On a convolution theorem

LEONARD Y. H. YAP

Let G be a non-discrete locally compact Abelian group and let $1 \le q < \infty$. DIEUDONNÉ [3] showed that $f \ast L^q(G) \ne L^q(G)$ for every $f \in L^1(G)$. In [2], BURNHAM and GOLDBERG proved Dieudonné's result for q=1 by considering Banach algebras with elements which are "generalized divisors of zero", and an extension to Banach modules yields Dieudonné's result for $1 < q < \infty$. In this note we give a simple, elementary proof of the following result.

Theorem. Let G be a non-discrete locally compact Abelian group and let $1 \le q \le \infty$. Then $L^1(G) * g \ne L^q(G)$ for every $g \in L^q(G)$.

Proof. Suppose $L^1(G) * g = L^q(G)$ for some $g \in L^q(G)$. Then there exists $j \in L^1(G)$ such that j * g = g. Now if $h \in L^q(G)$, then h = k * g for some $k \in L^1(G)$, and hence j * h = j * k * g = k * j * g = k * g = h. Thus j * h = h for every $h \in L^q(G)$. Now for any $f \in L^1(G)$, choose a sequence $\{h_n\}$ in $L^1(G) \cap L^q(G)$ such that $\|h_n - f\|_1 \to 0$ as $n \to \infty$. Then $\|j * f - f\|_1 \le \|j * f - j * h_n\|_1 + \|j * h_n - f\|_1 \le \|j\|_1 \|f - h_n\|_1 + \|h_n - f\|_1 \to 0$. Thus jis an identity element for $L^1(G)$. But this is impossible, since G is non-discrete.

Remark 1. It is clear that the set $L^{q}(G)$ in the preceding theorem can be replaced by many other sets, and we mention some examples below.

(i) If B is any dense subset of $L^1(G)$ with $L^1(G) * B \subset B$, then $L^1(G) * g \subseteq B$ for every $g \in B$. In particular, if S(G) is a Segal algebra in $L^1(G)$, then $L^1(G) * g \subseteq S(G)$ for every $g \in S(G)$.

(ii) If $g \in L^{pq}(G)$, then $L^1(G) * g \subseteq L^{pq}(G)$. See BLOZINSKI [1, 2.9] and YAP [5, (4.2)] for the relevant facts.

Remark 2. KROGSTAD [4] has used the above theorem (with q=1) to show that the union of all proper Segal algebras on G is $L^1(G)$. This answers a question of H. C. WANG.

Received April 6, 1975.

References

- [1] A. P. BLOZINSKI, On a convolution theorem for L(p, q) spaces, Trans. Amer. Math. Soc., 164 (1972), 255-265.
- [2] J. T. BURNHAM and R. R. GOLDBERG, The convolution theorems of Dieudonné, Acta Sci. Math., 36 (1974), 1-3.
- [3] J. DIEUDONNÉ, Sur le produit de composition. II, J. Math. Pures Appl., (9) 39 (1960), 275-292.
- [4] H. E. KORGSTAD, Multipliers on Segal algebras, to appear.
- [5] L. Y. H. YAP, Some remarks on convolution operators and L(p, q) spaces, Duke Math. J., 36 (1969), 647-658.

5

DEPARTMENT OF MATHEMATICS UNIVERSITY OF SINGAPORE SINGAPORE 10 REPUBLIC OF SINGAPORE