Jordan model for some operators

HARI BERCOVICI

The aim of this Note is to find the Jordan model of a C_0 operator whose characteristic function coincides with $e_A(z) = \exp\left(A\frac{z+1}{z-1}\right)$, where A is a bounded positive operator acting on a separable Hilbert space \Re . This problem was proposed by C. Foias for $\Re = L^2(0, 1)$ and the operator A defined by (Af)(x) = xf(x), $f \in L^2(0, 1)$.

1. Preliminaries

We will frequently use the following assertion. If T, T' are two quasisimilar completely non-unitary contractions, $m \in H^{\infty}$, $\Re = (\operatorname{ran} m(T))^{-}$ and $\Re' = (\operatorname{ran} m(T'))^{-}$, then $T \mid \Re$ and $T' \mid \Re'$ are also quasisimilar (cf. [2]).

Let us recall that if the operator T is acting on \mathfrak{H} , its multiplicity μ_T is defined as the minimum cardinality of a subset $\mathfrak{M} \subset \mathfrak{H}$ such that $\bigvee_{n=0}^{\infty} T^n \mathfrak{M} = \mathfrak{H}$. If T and T' are quasisimilar, then $\mu_T = \mu_{T'}$ (cf. [3]).

Proposition A. (cf. [4], [5], [1]) Let T be a C_0 operator acting on a separable Hilbert space. Then there exists a sequence $\{m_j\}_{j=1}^n$ of inner functions such that:

- (1) m_{i+1} divides m_i for each j;
- (2) T is quasisimilar to $\bigoplus_{j=1}^{n} S(m_j)$;
- (3) $m_1 = m_T$;
- $(4) n = \mu_T (\leq \infty).$

The sequence $\{m_i\}_{i=1}^n$ is uniquely determined by conditions (1) and (2).

The operator $\bigoplus_{j=1}^{n} S(m_j)$ is called the Jordan model of T. An operator of the form $\bigoplus_{j=1}^{n} S(m_j)$, for which (1) holds, is called a Jordan operator.

Received December 15, 1975.

Let us recall that with each inner function $\{\Re, \Re, \Theta(z)\}\$ in the unit disc we can associate the operator $S(\Theta)$ acting on the space

$$\mathfrak{H}(0) = H^2(\mathfrak{R}) \ominus \Theta H^2(\mathfrak{R}),$$

defined by

(1.2)
$$S(\Theta)u = P_{\mathfrak{S}(\Theta)}(zu(z)), \quad u \in \mathfrak{H}(\Theta).$$

If the function $\{\Re, \Re, \Theta(z)\}$ is pure, then it coincides with the characteristic function of the contraction $S(\Theta)$ (cf. [2]).

If is obvious that if I is an at most countable set and for each $i \in I$, $\{\Re_i, \Re_i, \Theta_i(z)\}$ is an inner function in the unit disc, then the function $\{\Re, \Re, \Theta(z)\}$, where $\Re = \bigoplus_{i \in I} \Re_i$ and $\Theta(z) = \bigoplus_{i \in I} \Theta_i(z)$, is also inner and we have

$$S(\Theta) = \bigoplus_{i \in I} S(\Theta_i).$$

2. The Jordan model of $S(e_{\lambda})$

Let A be a positive operator on the separable Hilbert space \Re , with spectral measure E. We can then define an inner function $\{\Re, \Re, e_A(z)\}$ by the formula:

(2.1)
$$e_{A}(z) = \exp\left(A \frac{z+1}{z-1}\right) = \int_{0}^{a} e_{t}(z) dE_{t}, \quad a = ||A||,$$

where we use the notation:

(2.2)
$$e_t(z) = \exp\left(t\frac{z+1}{z-1}\right).$$

As $e_A(0) = \exp(-A)$, it is easy to see that the function e_A is pure if and only if $\ker A = \{0\}$.

Lemma 1. The characteristic function of

$$S(e_A)|(\operatorname{ran} e_t(S(e_A)))^-, t \ge 0,$$

is $\{\Re_t, \Re_t, e_{A_t}(z)\}$, where $\Re_t = E((t, ||A||])\Re$ and $A_t = (A - tI)|\Re_t$. Thus $S(e_A)$ is a C_0 operator and its minimal function is $e_{||A||}$.

Proof. We first show that

$$(2.3) \qquad (\operatorname{ran} e_t(S(e_A)))^- = e_{A_t^i} H^2(\mathfrak{R}) \ominus e_A H^2(\mathfrak{R})$$

where

(2.4)
$$A'_{t} = AE((0, t]) + tE((t, ||A||)).$$

Indeed we have

(2.5)
$$(\operatorname{ran} e_{t}(S(e_{A})))^{-} = (P_{\mathfrak{H}(e_{A})}e_{t}\mathfrak{H}(e_{A}))^{-} = (P_{\mathfrak{H}(e_{A})}e_{t}H^{2}(\mathfrak{R}))^{-} = (e_{t}H^{2}(\mathfrak{R}) + e_{A}H^{2}(\mathfrak{R}))^{-} \oplus e_{A}H^{2}(\mathfrak{R}).$$

The operator of multiplication by e_t on $H^2(\Re)$ may be represented as a product $e_{A_t'}e_{A_t''}$, where $A_t'' = (tI - A)E((0, t])$, thus $e_tH^2(\Re) \subset e_{A_t'}H^2(\Re)$ and from (2.5) we infer (2.6) $(\operatorname{ran} e_t(S(e_A)))^- \subset e_{A_t'}H^2(\Re) \ominus e_A H^2(\Re)$.

Now, for $u \in H^2(\Omega)$ we have

$$e_{A} u = e_{A} E((0, t)) u + e_{t} E((t, ||A||)) u$$

thus $e_{A_i}H^2(\Re) \subset e_A H^2(\Re) + e_t H^2(\Re)$ and from (2.5) we infer

$$e_{A'}H^2(\Re) \ominus e_AH^2(\Re) \subset (\operatorname{ran} e_t(S(e_A)))^-$$

This inclusion and (2.6) prove the equality (2.3).

Now let us remark that the operator $R: \mathfrak{H}(e_{A_t}) \to \mathfrak{H}(e_A)$ defined by $Ru = e_t u$ is isometric,

$$R\mathfrak{H}(e_{At}) = e_t H^2(\mathfrak{R}_t) \ominus e_A H^2(\mathfrak{R}_t) = e_{At} H^2(\mathfrak{R}) \ominus e_A H^2(\mathfrak{R}) = (\operatorname{ran} e_t(S(e_A)))^{-1}$$

and $RS(e_{A_t}) = S(e_A)R$. Thus $S(e_A)|(\operatorname{ran} e_t(S(e_A)))^-$ is unitarily equivalent so $S(e_{A_t})$ and the lemma follows if we remark that $\ker A_t = \{0\}$, that is e_{A_t} is pure.

Lemma 2. We have $\mu_{S(e_A)} = \text{Rank } A$.

Proof. We may suppose without loss of generality that ker $A = \{0\}$. If Rank $A = n < \infty$, A is represented, for an adequate choice of the basis in \Re , by the matrix

$$\begin{pmatrix} t_1 & 0 & \dots & 0 \\ 0 & t_2 & \dots & 0 \\ & & \ddots & \\ 0 & 0 & \dots & t_n \end{pmatrix}, \quad t_1 \ge t_2 \ge \dots \ge t_n > 0.$$

It follows that $S(e_A)$ is unitarily equivalent to the Jordan operator $\bigoplus_{j=1}^{n} S(e_{i_j})$; thus $S(e_A)$ is of multiplicity n.

Conversely, let us suppose that $S(e_A)$ is of multiplicity $n < \infty$. We show first that the spectrum $\sigma(A)$ consists of at most n points. If $\sigma(A)$ contains more than n points, we can find $0 = t_0 < t_1 < \ldots < t_{n+1} = ||A||$ such that $E((t_i, t_{i+1}]) \neq 0$, $i = 0, 1, \ldots, n$. Because $A = \bigoplus_{i=0}^{n} A | E((t_i, t_{i+1}]) \Re = \bigoplus_{i=0}^{n} A_i$, we have $S(e_A) = \bigoplus_{i=0}^{n} S(e_{A_i})$. From Lemma 1 and Proposition A it follows that $S(e_{A_i})$ is quasisimilar to a Jordan operator

$$S(e_{s_i}) \oplus ..., \text{ where } s_i = ||A_i|| \in (t_i, t_{i+1}].$$

Thus $S(e_{\lambda})$ is quasisimilar to

$$T = S(e_{s_n}) \oplus S(e_{s_{n-1}}) \oplus \ldots \oplus S(e_{s_0}) \oplus \ldots,$$

 $s_n > s_{n-1} > ... > s_0 > 0$ (T may not be a Jordan operator). It is clear that $\mu_T \ge n+1$ and this contradicts the equality $\mu_T = \mu_{S(e_A)} = n$. Thus $\sigma(A)$ consits of at most n points, say

$$\sigma(A) = \{\tau_1, \tau_2, \dots, \tau_k\}, \quad \tau_1 > \tau_2 > \dots > \tau_k > 0 \quad (k \le n).$$

Each τ_i is an eigenvalue of A say of multiplicity $n_i (\leq \infty)$. Because $A = \bigoplus_{i=1}^k A | E(\{\tau_i\}) \Re$, it follows that $S(e_A)$ is unitarily equivalent to

$$(2.7) \qquad \bigoplus_{i=1}^{k} \left(\bigoplus_{j=1}^{n_i} S(e_{\tau_i}) \right).$$

Now, the operator (2.7) is of finite multiplicity if and only if $n_i < \infty$, i=1, ..., k, and then its multiplicity equals $n_1 + n_2 + ... + n_k = \text{Rank } A$. The lemma follows.

Lemma 3. Let $S = \bigoplus_{j=1}^{\infty} S(m_j)$ be a Jordan operator of infinite multiplicity and let T be a C_0 operator acting on a separable Hilbert space with the property that m_T divides m_j for each j. Then the Jordan model of $T \oplus S$ is S.

Proof. Let $S' = \bigoplus_{j=1}^{\infty} S(m'_j)$ be the Jordan model of $T \oplus S$. For each j, $(T \oplus S) | (\operatorname{ran} m'_j(T \oplus S))^-|$ is quasisimilar to $S' | (\operatorname{ran} m'_j(S'))^-|$, thus it has finite multiplicity. It follows that, for sufficiently large i, $m'_j(S(m_l)) = 0$, thus m_i divides m'_j . From the hypothesis it follows that m_T divides m'_j for each j. Now, $(T \oplus S) | (\operatorname{ran} m_T(T \oplus S))^-|$ and $S' | (\operatorname{ran} m_T(S'))^-|$ are quasisimilar. Because $(T \oplus S) | (\operatorname{ran} m_T(T \oplus S))^-|$, $S' | (\operatorname{ran} m_T(S'))^-|$ are unitarily equivalent to $\bigoplus_{j=1}^{\infty} S(m_j/m_T)$, $\bigoplus_{j=1}^{\infty} S(m'_j/m_T)$ respectively, from the uniqueness assertion of Proposition A it follows that $m_j/m_T = m'_j/m_T$, $m_j = m'_j$ for each j.

The lemma is proved.

Let us put

(2.8)
$$t_0 = \inf \{ t : \dim E((t, ||A||]) \Re < \infty \}.$$

Then $\sigma(A) \cap (t_0, ||A||]$ contains only eigenvalues of finite multiplicity. Let $\{t_j\}_{j=1}^{n_A}$, $n_A = \dim E((t_0, ||A||]) \Re \leq \infty$, $t_1 \geq t_2 \geq \ldots$, be these eigenvalues, each one being counted according its multiplicity. So we are able to state the main result of this paper:

Theorem. The Jordan model of $S(e_A)$ is:

(a)
$$\bigoplus_{j=1}^{\infty} S(e_{ij})$$
 if $n_A = \dim E((t_0, ||A||)) \Re = \infty$;

(b)
$$\left(\bigoplus_{i=1}^{n_A} S(e_{i_i})\right) \oplus \left(\bigoplus_{i=1}^{\infty} S(e_{i_0})\right)$$
 if $n_A < \infty$.

Proof. We have the relation $A = A' \oplus \left(\bigoplus_{j=1}^{n_A} t_j\right)$ (here t_j is considered as a multiplication operator on a 1-dimensional Hilbert space), thus $S(e_A) = S(e_{A'}) \oplus \left(\bigoplus_{j=1}^{n_A} S(e_{t_j})\right)$. If $n_A = \infty$, the conditions of Lemma 3 are satisfied for $T = S(e_{A'})$ and $S = \bigoplus_{i=1}^{\infty} S(e_{t_i})$, thus (a) follows.

Let us suppose that $n_A < \infty$. Then, if E' denotes the spectral measure of A', we have dim ran $E'((t, t_0]) = \infty$ for each $t < t_0 = ||A'||$. From Lemmas 1 and 2 it follows that for each $t < t_0 = ||A'||$ the operator $S(e_{A'})|(\operatorname{ran} e_t(S(e_{A'})))^-$ is of infinite multiplicity. Let $S = S(e_{t_0}) \oplus (\bigoplus_{j=1}^{\infty} S(e_{t_j}))$, $t_0 \ge t^1 \ge t^2 \ge \ldots$, be the Jordan model of $S(e_{A'})$. If $t^j = t < t_0$ for some j, it follows that $S|(\operatorname{ran} e_t(S))^-$ is of finite multiplicity, thus $S(e_{A'})|(\operatorname{ran} e_t(S(e_{A'})))^-$ is of finite multiplicity, a contradiction. It follows that $t^j = t_0$ for each j, thus $S(e_A)$ is quasisimilar to

$$\left(\bigoplus_{j=1}^{n_A} S(e_{t_j})\right) \oplus \left(\bigoplus_{i=1}^{\infty} S(e_{t_0})\right).$$

The last operator is a Jordan operator and the theorem follows from the uniqueness assertion of Proposition A.

Remark. If A acts on a finite dimensional Hilbert space we have $n_A = \text{Rank } A$, $t_0 = 0$, and the Jordan model has the form $\bigoplus_{j=1}^{n_A} S(e_{t_j})$. Thus our theorem is verified in this case also.

Example. Let A be defined by $(Af)(x) = x \cdot f(x)$ on $\Re = L^2(0, 1)$. Then ||A|| = 1 and A has no eigenvalues. It follows that the Jordan model of $S(e_A)$ is $\bigoplus_{i=1}^{\infty} S(e_1)$.

References

- H. Bercovici, C. Foias, B. Sz.-Nagy, Compléments à l'étude des opérateurs de classe C₀. III, Acta Sci. Math., 37 (1975), 313—322.
- [2] B. Sz.-Nagy, C. Foias, Harmonic Analysis of Operators on Hilbert Space. North Holland— Akadémiai Kiadó (Amsterdam—Budapest, 1970).
- [3] B. Sz.-Nagy, C. Foias, Vecteurs cycliques et quasiaffinités, Studia Math., 31 (1968), 35-42.
- [4] B. Sz.-Nagy, C. Foias, Modèle de Jordan pour une classe d'opérateurs de l'espace de Hilbert, Acta Sci. Math., 31 (1970), 91—115.
- [5] B. Sz.-Nagy, C. Foias, Compléments à l'étude des opérateurs de classe C₀, Acta Sci. Math., 31 (1970) 287—296.

FACULTY OF MATHEMATICS UNIVERSITY BUCHAREST STR. ACADEMIEI 14 BUCHAREST, ROMANIA