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Jordan model for some operators

HARI BERCOVICI

“ The aim of this Note is to find the Jordan model of a C, operator whose cha-
racteristic function coincides with e, (z)= =exp [A —] where 4 is a bounded posi-

tive operator acting on a separable Hilbert space K. This problem was proposed by
C. Foias for =L2(0, 1) and the operator 4 defined by (4f)(x)=xf(x), f€L2(0, 1).

1. Preliminaries

We will frequently use the following assertion. If ‘7, T” are two quasisimilar
completely non-unitary contractions, méEéH™, R=(ranm(T))” and R'=
=(ran m(T”))~, then T|R and T”|R’ are also quasisimilar (cf. [2]).

Let us recall that if the operator T is acting on $, lts multlphcny ur is dcﬁned

as the minimum cardinality of a subset M H such that V T"M=%.If T and T’
are quasisimilar, then u; =ur (cf 3.
Proposition A. (cf. [4], [5], [1]) Let T be a C, operator acting on.a separable

Hilbert space. Then there exists a sequence {m.);_, of inner functions suchythat:
(1) m; ., divides m; for each j,

(2) T is quasisimilar to 6"9 S(m));
ji=1

3) my=my;
- (@) n=pr (E).
The sequence {m j}j=1 is umquer determmed by conditions (1) and (2)

The operator @ S(m,) is called the Jordan model of 7. An operator of the form
j=1 : '

é S(m;), for which (1) holds, is called a Jordan operator.
j=1
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Let us recall that with each inner function {&, &, @(z)} in the unit disc we can
associate the operator S(©) acting on the space

(1.1 9(0) = H*(K)© OHX(R),
defined by
1.2) . S(®)u = Pgg)(zu(2)), ucH(O).

If the function {K, K, @ (2)} is pure, then it coincides with the characteristic function
of the contraction S(8) (cf. [2]). '

If is obvious that if / is an at most countable set and for each i€/, {&],, &;, ©,(2)}
is an inner function in the unit disc, then the function {R, &, @ (z)}, where K= EB ]
and @(2)= @ ©;(2), is also inner and we have

3 S(6) = § S(6).

2. The Jordan model of S(e,)

Let 4 be a positive operator on the separable Hilbert space !, with spectral
measure E. We can then define an inner function {&, &, e,(2)} by the formula:

z+1 3
@.1) e(z) = exp [A _1] = [ e2)dE, a=|A4l,
0
where we use the notation:
2.2) e,(2) = exp [z ;l_}] .

As e (0)=exp (—A), it is easy to see that the function e, is pure if and only if
ker 4={0}.

Lemma 1. The characteristic function of

S(ey)|(rane,(S(ey))~, =0,

is {R, Ry, e4,(2)), where K=E((, |4I)] and 4,=(A—1D)R,. Thus S(e,) is a
Co operator and its minimal function is e 4, .

Proof. We first show that
(2.3) (ran e,(S(en))” = e HA(R)O e, HXA(K)
where
(2.9) A; = AE((0, 1))+ 1E((r, | Al]).
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Indeed we have
(ran e'(S(eA)))_ = (P.s(eA) erﬁ(e,q))_ = (Ps(eA)e,Hz(R))' =
= (e HX(R) + e, HX(R))~ O e, HA(R).

The operator of multiplication by e, on H2(f) may be represented as a product
€44, Where A =(tI— A) E((0, t]), thus e, HX(R)Ce,, H2(R) and from (2.5) we infer

(2.6) (ran e,(S(e,)))” C e, HX(R)O e  HA(KR).
Now, for uc H*(R) we have
equ = e E((0, M) u+e E((t, |AI)u,
thus e, H2(R)C e, H2(]) + ¢, H3(]) and from (2.5) we infer
ey HA(R)O e HA(R) (ran ¢,(S(e,)) .
This inclusion and (2.6) prove the equality (2.3).

Now let us remark that the operator R: $H(e,)—+9(e,) defined by Ru=e,u is
isometric,

R9(es) = e, HA(R)O e, HA(R,) = e, H*(R)O e, HA(R) = (ran e,(S(ey))~

and RS(e,)=S(es)R. Thus S(e,)|(ran e,(S(e,))™ is unitarily equivalent so S(e,)
and the lemma follows if we remark that ker 4,={0}, that is e, is pure.

2.5)

Lemma 2. We have Hs( ,=Rank 4.

Proof. We may suppose without loss of generality that kér A={0}. If Rank 4=
=n-<oo, A is represented, for an adequate choice of the basis in &, by the matrix

L 0..0
0 tz."'o , hzt=...=t1,>0.
0 0..1,

1t follows that S(e,) is unitarily equivalent to the Jordan operator 6"9 S(e,j); thus.
j=1
S(e,) is of multiplicity .
Conversely, let us suppose that S(e,) is of mhltiplicity n- oo, We show first that

_ the spectrum ¢ (4) consists of at most n points. If ¢(4) contains more than n points '
we can find 0—t°<t, <t,,+1—|]A|l such that E((t,, 441])#0, i=0,1,

Because A= @ AIE((1;, tHl])R- ea A;, we have S(e,)= EB S(es)- From Lemma 1
and Proposmon A it follows that S(e 4,) is quasisimilar to a Jordan operator

S(e,)®..., where s;=[A4l€(, tiq
Thus S(e,) is quasisimilar to

T = S(e,)DS(es, )P...®S(e;)D...
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8p>Sy-1>...>5,>0 (T may not be a Jordan operator). It is clear that up=n+1
-and this contradicts the equallty Br=HUse y=n. Thus &(4), consits of at most n
points, say

a(A) {tl,t,,.. t,} r;>12 '>rk>0 k = n).

Each 7, is an elgenvalue of A4 say of multiplicity. n,(= ). Because 4 = @ AE({z}) &,

it follows that S(e,) is unitarily équivalent to

k n;
@) 88 se).

i=1\j=1
Now, the operator (2.7) is of finite mliltiplicity if and only if n;<os, i=1, ..., k,
and then its multiplicity equals n;+n3+4-... +n,=Rank 4. The lemma follows.

.., Lemma 3. Let S= é..S(mj) b,e‘.q Jordan operator of infinite multiplicity and
A S, Lot ST D , ,

let T be a C, operator acting on a separable Hilbert space with the property that m;
divides m; for each j. T he_n. the .[ordan.model of T®S is S..

- Proof. ' Let .S'= 69 S(m) be the Jordan. model of T@S For each Jy

-(T@S)l(ran m,(TéBS))' is’ quasxsxmxlar to ~§’|(ran m,(S )™, thus it 'has " finite
multlphclty It follows that, for sufficiently large i, mJ(S(m‘)) 0, thus m; divi-
des m, From_ the hypothe51s it follows that m; divides mj for each J- Now,
(TEB S)I(ran mT(TEBS))‘ . and S’ (ran mT(S’))“ are quasxslmllar Because
(TEB S)[(ran mp(T® S)) S’[(ran mT(S ))' are umtarlly equivalent to @ S(m;/my),
@ S(m/my) respectively, from the umqueness assertion of Proposmon A it follows
J_

that m,/mT—m imy, m; mj for each j.

The lemma is proved

Let us put
@8 ty= mf{t dim E((t ||A||])R < oo}
‘Then a(4)N (%, || 4]]] contains only eigenvalues of finite multiplicity. Let {t,}
n,=dim E((to, | A]) ] =, 1, =1, =..., be these eigenvalues, each one. being counted

according its multiplicity. So we are able ‘to state the main result of this paper:

. Theorem. The Jordan model of S(e,) is: -

@ @ Ste) i o= dmE(e, MR = =i

® (& s@)o(@ se) 7 n<-
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Proof. We have the relation A=A’ea(e§ t,] (here ¢, is considered as a multi- »
j=1
plication operator on a 1-dimensional Hilbert space), thus S(e,)=S(e,)®

@(é S(e,j)]. If n,=<o, the conditions of Lemma 3 are satisfied for T=S(e,.)
Jj=1
and S= @ S(e,), ‘thus (a) follows.

j=1

Let us suppose that n,<oo. Then, if E’ denotes the spectral measure of 4,
we have dim ran E’((t, t,]) =  for each t<t,=||4’|. From Lemmas 1 and 2 it follows
that for each t<#,=| 4’|l the operator S(e,)|(ran e,(S(e,)))” is of infinite multi-

plicity. Let S=S(e,)®(B S(e,)), fr=1'=1*=..., be the Jordan model of S(ey).
i=1

If ¥=t<t, for some j, it follows that S|(ran e (S)) is of finite multiplicity, thus
S(e,)|(ran e,(S(e,-)))~ is of finite multiplicity, a contradiction. It follows that ¢/ =t¢,
for each j, thus S{e,) is quasisimilar to

(3 50)s(3,50)

The last operator is a Jordan operator and the theorem follows from the uniqueness
assertion of Proposition A.

- Remark. If A acts on a finite dimensional Hilbert space we have n,=Rank 4,

t,=0, and the Jordan model has the form é S(e,j). Thus our theorem is verified
. j=1

1in this case also.
Example. Let 4 be defined by (4f)(x) = x-f(x) on K=L2?(0, 1). Then 4| =1
and A has no eigenvalues. It follows that the Jordan model of S(e,) is é S(ey).
i=1
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