readers. 

3. Main Theorems. A subspace ft is bi-invariant for T if ft is invariant under 
every operator in {T}". 

T h e o r e m 3.1. Let Tbe a contraction of class C0(N), N^l. Then every invariant 
subspace for T is bi-invariant. 

P r o o f . Let ©T be the characteristic function of Tand consider Tin its functional 
model as the compression of the shift on the space § = / / ^ 9 0 X / / 2 . Let ft = 0 2 # 2 9 
© 0TH£ be an arbitrary invariant subspace for T, with the corresponding factor-
ization 

©T(A) = 02(A)©! (A). 

Let A be an operator in {T}". Then A=cp(T) = v(T)~1u(T) for some (p£NT (by 
Theorem 2.1). 

L e t / = 0 2 g be a vector in ft and set h=Af=v(T)~1u(T)f. (As all these vectors 
are contained in the space they can be considered as column TV-vectors.) 

We want to show that /?€ft. Since v(T)h = u(T) f=u{T)(02g), we have PH(vh) = 
=PH(u02g). If follows that vh—u02g£0THx, and hence, 

(3) vh = 02w for some 

Carrying out the matrix multiplication and using Cramer's rule we have 

(4) Wj det 02 = v det i>/; 

where <Pj is the N by N matrix obtained from 0 2 by replacing the y'-th column 
by the column vector h. Note that v(T) is a quasi-affinity. By Theorem 2.3, vt and mT 

have no non-trivial common inner factor. As m r |det 0T\ w j , f j and det 0J, and 
consequently v{ and det 0 2 , have no non-trivial common inner factor, either. From 
(4), we conclude that v is a divisor of wJt for j= 1,2, . . . , N. Say, Wj=vXj. It is easily 
seen that XTZH2 and equation (3) can be simplified to h = 02x. Hence h is an element 
of 02H$Q0TH%=R. This shows that ft is invariant under A, completing the proof. 

T h e o r e m 3.2. Let T be a contraction of class C0(N), N^l. Then dT={T}". 

P r o o f . For any operator A, we denote the operator A®A®...®A by A("\ 

Let A € {T}". It is easily verified that A(n) 6 {T(n)}" for any n = 1, 2, . . Note that T(n) 

is a contraction of class C0(nN). If follows from Theorem 3.1 that any invariant 
subspace for T<-") is invariant under A(n\ that is Lat T(n) a Lat A(n), for any n. 
Hence A is in s f r ([8] Theorem 7.1). This shows that {T}"c:s/T. Since jtfT<z{T}" 
holds for any operator T, this completes the proof. 
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Now we are ready to prove our main theorem. The proof here is very similar 
to the one given by BRICKMAN and FILLMORE [1] for operators on finite dimensional 
spaces in that both use some kind of "Jordan model." 

T h e o r e m 3.3. Let T be a contraction of class C0(N), N^l. If Ad{T}' and 
Lat TczLat A, then A^stT. 

P r o o f . Let § 2 , ••• > §>k be the invariant subspaces for T such that 

(5) (a) § = VS . , (b) (V S«)H( V = {0}, 
> •"€/ j € / 

for any decomposition {I, / } of {1, 2, ..., A:} and Tt = T\§>t is multiplicity-free with 
minimal function wf satisfyingm^m^i for a l l / a n d m i = m T (Theorem 2.2). Let xtdHt 

be a cyclic vector for Tt ( /=1 ,2 , ..., k). Consider the cyclic invariant subspace K 
generated by a : = - t - + . . .+ jc f t . We claim that the minimal function m0 of 
To—Tift coincides with mT . Indeed, since 

ma{T0)x = m0(T)x1+ - + m0(T)xk = 0, 

by (5b) we have mo(T)x1=0. It follows that w o (7 , )§ 1 =0. Hence m1=mT is a divisor 
of m0. On the other hand, since mT(T)Sk=0, m0 is a divisor of mT. This shows that 
m0 coincides with mT , as asserted. 

Since ft is invariant under T, it is also invariant under A. Let A0=A\$\. Since 
and T0 is a multiplicity-free contraction, it is proved by SZ. -NAGY and 

u 
FOIA§ [ 1 0 ] that A0=(p{T^) for some <p£NT . Say, < P = — , where u, v£H°° and v(T0) 0 v 
is a quasi-affinity. Hence A0=v(T0)~1u(T0) on ft. In particular, v(T0)A0x=u(T0)x. 
Equivalently, we have 

v(T)Ax1+ ••• +v(T)Axk = u(T)x1+ •••+u(T)xk. 

By (5b), this implies that v(T)Axi=u(T)xt for all /. Hence we have v(T)A = u(T) 
on §( for all /. It follows that v(T)A=u(T) on § (by (5a)). We want to show that 
Ae {T}". For any B€ {T}', we have 

(6) v(T)AB = u(T)B = Bu(T) = Bv(T)A = v(T)BA. 

Since v(T0) is a quasi-affinity on ft, and m0 have no non-trivial common inner 
factor, where vt denotes the inner factor of v (by Theorem 2.3). As shown before, 
m0 coincides with mT. Hence and mT have no non-trivial common inner factor. 
This implies that v(T) is a quasi-affinity (by Theorem 2.3 again!). From (6), we 
conclude that AB=BA, that is A 6 {T}". On account of Theorem 3.2 the proof is done. 

4. Miscellaneous results. Corollaries 4 . 1 , 4 . 2 and 4 . 3 below answer DEDDENS' 

questions [3] positively for Cn(N) contractions. The proofs are routine. We include 
them here for completeness.. 
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C o r o l l a r y 4.1. If T is a C0(N) contraction contained in a commutative 
reflexive algebra si, then T is reflexive. 

Note that a weakly closed algebra si is reflexive if si = {A: Lat siczLat A}, 
where Lat si denotes the lattice of subspaces invariant under every operator in si. 

P r o o f . Let S be an operator such that Lat T t L a t S. Since T£si, we have 
Lat siaLat T. Hence Lat c L a t S. The reflexivity of si implies that S^si. 
Hence ST=TS, that is, S€{r} ' . By Theorem 3.3, we conclude that S£siT. This 
shows that T is reflexive. 

C o r o l l a r y 4.2. Let Tx and T2 be C0(N) contractions. If 7\ and T2 are reflexive 
then Tx © T2 is reflexive. 

P r o o f . Let S be an operator such that Lat (T1®T2)a.Lat S. It is easily seen 
that S must be of the form S1®S2, where Sx and S2 are operators satisfying Lat 7 \ c 
c L a t S j and Lat T^c Lat S2. The reflexivity of 7\ and T2 implies that S1£siT 

and S2esiTi. We have S i f E ^ } ' and S2€{T2}'. Hence S=S1®S2^{T1® T2}'. 
By Theorem 3.3, we conclude that S ^ s i T i Q T i . Hence T 1®T 2 is reflexive, as asserted. 

C o r o l l a r y 4.3. If T is a C0(N) contraction, then T (n) is reflexive for any 
n=2, 3, .. . . 

P r o o f . We first show that T®T is reflexive. Let S be an operator such that 
L a t i r e ^ c L a t S. It is easily seen that S must be of the form 5j © , where 
S1 is an operator satisfying Lat T c Lat St. Note that for any two operators A, B, 
AB=BA if and only if the graph of A is an invariant subspace for B@B. Since 
L a t ( r © 7 , ) c L a t ( S ,

1 © 5 1 ) , we deduce that SV^r}" . Hence S ^ f r } ' and S= 
= S1©5'1€ { r © r } ' . Using Theorem 3.3 we have S£s/T(BT, which shows that 
T® T is reflexive. Now we want to show that Tw is reflexive for any Let V be 
an operator such that Lat 7~ (n )cLat V. As before, we have V— V\n) for some operator 
V1 satisfying Lat Tcz Lat V1. From Lat T ( n ) c L a t K[n) we deduce that Lat T ( 2 ) c 
c L a t K ® . By what we just proved, K ( 2 )6^r<2)C{r ( 2 )}' . Hence V^{T} ' and 
F ^ j r * " » } ' . It follows from Theorem 3.3 that V=V(?)£siTi„>. Hence T(n) is reflex-
ive, completing the proof. 

It was proved by SZ. -NAGY and FOIA§ that a C0(N) contraction Tis multiplicity-
free if and only if {T}' is abelian, or equivalently, {T}"={T}'. (This and other 
characterizations can be found in [10] and [12].) The next corollary gives some other 
equivalent conditions. 

C o r o l l a r y 4.4. Let Tbe a contraction of class C0(N), N^l. Then the following 
are equivalent to each other: 

(i) T is multiplicity-free; 
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(ii) s/T—{T}'; 
(iii) {T}' is a singly generated algebra; 
(iv) {T\ is a maximal abelian algebra, that is, {T}' is abelian and if si is a weakly 

closed abelian algebra containing {T}', then st = {T}'; 
(v) Every invariant subspace for T is hyperinvariant, that is, invariant under 

every operator in {T}'. 
If this is the case, then stT={T}"={T}' a{<p(T): (p£NT}. 

P r o o f . That (i) implies (ii) follows from Theorem 3.2 and the remark given 
above; (v) implies (ii) follows from Theorem 3.3. Other implications are clear. 

It seems to be unknown whether reflexive operators are preserved under quasi-
similarities. (Note that they are preserved under similarities.) The next corollary 
makes a modest step in this direction. 

C o r o l l a r y 4.5. Let 7\ and T2 be C0(N) contractions which are multiplicity-free. 
Assume 7\ is quasi-similar to T2. Then 7\ is reflexive if and only ifT2 is. 

P r o o f . By symmetry, we have only to show half of the assertion. Assume 
7\ is reflexive. Let X and Y be quasi-affinities such that TxX=XT2 and r 2 K = YTX. 
Let S be an operator with Lat T2 c Lat S, and J^ be an invariant subspace for 7\ . 
Assume m is the minimal function of 7\|i-tx. Let be the unique invariant subspace 
for T2 for which T2\R2 has minimal function m (cf. [10]). Note that ftj = {x: m{T1)x= 
=0} and ft2={y: m(T2)y=0} ([10]). For any x£Rx, we have m(T2) Yx= Ym(T1)x=0. 
This implies that Yx£$t2. Since is invariant for S, we have SYx£S\2. Hence 
m(T1)XSYx=Xm(T2) SYx=0. This shows that XSYx£S<lt and hence ftxis invariant 
under XSY. Since is arbitrary, we conclude that XSY£sfTi (by the reflexivity of 
Ti). In particular, XSY commutes with Tx. Since X, Y are quasi-affinities, it is easily 
seen that S must commute with T2. Using Theorem 3.3, we have This shows 
that T2 is reflexive, completing the proof. 

As a special case, we have 

C o r o l l a r y 4.6. Let <pl5 cp2 be (scalar valued) inner functions with (<px, <p2) = 1, 
'.and <p — (p1-(p2. Let SicpJ, S(<p2) and S(<p) denote the corresponding compressions 
of the shift acting on §(<?i), §(<p2) and §(<?>), respectively. Then the following are 
equivalent to each other: 

(i) S((pj) and S(<p2) are reflexive; 
(ii) 5 ( ^ ) 0 S(cp2) is reflexive; 

(iii) S(cp) is reflexive. 

P r o o f . The equivalence of (i) and (ii) is proved in [2]. The equivalence of (ii) 
and (iii) follows from Corollary 4.5 and the fact that S(<pj)© S{(p2) and S{<p) are 
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quasi-similar to each other for relatively prime inner functions <plt <p2 (cf. [9], pp. 
50—51). 

J. ERDOS has asked whether operators with the property that their invariant 
subspaces are all spanned by eigenvectors are necessarily reflexive. The next corollary 
answers the question positively for C0(N) contractions. Note that for such contrac-
tions, that all invariant subspaces are spanned by eigenvectors is equivalent to the 
fact that the minimal function is a Blaschke product with simple zeros (cf. [13], 
Prop. III. 7.2). 

C o r o l l a r y 4.7. If T is a C0(N) contraction on Sj whose minimal function 
mT is a Blaschke product with simple zeros, then T is reflexive. 

P r o o f . Let S be an operator such that Lat TaLat S. Let {A,} be the zeros of 
mT. Then {A,} are eigenvalues for T. If denotes the subspace of eigenvectors asso-
ciated with then ( /=1, 2, ...) span (cf. [13], Prop. III. 7.2). Each being 
invariant for T, is invariant under S. Hence for we have 

TSx i = AiSx j = SA;*; = STx[. 

This shows that Tand S commute on /=1 , 2, .... It follows that TS= ST on 
By Theorem 3.3, we have Hence T is reflexive, as asserted. 

Note that the condition we give here is, in general, not necessary. As an example, 
consider the operator S(cp)® S(q>), which is reflexive for any inner function <p 
(by Corollary 4.3). However, for compressions of the shift we-have 

C o r o l l a r y 4.8. Let cp be a Blaschke product and S(<p) the corresponding com-
pression of the shift. Then S((p) is reflexive if and only if (p has only simple zeros. 

In the proof we will need the following simple fact, due to DEDDENS [3 ] , con-
cerning unicellular operators, the proof of which is included here for completeness. 
Recall that an operator T is unicellular if Lat T is totally ordered. 

L e m m a 4.9. No unicellular operator on a space with dimension ^ 2 is reflexive. 

P r o o f . Let T be a unicellular operator acting on § which is reflexive. Let , 
be invariant subspaces for T and P1 the (orthogonal) projection onto . We have 
c § 2 or § 2 c § ! . In either case will leave § 2 invariant. Since § 2 is arbitrary, by 

the reflexivity of T we have P ^ s f j . Thus P± commutes with T. Hence both ^ and 
Si1 are invariant under T. Then ^ c ^ 1 or S^cf?» and we have = {0} or = 
This shows that the only invariant subspaces for Tare {O^and Thus every operator 
on § is in hence commutes with T. A standard argument shows that Tis a scalar 
multiple of the identity. Obviously, this cannot happen unless dim § = 0 or 1, which 
proves our assertion. 
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P r o o f of C o r o l l a r y 4.8. We have only to show that if S((p) is reflexive 
then (p has only simple zeros. Assume that A0 is a zero of cp with multiplicity n0^2. 
We have (p(A)=<p0(X)(px(A), where 

and <px(X) is a Blaschke product with <px(A0)^0. Since (<p0, <Pi) = 1, the reflexivity 
of S((p) implies the reflexivity of S((p0) (by Corollary 4.6). But it is easily seen that 
S(q>0) is a unicellular operator on a space with dimension w0 = 2. By Lemma 4.9 we 
have a contradiction, which proves our assertion. 

Consider an inner function (p (A)=\l/(X)t] (A) factored as the product of a Blaschke 
product xj/ (A) and a singular inner function q (A). (For the structure of scalar valued 
inner functions consult [7].) Since (\j/, rj) = l, we conclude, by Corollary 4.6, that 
S(q>) is reflexive if and only if S(\p) and S(rj) both are reflexive. The preceding co-
rollary gives a complete characterization for S(\j/) being reflexive. As for the case of 
S(rj), we are not so fortunate. We have only the following partial result. 

Recall that a singular inner function f?(A) is a function of the form 

where fi is a finite positive Borel measure on the unit circle C which is singular with 
respect to Lebesgue measure. The measure /i has an atom E, if E is a Borel subset with 
/ ( ( £ ) > 0 and for any Borel subset F of E we have n(F) =0 or n(E\F)=0. 

C o r o l l a r y 4.10. If t] is a singular inner function whose associated measure n has: 
an atom, then S(rj) is not reflexive. 

P r o o f . Let E be an atom of ¡x. Consider the functions >iE(X)=ri(jiE; A) and' 
r lc\E^-)= r l(i lc\E^ A), where and h c \ e a r e the restrictions of the measure n to the 
sets E and C\E, respectively. Note that ri(X)=r]E(X)ric^E(X) and {r\E, ?/C\E) = ' • If 
S{t]) is reflexive, so is S(t]E) (by Corollary 4.6). As any inner factor of rjE(p; A) 
must be of the form t]E(ap; A) for some a€[0, 1], the lattice of invariant subspaces 
of S(t]E) is totally ordered, that is, S(t]E) is unicellular. By Lemma 4.9 this can happen 
only when the space on which S(riE) is acting has dimension ^ 1 . However, this is-
impossible for a singular inner function r\E. This shows that S{tf) cannot be reflexive. 

Note that the preceding result does not hold for C„ (N) contractions with singular, 
atomic minimal functions. (Consider the direct sum of a compression of the shift with 
itself.) On the other hand, whether C0(N) contractions with singular, totally non-
atomic minimal functions are indeed reflexive is still unknown. C. FOIA§ [5] has shown 
that S((p) is reflexive for certain singular <p with totally non-atomic measures. 
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W e r e m a r k t h a t Coro l la r ies 4 . 8 a n d 4 . 1 0 have been o b t a i n e d ear l ier by J . CONWAY 

a n d , independen t ly , by B. MOORE, I I I a n d E . NORDGREN (unpubl i shed) . 
5. Concluding r emarks . A s the J o r d a n mode l s f o r C0(N) con t r ac t i ons have 

been general ized t o C 0 con t r ac t i ons wi th finite mul t ip l ic i ty (cf. [12]), it seems likely 
t h a t o u r m a i n t h e o r e m s in § 3 h o l d in this m o r e general contex t . H o w e v e r the p r o o f s 
we gave d o n o t seem t o b e readi ly ex tended t o cover th is case. 

W e also r e m a r k t h a t if t he answer t o R o s e n t h a l a n d S a r a s o n ' s q u e s t i o n (cf. § 1) 
is aff i rmat ive , m o s t of t he resul ts we gave in § 4 will h o l d f o r a r b i t r a r y ope ra to r s . 

Final ly , we raise the fo l lowing ques t ion t o conc lude this p a p e r : If TX a n d T2 a r e 
C0(N) con t r ac t i ons wh ich a re quasi -s imi lar t o each o ther , is it t r ue t h a t TX is reflexive 
if a n d on ly if T2 is? (The answer is " y e s " f o r C0(N) con t r ac t i ons w h i c h a re mult ipl i -
ci ty-free.) 
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