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On intertwining dilations 

ZOIA CEAUSESCU 

Introduction. Let T, T' be two contractions on the Hilbert space § and Sj\ 
and U, U' their isometric dilations on ft and ft', respectively. For an operator 
AdLC^', §>) (the space of all bounded operators from into §) intertwining T and 
T' (i.e. TA=AT') let us call an intertwining dilation of A any operator 5€L(ft'; ft) 
satisfying: P&B\9>'=A, UB=BU' and 5 ( f t ' e § ' ) c f t e § . If, moreover, B satisfies 
||B || = || 1[ it will be called an exact intertwining dilation of A. It is known that for any 
operator A intertwining T and 7" there exists at least one exact intertwining dilation 
(see Th. 2. 3 of [5]). 

In the present paper we are concerned with the problem of uniqueness of such 
an exact intertwining dilation. We reduce this problem to the similar problem for the 
Hahn—Banach extensions of continuous functionals on some adequate quotient 
spaces of projective tensor products.1) 

Our main result is contained in Section 3. Thus we show that if an operator 
intertwining two contractions has a unique exact intertwining dilation, then all the 
operators which are "dominated" (in the sense of Definition 3.1) by it have the 
same property (see Th. 3.2). As an illustrative example, in the last section, an 
application of the above theorem to Hankel operators is given. 

I take this opportunity to express my gratitude to Prof. C. Foia§, for many 
helpful discussions. Also I thank Prof. B. Sz.-Nagy for his useful remarks on the 
first version of this paper. 

1. Let ft and © be two Hilbert spaces. We shall denote by ft*®© the subspace of 
L(ft; ©) consisting of operators T which admit a representation of the form 

(1) where GJ£(5, 1 s y ^ «, 
j=I 

that is, 

(2) r(k)= £ (k, kj)gj (k£ ft). 
/1=1 
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*) This reduction already was done in some more or less particular cases (see for instance [6]). 
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We shall use the notation || • ||„ for the nuclear norm on ft*<g>©: 

(3) Hill = inf{ 2 ||*J lis,-II : T =2 
V/=i ;=i > 

The space ft*®© endowed with this norm will be denoted by ft*(g)©-
An immediate result is expressed by the following * 
Lemma 1.1. For a subspace § o / f i the space §*(g)® can be identified with the 

it 
subspace 2 of 5\*®(S consisting of those T£ft*<gi© for which 

n n 
(4) T | a e § = o. 

On account of Lemma 1.1 we may and will identify $*(g)© with the subspace £ 
71 

defined by (4), of ft*®©. We shall denote by ft*(g>© and §*<g)© the completions 
1t It 71 t 

of ft*(g)© and $*(g)©, respectively. 
n jt 

Let us recall some well known properties (see [7]) of the completion of projective 
tensor product. 

(i) Every element i of ft*(g)© is the sum of an absolutely convergent series; 
Tt 

* = 2 K ® g n , and ||T||, = i n f { 2 | | f c J | | f J : t = n=0 ln=0 n=0 J 
(ii) The dual of ft*(g)© is realized as the space L(©; ft). 

n 
Also, we shall consider operators U on ft, T on and Z on ©, and assume 

that § is a subspace of ft invariant for U*, and U* |§ = 7*. 
We denote by [Z, U] the operator on L(R ; ©), defined by 

(5) [Z,U]V = ZV-VU for KCL(ft; ©). 
Note that ft*®© and §*<g>© are invariant for [Z, U], and in virtue of the 

condition T*= U* we have 
[Z, U]\§*<g>© = [Z, 7 ] | § * ® © 

(where [Z, J] is defined on -£.(§; ©) in the same way as [Z, U] is on L(ft; ©)). The 
operators [Z, T] and [Z, £7] can be extended continuously to £j*(g>© and ft*(g)©> 

it it 
respectively. Now, denote 

(6) 9?„ = ([Z, C/](ft* ® ©))", <Rr = ([Z, 7 ] ® * ® ©))" 
n n 

where the closures are taken in the spaces and respectively. We shall 
n It 

consider the quotients modulo and 9?r of the nuclear norms on and 
n 

respectively; thus, if i¡t and <p denote the canonical epimorphism 
n 

xj/ : ft* ® © - (ft* <g> ©)/»p, q> : §* ® © - (§* <£> ffi)/«r 
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then 

I№(T)|| = inf HT + T j ^ f t * ® © ) and ||?(T)|| = inf H.T+TJ.FRE §* <G) ©). tjfcSIu n TjEWJ. „ 

Since, 9?[;39?r, we infer that 

(7) ||<A(T)|| S | |?(T)|| for T£$*<8>@-
n 

Lemma 1.2. (i) The dual of the Banach space (ft*®©)/^ is isometric-iso-
n 

morphic to the subspace 

{5<=!,(©; ft) : UB = BZ} of £.(©; ft), 

(ii) The dual of the Banach space (fj*<2>©)/9iT « isometric-isomorphic to the-
IE 

subspace 
{AiL{<&-9>):TA = AZ} of L(©; §). 

Proof, (i): Firstly, let us observe that {5gZ,(©; ft): UB=BZ} is isometric-
isomorphic to iR^, where we denote by the orthogonal of i.e. 

«¿r = { ^ ( f t * ® ® ) ' : / | « D = 0}. 
It 

Indeed, since £(©; R) is isometric-isomorphic to (ft*®©)', for any Si)' 
n 

with the property UB=BZ there is a unique / f r o m (it*®©)' with the properties-
n 

(a) f{k*®g) = (.Bg, k) ¿re©) and (b) | |/ | | = ||£||. 

But, for this / a n d for any &£ft, we also have: 

f([Z, U](k*®g)) = (BZg, k)-(UBg, k) = 0. 

Since the set {[Z, i/](&*<g>g): ¿€ft, g€©} spans it results readily / 19^=0 . 
Conversely, since £(©; ft) s (ft *<§>©)', for any /<E(ft*<g>©)' with /|<R[,=0, 

n n 
there exists a unique jf?££(©;ft) satisfying conditions (a), (b) above; moreover,, 
we have 

((UB-BZ)g, k) = / ( [Z , U](k*®g)) = 0 for any HR, g£®. 

Thus, the operator B has also the property UB—BZ. 

Now, statement (i) of the Lemma results from the following general fact: 
If X is a Banach space and 9) is a subspace of X, then the orthogonal 9)1 of $ is 
isometric-isomorphic to the dual of the quotient space X/%). 

(ii): The proof is analogous to that of (i), due to the similar definition for the-
space Jrj*(g)©, and thus for (§*<8>©)/i?r too. 
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Lemma 1.3. The following two statements are equivalent: 
(Pj) For any A£L((£>, §>) satisfing the condition TA=AZ, there exists at least one 

exact intertwining dilation B£L((5; ft) of A. 
(Pa) For any T 6 § * < 8 > © , we have | | ^ ( R ) | | = | |<?(T)| | . « 

Proof. First, we notice that, on account of Lemma 1.2, (Px) is equivalent to: 
(Pi) For any /€((§*<8>©)/3ir)' fAere on "extension" /€((ft*®©)/«£,)' of 

a it 
f (i.e. / K T ) = / < P ( T ) M all T £ § * < G ) © ) SHCA that: 

1C 

11/11 = 11/11 (or equivalently, \\M = ||/<p||). 
Indeed, if (Px) holds then, in virtue of Lemma 1.2, for /£((§*<S>©)/9iT)' there n 

is /6((ft*®©)/«t/) ' such that | |/ | | = | | / | | a n d f y ( h * ® g ) = f ( p ( h * ® g ) for all h£§> and 

gd®. Since, for T£§*(g)© there are the representations x= 2 K®Sn where the 

series is absolutely convergent, and since f f , (p, \j/, are continuous, we 

also have 
fcp(x) = / K T ) for all ©. 

n 

The converse implication (Pj)=>(Px) is, by Lemma 1.2, even more obvious. 
Now, we assume that (Px) holds. Let us take T0£$*(g)© with <p(z0)^0. There 

n 
•exists / € ( ( § * 0 © ) / ^ r ) ' with the properties: 

11/11 = 11/̂ 11 = 1, M g = ikwii-
For this /there exists, according to (Pi),/£((^*®©)/9ic/)' such that 

1t 

||/|| = | |/ | | = 1 and Mr) =f<p(r) (T£§*<|)©). 

Thus, by (7), 

ll<p(T0)ll =/<K*o) ^ ll/llll<K*o)ll = ll-A(To)ll ||<p(t0)||. 

If <P(T0)=0 then, by (7), 0^||^(T0)|| ^ | | ( P ( T 0 ) | | =0. Consequently, we obtain ||<P(T)|| = = ||^(t)|| for all T(E§*(g)©. 
« 

Let us now assume that ||<p(t)|| = ||«KT)|| for all This means that the 

continuous canonical epimorphism 

<p(z>* ® ©)' = ($>* <8> ©)/«r - (5* ® ©)/«£/ = "Ate* ® ©) ft 1Z K n 

is an isometry. Therefore, we can identify (§*<g>G5)/9ir with subspace (§*<S>@)/9*if 
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of ( f t * ® © ) / ^ . Now, the implication (Pz)=>(Pi) follows from the Hahn—Banach 
n 

Theorem. 
It is known that if T is a contraction on U a minimal isometric dilation of T 

on ft, and Z an isometry on ©, then assertion (PJ of Lemma 1.3 is true (cf. [5] Prop. 
II 2.2). Thus we have 

Theorem 1.1. Let Tbe a contraction on U a minimal isometric dilation of T, 
and Z an isometry on ©. Then, 

( § * ® © ) / ( [ z , 2 W ® © ) ) -n It 

is linear canonically isometric to the image of §*&© in 
n 

(ft*®©)/([Z, i/](ft* ® ©))-. 
It JT 

2. In the sequel we shall only treat the case considered in Theorem 1.1; that is, 
T is a contraction on U is a minimal isometric dilation of T on ft, and Z is an iso-
metry on ©. 

Remark 2.1. Let / 4€£ (©;§ ) satisfy TA-AZ. In order that A should have 
a unique intertwining dilation B£L(<5; ft) with ||5|| = |MI! it is necessary and suffi-
cient that the functional /€((3)*®©)/$«^' (where ( S * ® © ) / ^ is identified with 

It « 
(§*(g)©)/9ir, in virtue of Theorem 1.1), corresponding to A by: f^{h*®g)—{Ag, h), 

it 
have a unique norm-preserving extension to the space (5t*<H)©)/9tc/. On the other 
hand, a well-known consequence of the classical proof of the Hahn—Banach Theorem 
is that a functional /£((§*&©)/9tc/)' of norm 1 has a unique norm-preserving exten-n 
sion to ( f t * ® © ) / ^ if an only if for any T$£*®©, 

n It 

s u p i R e / i f O - l l ^ - t H : t^CS* ® ©)/9M = 
It 

= inf {||f2+f|| - Re/ ( i 2 ) : t2€ (§* ® ©)/«„}. 
n 

(Here, as in the sequel, we set i=i//(z) for T$ft*®©). Hence, we easily infer the 

following sufficient and necessary condition for that an A£L((5; §), |M|| = 1, satisfy-
ing TA =AZ have a unique exact intertwining dilation. 

For any e > 0 and T 0 £( f t*®©)\ (§*®©) there exists i j , t 2 £ § * ® © satisfying 

(8) ll*i+*«ll ^ 11*1-foil +ll*2+*oll < R e / i f i + f ^ + e . 

5 A 
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3. We introduce the following definition for contractions on Hilbert spaces: 

Def in i t ion 3.1. Let be two contractions. We say that 
Ax Harnack-dominates A2 if for some positive constants C, C' we have : 

(9) \\DMh\\ S C\\DAlh\\ and \\(A2-AJh\\ ^C'\\DAlh\\ 

for all Here DA , DA are the defect operators of Au A2, i.e. DA =(1 -AfAJ112 

(i = l ,2). 

Remark 3.1. Let us introduce, for the contractions Ax, A2£L(§>X, §2), the 
following isometries : 

- (AA S 2 
= L h S i - © (/ = i,2), 

3>A, 

where t>A=DA§>x 0=1 ,2 ) . Then, conditions (9) of Definition 3.1 are plainly equi-
valent to the following: There exists a bounded operator 

§2 §2 
# : © - © 

a * 
such that 

(10) * ( o j = ( o ) f ° r a 1 1 a n d = KAX. 

Remark 3.2. We note that, if and § 2 coincide, then the equivalence relation 
for contractions on defined by: Ax Harnack-dominates A2, and A2 Harnack-do-
minates Ax coincides with the Harnack-equivalence as defined in [4], p. 362. 

For two operators Ax, A2£L(<5; §>), intertwining T and Z, denote by fA,fA 

the functionals corresponding to Ax and A2, respectively, and by n 
FAi , FAi the functionals €(S*®©)', satisfying i^JSRu=/^19^=0, which corres-

It 

pond t o f A i , f A i by virtue of the isometric-isomorphism 

it 

Lemma 3.1. Let Ax, A2£L((5; §) be two operators intertwining T and Z, 
Mill = IM2I! = 1, and such that Ax Harnack-dominates A2. Then, 

| |t | |b—ReF^x) s e (/or some e > 0 and t6§*(8> ©) 
It 

implies 

ReFAl(r) == ReFAl(T)+2e(UKH*-l). 

(K is the bounded operator satisfying (10), which exists by Remark 3.1.) 
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Proof. Let be such that ||T][„—Re FAl(z) s s for some s>0. There 
n 

exists a representation of z, say 

n€JV 
with 

ll&,ll = l, 2 \ \ h and ntN niN 

Since FA)(h* ®g„)=(A;g„, h^ ( i= 1, 2), and since FA are continuous it result that the 
series 2 ! (^iSn, K) (l — U 2) are absolutely convergent, and 

n£N 

FAXx) = 2 (Aign, h) n£N 
Consequently, 

niN niN 
Now let us notice that 

1 - R e ( ^ „ , / „ ) = 4 = \ Ûign-fnV 
Ai8n-fn\ 

D A i g n J 

where f„——— and /„ = i"̂ 1) (n£N). Since A, Harnack-dominates A« in virtue of 
II A» II l o j 

Remark 3.1 we also have 

U,gn-fnV = \\K{Algn-fnW S \\KV\\Algn-fnr 
Therefore 

Re(Aig„, h„)—Re(A2gn, hn) S ^-( | |A: | |2-I) | | i1gn- /J2 | | / !J| (ntN). 

Whence, 

Re (t)—ReFM(t) s ( I I^P- l ) 2 4- \\^gn-fnV\\K\\ = ' niN 

= ( I I ^ P - l ) 2 [ P J - R e ^ ^ , hn)\ < 2e(||AT||2 —1). 
niN 

We may now state and prove our main theorem concerning the uniqueness of 
exact intertwining dilation. 

. Theorem 3.1. Let A1,A2£L(i5;§) be operators with the properties: TAX— 
= AtZ, TA2=A2Z, ll^ill =m2!l = 1, A-i Harnack-dominates A2. Then, if A1 has a 
unique exact intertwining dilation so has A2. 

Proof. By Remark 2.1, we must show that if the functional / ^ ( ( S * ® ® ) / ^ ) ' 
a n 

defined by A1 satisfies condition (8), then the functional fA €((§*(S)©)/9iI/)/ defined 
n 

by A2, also satisfies it. 
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Assume that for e > 0 and T0Ç(ft*Çg)©)\(irj*£g)©) we have 
n - n 

(11) ll*i + *.NII*i-*oll + ll*.+*oll ^ R e / ^ i f i + tai+e 
for some Tx, T 2 € § * ( G ) © . Since [ | Î | | = | | < P ( T ) | | = ||IKT)|| for all T € § * ( G ) © , there exists 

t'6 9Î t such that 
llTi+Ta+r'L < l l p f a + T j + s = 11*! + *,H+6. 

Denote x'2 = T2+T' and note that 

IKi+*iB = IKi+-y and fAl(-ii+K) =fAl{i 1+iù-

Then, from (11) we readily infer that 

K + T X < R e / l l ( t 1 + f D + 2 e = Re FAI(ZXW2)+2E. 

Consequently, in virtue of Lemma 3.1, it follows 

ReFXl(T l + T0 S Re 7^(^+0+26(11^1! 2 -1 ) 
or, equivalently, 

R e A ( i i + i 2 ) ^ R e / l a ( f 1 + f2)+2e(||A:||2-l). 

Whence it results that fA satisfies the condition 
IKi-f0 | | + | |f2+f0 | | < ( t i+t 2 ) -t-2e(|j/sTj|2 — 1). 

Thus, we can conclude that fA^ satisfies (8) too. 
As a corollary of the previous theorem we have the following more general 

result: 
Theorem 3.2. Let T, T' be two contractions on the Hilberts spaces § and 

respectively. Moreover let Ax, A2Ç.L(5j'; §) satisfy the conditions: 
TAX = AXT', TA2=A2T\ 11̂ 11=11̂ 211 = 1, Ax Harnack-dominates A2 Then, if Ax 

has a unique exact intertwining dilations so has A2. 
Indeed, denoting by Z the minimal isometric dilation of T' it is known (see [5], 

Th. 2.3). that all exact intertwining dilations of A, ( /=1,2) are obtained as exact 
intertwining dilations of the operators B^A^^ 0 = 1 , 2 ) intertwining T and Z. 

4. Let T, V be two contractions on the Hilbert space § and §>', and let U, U' 
be their minimal isometric dilations on the spaces ft and ft', respectively. 

Theorem 4.1. Let Bx, £2£L(Si'; ft) have the properties: HPJ = ||£a|| = 1, UBt= 
= BiTJ', PBi(I-P')=0 (i'=l, 2) where, P=Pf), P'=P^ Bx Harnack-dominates B2, 
and let Ax, A2€L(§>'; §) be the operators A—PB^' 0=1 ,2 ) . Then, if Bx is an 
exact intertwining dilation of Ax, then A2 is an exact intertwining dilation of A2; more-
over, if Bx is the unique exact intertwining dilation for Ax, so is B2for A2. 

Proof. First, by hypothesis we observe that PB—AiP' and At is intertwining T 
and T'. Thus, Bt is an intertwining dilation of Ai (i= 1, 2). 
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Now, in order to prove that B2 is an exact intertwining dilation for A% if is so 
for Alt it suffices to show that M2II = 1. 

Clearly, we have (by definition of A2) ||^2|| S1. 
For the converse inequality we observe that, since Harnack-dominates B2, 

i.e. \\DBk'\\^C\\DBk'\\ and IIC^-^k'NC'II^B^'l l with C, C'=>0, we have for 

\\(i-p)B2h'\\ s 11(1 -P)B1h'\\+11(1 -p){Bt-Bjn s W D ^ h ' W + m - B j h ' W s 
^ ll^/t'll + c ' i l^/ i ' l l ^ ( l + c o i l A ^ ' l l 

and therefore, 

IIA^'ll2 = P>*AT+II(1 -P)B2hV ^ (C* + V + Cy)\\DAlhr = C"\\DAlh'\W 
for any 
Since H/4J = 1, we infer from this inequality that ||^2|| = 1 too, thus B2 is an exact 
intertwining dilation of A2. 

The above relation with the following one: 

\\{A2-A^h'\\ == \\{B2-B^h'\\ == C'\\DBlh'\\ C'\\DAlh'\\ (A'€§') 

means that A1 Harnack-dominates A2. Now the second statement of this theorem can 
be obtained by referring to Theorem 3.2. 

Lemma 4.1. Let B^ B2£L(R'; ft), 11̂ 1 = ||52|| = 1 be of the form B—B^Si 
where 5, are strict contractions (/=1, 2). Then Bu B2 Harnack-dominate each other. 

Proof. Consider the decomposition ft'=ft^©fti for which 

= B2Pa = B0 and = B^ = 5,(1 -PBi) 
and note that 

\\DBlkT = (II^P-II.Bo^D+difciip-ii^^p) s 

^ II kill2-II Si ¿rill2 ^ (1 -II^DIIArir, where k'0 = P^k', k[ = Pwk\ 

Whence, by taking C=max {(1 - | |SJ 2 ) - 1 / 2 , (1-||S2||2)"1/2} it follows 

\\PKik'\\ ^ C\\DBik'\\ for all ¿'eft' . 

Therefore, we have IK^-^^'Hsll^a-^illll^ll^C'IIDB^'H and also 

IIA,S*T= l l*T-l l W - H M I ' = I I ^ T + C I I M I -||S1^||)(||52fci!l + ||S,fcil|) 

^ II^^'IIHII^-^IKH^II+II^IDII^P; 

hence ||Z)BaA:'||sC"||£)BiA:'|| for all ifc'eft, where C', C" are constants. 
Thus Bx Harnack-dominates B2. By symmetry B2 also Harnack-dominates B1. 
Theorem 4.1 and Lemma 4.1 have the following 

Corollary 4.1. Let Blt 2Ja€£,(ft'; ft) be two operators as in Lemma 4.1, 
intertwining U and U' and such that: B^Si'Qf)')<zSKQ9) ( i= l , 2). Then, Bx is an 
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exact intertwining dilation of A^P^B^fo', if and only if B2 is an exact intertwining 
dilation of Аг=РъВй\![)'-, moreover, Вг is the unique exact intertwining dilation for 
Ax if and only if B2 is, so for A2. 

In virtue of Theorems 2 and . 5 of [2], we also have the following corollary of 
Theorem 4.1, concerning the Hankel operators.2) 

Corol lary 4.2. Let Flt F2Ç£"((£, g) (G, g-separable Hilbert spaces) have the 
properties: 

11̂ 11 = 11̂ 11 = 1, 
* i ( 0 = *a(0 whenever max {11^(011, I |p2(0 l l }> l -Ofor some fixed 0, O<0<1. 
Then, if one of these functions is a minifunction for its Hankel operator, then so is 

the other. Moreover, if one of them is the unique minifunction of its Hankel operator 
so is the other. 

Proof. Set cr={i<E[0,1]: max {||fi(/)||, ||F2(Í)||}>1 -6} , and 20=xaL*(f&), fi1= 

=X[o,i]\<r72((£) where x„ is the characteristic function of a. Then L2(®)=fi0©fi1 . 
Also, denoting by 2?( the operators: f-*Ftf from L2((£) to L2(g) (i= l, 2), we observe 
that 

B1Pee = BtPe„ Bt20czxoL\%) and B^ с z [ 0 ,1 ] VL2(S)-

Thus the operators Bt can be written 2?;=i?0® S,- where 

B0 = BtPSo, S, = В,Рй1 and II5J < 1 (I = 1, 2). 
Now Corollary 4.2 follows at once by Corollary 4.1. 
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