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On intertwining dilations

ZOIA CEAUSESCU

Introduction. Let 7, T’ be two contractions on the Hilbert space $ and §’,
and U, U’ their isometric dilations on & and K, respectively. For an operator
AEL(®’, H) (the space of all bounded operators from §” into ) intertwining T and
T’ (ie. TA=AT’) let us call an intertwining dilation of A any operator BEL(R'; &)
satisfying: PgyB|$'=A, UB=BU’ and B(R'©H')c RO $H. If, moreover, B satisfies
| Bll=[lA]l it will be called an exact intertwining dilation of A. It is known that for any
operator A4 intertwining 7 and T~ there exists at least one exact intertwining dilation
(see Th. 2. 3 of [3]).

In the present paper we are concerned with the problem of uniqueness of such
an exact intertwining dilation. We reduce this problem to the similar problem for the
Hahn—Banach extensions of continuous functionals on some adequate quotient
spaces of projective tensor products.?)

Our main result is contained in Section 3. Thus we show that if an operator
intertwining two contractions has a unique exact intertwining dilation, then all the
operators which are “dominated” (in the sense of Definition 3.1) by it have the
same property (see Th. 3.2). As an illustrative example, in the last section, an
application of the above theorem to Hankel operators is given.

I take this opportunity to express my gratitude to Prof. C. Foias, for many
helpful discussions. Also I thank Prof. B. Sz.-Nagy for his useful remarks on the
first version of this paper.

1. Let & and ® be two Hilbert spaces. We shall denote by 8*® & the subspace of
L(8; ®) consisting of operators ¢ which admit a representation of the form

m T= Z'k}‘®g,-, ‘where kiR, g;€6, 1=j=mn,
j=1

that is, ’

) (k) = ,gl' k, kg, (keER).
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1) This reduction already was done in some more or less particular cases (see for instance [6]).
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We shall use the notation | - |, for the nuclear norm on 8*®6:

© i = int{ Zikdigl: = Shioe).

The space R*® ® endowed with thls norm will be denoted by R*®(B
An immediate result is expressed by the following

Lemma 1.1, For a subspace $ of & the space H* QR can be identified with the
subspace L of R*R® consisting of those 1€ R* QG for which

4 71809 =0.
~ On account of Lemma 1.1 we may and will identify $*®® with the subspace £

defined by (4), of K*®®. We shall denote by R*®(5 and 5*@@ the completions
of R*®® and $*R G, respectively. ‘
Let us recall some well known properties (see [7]) of the completion of projective

tensor product.

(i) Every element 7 of R*(é)@ is the sum of an absolutely convergent series;
n

= Skieg, and I =inf{ Sikilgl: = 3 kos).

n=0

(ii) The dual of R*(é)(ﬁ is realized as the space L(G®; K).

Also, we shall consider operators U on &, T on §, and Z on ®, and assume
that § is a subspace of & invariant for U*, and U*|$=T"*.

We denote by [Z, U] the operator on L(K; ®), defined by
(5) [Z, UYW =ZV-VU for Ve L(K; G).

Note that *®@6® and $*®6G are invariant for [Z, U], and in virtue of the
condition T*=U*|$ we have

[z, U]|9*®@6 =[Z, T]|$*®6

(where [Z, T] is defined on L($; ®) in the same way as [Z, U] is on L(K; ®)). The
operators [Z, T] and [Z, U] can be extended continuously to 5*@6 and R*é(ﬁ,

respectively. Now, denote
(6) Ry = (12, UV)K* & B))~, Ry =(Z, TIH*Q 6))"
where the closures are taken in the spaces R*®6 and &*é)(ﬁ, respectively. We shall

n
consider the quotients modulo Ry and R, of the nuclear norms on K*QG and
T

sj*(é(ﬁ, respectively; thus, if Y and ¢ denote the canonical epimorphism

w:a’@@» (R*;é@)/mu, ?:9"®6 - (H* R 6)/R;
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then
W@l = inf e+l e O 6) and lo@I = inf lr+ul.(€9* ® 6).

Since, Ry > Ry, we infer that

©) ' W@ = le@l for res5*§>fﬁ.

Lemma 1.2. (i) The dual of the Banach space (R*é(ﬁ)/?tv is isometric-iso-
morphic to the subspace "
{BEL(®; &) : UB = BZ} of L(6G;S8),
(it) The dual of the Banach space (5*??(5)/911 is isometric-isomorphic to the

subspace
{A€L(6; 9): TA = AZ} of L(G; 9H).

Proof. (i): Firstly, let us observe that {BEL(®; K): UB=BZ} is isometric—
isomorphic to Ry, where we denote by R the orthogonal of Ry i.e.

K& = {fe(]* ® 6): fI1Ry = 0}.

Indeed, since L(6; &) is isometric-isomorphic to (R*é(ﬁ)’, for any BEL(®; &)
with the property UB=BZ there is a unique f from (R*é(‘b)’ with the properties.

(@) f(k*®8) = (Bg, k) (kcK, g€®) and (b) [ S]] =1BI.
But, for this fand for any k€K, g€ ®, we also have:
f(Z, UJ(k*®g)) = (BZg, k)— (UBg, k) =
Since the set {[Z, Ul(k*®g): k€&, g€®} spans Ry, it results readily f[R,=0.
Conversely, since L(®; 8)=(K*®6)’, for any f¢(]*®6G)" with f|Ry=0,

there exists a unique B¢L(®; K) satisfying conditions (a), (b) above; moreover,.

we have
((UB-B2)g, k) =f(1Z, Ul(k*®g)) =0 for any k€S8, g€6.

Thus, the operator B has also the property UB=BZ.

Now, statement (i) of the Lemma results from the following general fact::
If X is a Banach space and ) is a subspace of X, then the orthogonal 9+ of P is.
isometric-isomorphic to the dual of the quotient space X/9).

(ii): The proof is analogous to that of (i), due to the similar definition for the~.

space 35*®(5 and thus for ($* ®®)/RT too.
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Lemma 1.3. The foliowing two statements are equivalent:
(P,) For any ACL(®, S) satisfing the condition TA=AZ, there exists at least one
" exact mtertwmmg dilation BcL(®; K) of A.

(Py) For any 1€9H* @‘5, we have ||y (D) =l @I

Proof. First, we notice that, on account of Lemma 1.2, (P,) is equivalent to:
(P;) For any fe((H*®6)/Ry) there exists an “extension” fe((R*Q6)/Ry) of

f(ie. b ()=fo(z) for all teﬁ*é(ﬁ) such that:

LAl =111l (or equivalently, | fll = |l fol). _

Indeed, if (P,) holds then, in virtue of Lemma 1.2, for fe((sj*é(ﬁ)/ R;) there
is fe((ﬁ*éos)/m,,)' such that || fil=| f|| and /¥ (h*®g)=fo(h*®g) for all hcH and
2€6®. Since, for €9 ®03 there are the representations 7= Z‘h*@g,, where the

series %h*@g,, is absolutely convergent, and since f, f, o, ¢, are continuous, we

.also have

fo(r) =fib(x) for all 1655*? .
"The converse iﬁplication (Py)=(Py) is, by Lemma 1.2, even more obvious.
Now, we assume that (P;) holds. Let us take 7,6 H*®@©® with ¢(7,)=0. There
exists fe((ﬁ*é@)/ Ry) with the properties: )
| 171 = fell =1, fo(eo) = Il
For this f there exists, according to (P)), fe((ﬁ*gﬁ(ﬁ)/ Ry) such that

IAA=1fl=1 and fp(x) =fo(x) (z€ Sj*(? ®).
‘Thus, by (7), ' )
lo (ol = A (z) = 1711 @)l = 1Y Il = @ ().

If ¢ (z0)=0 then, by (7), 0=|¥ (z)l| =ll¢ (zo)]| =0. Consequently, we obtain |¢(z)| =
=(y @)| for all T€H* @(5

Let us now assume that |@ ()| —"l[l(‘t)“ for all t¢H* ®(5 This means that the

.continuous canonical epimorphism
(5" ® 6) = (5* & 6)/Rr ~ (5* Q 6)/Ry = ¥(5* @ 6)

is an isometry. Therefore, we can identify (5*@05)/ R, with the subspace (5*@&'))/ Ry
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of (R*é(ﬁ)/fﬁu. Now, the implication (Py)=(P;) follows from the Hahn—Banach

Theorem. ‘

It is known that if T'is a contraction on $, U a minimal isometric dilation of T
on R, and Z an isometry on ®, then assertion (P,) of Lemma 1.3 is true (cf. [5] Prop.
I 2.2). Thus we have '

Theorem 1.1. Let T be a contraction on , U a minimal isometric dilation of T,
and Z an isometry on ®. Then,

&* & GI(Z, TI$* B 6))-
is linear canonically isometric to the image of 5*@@ in
& ® B)([Z, UJR* @ &),

2. In the sequel we shall only treat the case considered in Theorem 1.1; that is,
T is a contraction on §, U is a minimal isometric dilation of T on &, and Z is an iso-
metry on 6.

Remark 2.1. Let AcL(®; $H) satisfy TA=AZ. In order that 4 should have
a unique intertwining dilation BEL(®; K) with || B|| =] 4] it is necessary and suffi-
cient that the functional f¢(($*®®)/R,) (where ($*®G)/R, is identified with

(5*@(5)/ Ry, in virtue of Theorem 1.1), corresponding to A4 by: fiy (h*®g)=(4g, h),
have a unique norm-preserving extension to the space (S\*é@)/ﬂtu. On the other

hand, a well-known consequence of the classical proof of the Hahn—Banach Theorem
is that a functional f¢(($*®®)/R,) of norm 1 has a unique norm-preserving exten-

sion to (R*é)@)/‘ﬁu if an only if for any 7¢ Sj*é(ﬁ,
sup {Re f(i) =1t~ 1l : 1,€(H* @ G)Ry} =
= inf {|[ty+ 1] — Re f(t5) : 1:€ (H* Q G)/Ry}.

(Here, as in the sequel, we set =y (z) for 1ER*®(5). Hence, we easily infer the

T
following sufficient and necessary condition for that an A€L(®; 9), || 4] =1, satisfy-
ing TA=AZ have a unique exact intertwining dilation.

For any ¢=0 and roe(ﬁ*é(ﬁ)\(g*é(ﬁ) there exists 1,, 7,€ 53*<§§>® satisfying
T j &4 . ®
(®) 22+ 2all = |22 —Foll + £+ %ol < Re f(21+ 1) +e.

5A
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3. We introduce the following definition for contractions on Hilbert spaces:

Definition 3.1. Let A4,;, A,€L($;;Ha) be two contractions., We say that
A, Harnack-dominates A, if for some positive constants C, C’ we have:

©) ID4hll = ClID 4 bl and  |[(4;—Ahl = C’||D 4,

for all h¢$,. Here D, , D, are the defect operators of 4,, 4y, i.e. DA‘=(1’—-A?‘Ai)1’2
(i=1,2).

Remark 3.1. Let us introduce, for the contractions 4,, 4,€L(9,, 9H,), the
following isometries:

- Ai ‘62
A": D : 51 ind @ . (i=1,2),
41 SA[ .

where D, =D, $, (=1, 2). Then, conditions (9) of Definition 3.1 are plainly equi-
valent to the following: There exists a bounded operator

52 52
K:o - &
D, D,
such that
h, hy . .
(10) K ol = [0 for all h,€$H,, and A, = KA;.

Remark 3.2. We note that, if $, and §, coincide, then the equivalence relation
for contractions on ), defined by: 4, Harnack-dominates A4,, and 4, Harnack-do-
minates 4, coincides with the Harnack-equivalence as defined in [4], p. 362. '

For two operators 4;, 4;€L(®; $), intertwining T and Z, denote by f4, /4,

the functionals E((Sj*(é)(ﬁ)/ﬂiv)’, corresponding to 4; and A,, respectively, and by
F, , F,, the functionals 6(55*@(5)’, satisfying F, |R,=F, |R,=0, ‘which corres-
pond to f, , f,, by virtue of the isometric-isomorphism
((9* ® B)RuY = Ry.
n
Lemma 3.1. Let A,, A,€¢L{®;9) be two operators intertwining T and Z,
I4:)l =114, =1, and such that A, Harnack-dominates A,. Then,

lzl.—Re F, (1) =& (for some e>0 and 1€H* ® 6)

implies .
Re F, (1) = Re F (1) +2e(|K[E—1).

(K is the bounded operator satisfying (10), which exists by Remark 3.1.)
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Proof. Let rég*é(ﬁ be such' that ﬂlltl.l,,—Re F4, (1) = ¢ for some £¢>0. There

‘exists a representation of 1, say-

1= h®g, .
A néEN
with

lgal =1, XAl <o, and |l = F Il < tha+e
neEN neEN

Since F, (i, ®g,)=(4:8,, h,) (i=1, 2), and since F,, are continuous it result that the
series Y (A;g,, h,) (i=1, 2) are absolutely convergent, and
neN .

FA,(T) =n§\1 (Aign’ hn)

Consequently,
2 k|| — > Re(4,8,, h,) = 2e.
negN neN

Now let us notice that

4.8,
I-Re(4, gn,f,.)——“[ Dig
1O6n

= S g Fil?

where ﬁ,——”—hﬁ and f,= [ "] (n€N). Since 4, Harnack-dominates 4, in virtue of

Remark 3.1 we also have

4> gn—foll2 = | K(A1 8, — fI? = | K |21 4, £, — flI2
Therefore

1 A
Re (418,, 1) —Re (4:8,, h) = 5 (IK[* =141 8, —fIE R, (neN).
Whence,

. 1 -
Re F,,()—ReFo(@) = (KIP-1) 3 - Idrgu=Full il = -
= (IKl*-1) Z’ [Ilh,.ll —Re(4,8,, )] < 2e(|K|>—1).
‘We may now state and prove our main theorem concermng the uniqueness of

exact intertwining dilation.

. Theorem 3.1. Let A,, A,€L(G;9) be operators with the properties: TA;=
=A,Z, TA,=A,Z, | A, =\4.\=1, A, Harnack-dominates A,. Then, if A, has a
unique exact intertwining dilation so has A,.

" Proof. By Remark 2.1, we must show that if the functional fAIE((ﬁ*é)(B)/ Ry)

defined by A, satisfies condition (8), then the functional ane((Sj*(é(Y))/ Ry) defined
by A,, also satisfies it.

5%
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Assume that for ¢=>0 and tOE(R*é(B)\(ﬁ*é(B) we have

1 121+ Tall S[12r —toll +It2+toll < Ref, (1 +1t) +¢
for some 1;, 1,€H*®G. Since [t =[le @I =(¢ @) for all t€¢H*R G, there exists
7" € R, such that '
It +te+7 e < l@(ra+ 1)l +& = {[E1 + 1o +&.
Denote 17, =1,+1" and note that

2.+l = l#,+%.[ and ng(tl+ié) =fA‘(i'1+'tz)-
Then, from (11) we readily infer that

ey +72llx < Re fy, (}1+13) +2¢ = Re F (11 +73) + 26
Consequently, in virtue of Lemma 3.1, it follows

Re FA1(71+T;) =Re FA2(71 +12)+2e(IK|2—-1)
or, equivalently,
Re f,, (11 +1,) = Re f, (11 +12) + 2e(|K[|*—1).

Whence it results that f, satisfies the condition
1 —toll +lIta+%oll < Refy, (t1+15) +26(1K[|2~1).
Thus, we can conclude that £, satisfies (8) too.

As a corollary of the previous theorem we have the following more general
result:

Theorem 3.2. Let T, T’ be two contractions on the Hilberts spaces § and ',
respectively. Moreover let Ay, A,€ L($’; ) satisfy the conditions:

TA,=A,T’, TA;=A,T", A, =4, =1, A, Harnack-dominates A, Then, if A,
has a unique exact intertwining dilations so has A,.

Indeed, denoting by Z the minimal isometric dilation of T” it is known (see [5],
Th. 2.3). that all exact intertwining dilations of A4; (i=1, 2) are obtained as exact
intertwining dilations of the operators B;=4,Pg (i=1, 2) intertwining T and Z.

4. Let T, T’ be two contractions on the Hilbert space $ and §’, and let U, U’
be their minimal isometric dilations on the spaces & and K&, respectively.

Theorem 4.1. Let By, B,c L(8; ) have the properties. || By|| =||B,|| =1, UB,=
=B U’, PB,(I-P")=0 (i=1, 2) where, P=Pg, P’=Pg4. B, Harnack-dominates By,
and let Ay, A,€L(H’; H) be the operators A;=PB,|Y’ (i=1,2). Then, if B, is an
exact intertwining dilation of Ay, then A, is an exact intertwining dilation of Ay; more-
over, if By is the unique exact intertwiﬁing dilation for A,, so is B, for A,.

Proof. First, by hypothesis we observe that PB;=A; P’ and 4, is intertwining T
and T’. Thus, B; is an intertwining dilation of 4; (i=1, 2).
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Now, in order to prove that B, is an exact intertwining dilation for 4, if B, is so
for A,, it suffices to show that || 4, =1.
Clearly, we have (by definition of 4,) ||4,]|=1.
For the converse inequality we observe that, since B, Harnack-dominates B,,
i.e. | Dp k'l =ClDp k| and [(B;—B)k'|=C’||Dg k’|| with C, C’>0, we have for
Key'
I(1=P) B = |(1=P)Byi||+{|(1 = P)(By—BYH'|| = | Dy, Wl +1(B.—BYH || =

= D, K+ C | Dp, Kl = (1+C)[ID 4, Kl
and therefore,
1D, K112 = |Dg, K12+ |(1 = P) B [}2 = (C2+ (14 C'))|D 4 H 12 = C"|\D 4, K13,
for any W€ 9.
Since | 4,]| =1, we infer from this inequality that | 4,[|=1 too, thus B, is an exact
intertwining dilation of 4,.
The above relation with the following one:

(A:—ADK|| = (B~ BoK'|| = C’||Dp, || = C’||D | (WEH)

means that 4; Harnack-dominates 4,. Now the second statement of this theorem can
be obtained by referring to Theorem 3.2,

Lemma 4.1. Let By, B,¢ L(R; R), |Bill=|1B:l|=1 be of the form B,=B,8S;
where S; are strict contractions (i=1, 2). Then B,, B, Harnack-dominate each other.

Proof. Consider the decomposition & =R,@® & for which

B, Py, = B, Py, = B, and S;= B;Py; = B;(1—Py,)
and note that
D5, k12 = (Ikgli2— | Bokoll2) + (K1l 2 —11:S;: k1) =

= |kIE =1 Sikil®* = A= ||SP) | k1ll%, where kg = Pgyk’, ki = Pak'.
Whence, by taking C=max {(1—|5,]|2)~"2, (1| S,)|?)~"/?} it follows
| Pes Kl = C|Dp k’|| for all k’¢ &'.
Therefore, we have ||(By—B)k’|| =S, — Sy|l|1 4l SC’]lD,, K’| and also
1D, k'lI* = IK"1* — | Bokoll® — | Sakil|2 = [| D g, k"2 + (Il Skl I Sukeall) (I S k1l + 1Sz k1)
= || Dg, K12+ 118y — Sell (1l Sall + 11 Sell) 131125 '

hence | Ds, k'IISC”IIDB k’| for all k€K, where C’, C” are constants.
Thus 31 Hamack-dommates B,. By symmetry B, also Hamack-dommates B,.
Theorem 4.1 and Lemma 4.1 have the following

Corollary 4.1. Let By, B,¢L(8; &) be two operators as in Lemma 4.1,
intertwining U and U’ and such that: B;(R 09 )CKROH (i=1,2). Then, B, is an
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exact intertwining dilation of A;=PgyB,|Y’, if and-only if B, is an exact intertwining
dilation of A,=PyB,|$’; moreover, B, is the unique exact mtertwmmg dilation for
4, if and only sz2 is so for A,. : - :

In virtue of Theorems 2 .and.5 of [2], we also have the following corollary of
Theorem 4.1, concerning the Hankel operators.?) ‘

Corollary 4.2. Let F,, F2€L°° €, ¥ (€, 35- separable Hilbert spaces) have the
properties: )

I Al =|Fyl=1,

F,(t)=F;(t) whenever max {||F;(¢)|, | Fa(¢)||}>1—0 for some fixed 6, 0<0<1-

Then, if one of these functions is a minifunction for its Hankel operator, then so is
the other. Moreover if one of them is the unique minifunction of its Hankel operator
s is the other. :

Proof. Set o={r€[0, 1]: max {| F,(t){, [ Fa(t)l}>1— —0}, and £,=y,L*(€), &=
=X, ll\aL (€) where y, is the characteristic function of ¢. Then L2(€)= 20@2
Also, denoting by B, the operators: f—F, f from L2(€) to L3({) (i=1, 2), we observe
that _ , , } .
By Py, = By Py, B2 C x, LX(§) and BiL; C ypo,1n0 LA(E)-

Thus the operators B; can be written B;=B,® S; where

By=B;Py,, S;=B;P, and [Sf<1 (i=1,2).
Now Corollary 4.2 follows at once by Corollary 4.1,
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