Universal quasinilpotent operators

DOMINGO A. HERRERO

1. Introduction. Let \mathfrak{H} be a complex Hilbert space of (topological) dimension h and let $\mathscr{L}(\mathfrak{H})$ be the algebra of all (bounded linear) operators in \mathfrak{H} . Given T in $\mathscr{L}(\mathfrak{H})$, let $\mathscr{L}(T) = \{WTW^{-1}: W \text{ is invertible in } \mathscr{L}(\mathfrak{H})\}$ ("similarity orbit" of T). What is $\mathscr{L}(T)^-$, the norm-closure of $\mathscr{L}(T)$? In this note it will be shown that the similarity orbit of a quasinilpotent perator could be surprisingly large. The norm-closure of the set $\mathscr{N}(\mathfrak{H}) = \{Q \in \mathscr{L}(\mathfrak{H}): Q \text{ is nilpotent}\}$ was completely characterized in [1] (separable case) and [11] (non-separable case); it was shown, in particular, that every quasinilpotent operator belongs to $\mathscr{N}(\mathfrak{H})^-$. Since $\mathscr{N}(\mathfrak{H})^-$ is invariant under similarities, it readily follows that $\mathscr{L}(Q)^-$ must be contained in $\mathscr{N}(\mathfrak{H})^-$ for every quasinilpotent operator Q. The main result says that the converse inclusion is also true for a suitably chosen Q.

First of all, consider the finite dimensional case. Assume that T is a nilpotent operator on a Hilbert space \mathfrak{H} of dimension $n (0 < n < \infty)$. Then there exists an orthonormal basis $\{e_1, \ldots, e_n\}$ with respect to which T can be written as a matrix $T = (t_{jk})_{j,k=1}^n$, where $t_{jk} = 0$ for all $j \ge k$ (i.e., an upper triangular matrix with 0's in the diagonal). Given $\varepsilon > 0$, let $T_{\varepsilon} = (t_{jk,\varepsilon})_{j,k=1}^n$, where $t_{jk} = \varepsilon$ if k = j+1 and $t_{j,j+1,\varepsilon} = \varepsilon$ if k = j+1 and $t_{j,j+1,\varepsilon} = 0$. Clearly, $||T - T_{\varepsilon}|| \le \varepsilon$ and T_{ε} is similar to its Jordan form, given by the matrix $Q_{un} = (\delta_{j+1,k})$, where δ_{jk} denotes the Kronecker delta. Since ε can be chosen arbitrarily small, we have arrived to the following result:

Lemma 1. Let \mathfrak{H} be an n-dimensional Hilbert space $(0 < n < \infty)$ and let $Q_{un} = = (\delta_{j+1,k})$ (with respect to some ONB). Then $\mathscr{G}(Q_{un})^-$ coincides with the set of all nilpotent operators in \mathfrak{H} .

2. The ideal of compact operators. Let $\mathscr{K}(\mathfrak{H})$ denote the ideal of compact operators on a Hilbert space \mathfrak{H} of infinite dimension h.

Lemma 2. The compact quasinilpotent operator $K_{uh} \approx \left(\bigoplus_{n=1}^{\infty} 1/nQ_{un} \right) \oplus 0$, where 0 is the zero operator acting on a subspace of dimension $h \approx means$ "unitarily equivalent to") has the property: $\mathscr{S}(K_{uh})^- = \{K \in \mathscr{K}(\mathfrak{H}): K \text{ is quasinilpotent}\}.$

Received September 13, 1975.

tet -

. - 4

D. A. Herrero

Proof. Let K be a compact quasinilpotent operator. Then $\mathfrak{H} = \mathfrak{H}_0 \oplus \mathfrak{H}_1$, where $\mathfrak{H}_0, \mathfrak{H}_1$ reduce K, dim $\mathfrak{H}_0 = \mathfrak{H}_0$ and $K|\mathfrak{H}_1 = 0$ (the vertical bar denotes restriction). Now it is clear that, by a trivial modification of the proof given by R. G. DOUGLAS in [8] for the case when \mathfrak{H} is separable, it can be shown that K is a norm limit of finite rank nilpotents. On the other hand, we already know that the set of all compact quasinilpotents is closed in $\mathscr{L}(\mathfrak{H})$ (see, e.g., [12]). Thus, in order to complete the proof we only have to show that $\mathscr{L}(K_{uh})^-$ actually contains every finite rank nilpotent.

Let F be a finite rank nilpotent in $\mathscr{L}(\mathfrak{H})$. Then there exists a finite dimensional subspace \mathfrak{H}_n of dimension $n, 0 < n < \infty$, reducing F such that $F|\mathfrak{H}_n^{\perp}=0$. Up to a unitary transformation (of \mathfrak{H} onto itself) we can obviously assume that \mathfrak{H}_n is the space of Q_{un} . Hence, $F|\mathfrak{H}_n \in \mathscr{S}(Q_{un})^-$ (use Lemma 1).

Since $K_{uh} = (1/n)Q_{un} \oplus K_n''$ (with respect to the decomposition $\mathfrak{H} = \mathfrak{H}_n \oplus \mathfrak{H}_n^{\perp}$), where K_n'' is a quasinilpotent operator acting on \mathfrak{H}_n^{\perp} , it follows from [16] that $(1/n)Q_n \oplus 0 \in \mathscr{S}(K_{uh})^{-}$. Since Q_n and $(1/n)Q_n$ are similar, we conclude that $F \in \mathscr{S}(K_{uh})^{-}$.

This result suggests the following

Definition 1. A (necessarily quasinilpotent, but not nilpotent) operator $Q_u(\mathcal{I})$ satisfying the equality $\mathcal{P}[Q_u(\mathcal{I})]^- = \{Q \in \mathcal{I} : Q \text{ is quasinilpotent}\}$ for a given closed bilateral ideal \mathcal{I} of $\mathcal{L}(\mathfrak{H})$ will be called a *universal quasinilpotent for the ideal* \mathcal{I} .

Let K be an arbitrary compact quasinilpotent, but not nilpotent, operator. Then ([8]) there exists a vector $x \in \mathfrak{H}$ such that $K^n x \neq 0$ for all $n=0, 1, 2, \ldots$ Let \mathfrak{H} be the (closed) subspace spanned by $\{K^n x\}_{n=0}^{\infty}$ and let

$$K = \begin{bmatrix} K_{11} & K_{12} \\ 0 & K_{22} \end{bmatrix}$$

be the matrix representation of K with respect to the orthogonal decomposition $\mathfrak{H} = \mathfrak{H}_x \oplus \mathfrak{H}_x^{\perp}$. Clearly, K_{11} and K_{22} are quasinilpotent operators, so that we can proceed as in [12] in order to show that $K_{11} \oplus 0 \in \mathscr{S}(K)^-$. Assuming that K_{11} is similar to a compact weighted shift with non-zero weights, it is not difficult to prove (by using the arguments of [12] and the proof of Lemma 2) that K_{11} and, a fortiori, K are compact universal quasinilpotents. This suggests the following

Conjecture 1. A compact quasinilpotent operator is either nilpotent or a compact universal quasinilpotent.

The above observations reduce this conjecture to the analysis of those compact quasinilpotents having a cyclic vector. 3. Similarity orbits of certain normal operators. Our next step will be a partial characterization of the set $\mathscr{G}(N)^-$ for the case when N is a normal operator. (A more complete description of this case will be given in an oncoming article [13].)

The closed bilateral ideals of $\mathscr{L}(\mathfrak{H})$ have been completely characterized by several authors ([3; 6; 14]): Let α be a cardinal number such that $\aleph_0 \leq \alpha \leq h = \dim \mathfrak{H}$ and let \mathscr{J}_{α} be the norm-closure of the set of all operators T in $\mathscr{L}(\mathfrak{H})$ such that dim $(T\mathfrak{H})^{-} < \alpha$. Then \mathscr{J}_{α} is a closed bilateral ideal of $\mathscr{L}(\mathfrak{H})$ and every such proper (non-zero) ideal has this form. The weighted spectrum of $A \in \mathscr{L}(\mathfrak{H})$ corresponding to \mathscr{J}_{α} is the spectrum $\Lambda_{\alpha}(A)$ of the canonical projection of A in the quotient algebra $\mathscr{L}(\mathfrak{H})/\mathscr{J}_{\alpha}$; namely, $\Lambda_{\mathfrak{K}_0}(A) = E(A)$ is the usual Calkin essential spectrum of A, and $\Lambda_h(A)$ is the heavy spectrum (i.e., the one corresponding to the largest ideal). For the analysis of these weighted spectra, as well as for the definition and properties of the approximate nullity $\delta(A)$ of an operator A, the reader is referred to [4; 11]. We recall that, in the separable case, the condition $\delta(\lambda - A) = \delta(\lambda - A^*)$ (where A^* denotes the adjoint of the operator A) for all complex λ is equivalent to saying that if $(\lambda - A)$ is a semi-Fredholm operator, then its index is 0, i.e., A is a bi-quasitriangular operator in the sense of [1; 2].

Theorem 1. Let N be a normal operator such that $\Lambda(N)$ (the spectrum of N) is a perfect set and coincides with $\Lambda_h(N)$. Then $\mathcal{G}(N)^-$ contains every operator $A \in \mathcal{L}(\mathfrak{H})$ such that $\Lambda(A) = \Lambda_h(A) = \Lambda(N)$ and $\delta(\lambda - A) = \delta(\overline{\lambda} - A^*)$ for all complex λ .

Let A be as in Theorem 1. By using the results of [2, Theorem 2.2] and [11] we can see that, given $\varepsilon > 0$, there exists an operator A' satisfying the same hypotheses as A such that $||A - A'|| < \varepsilon$ and

$$A' \approx \begin{bmatrix} N & 0 & T_1 \\ 0 & N & L_1 \\ 0 & 0 & L_2 \end{bmatrix} = \begin{bmatrix} N & T \\ 0 & L \end{bmatrix}, \quad T = \begin{bmatrix} 0 & T_1 \end{bmatrix}, \quad L = \begin{bmatrix} N & L_1 \\ 0 & L_2 \end{bmatrix}.$$

(All these matrices of operators are referred to suitable orthogonal direct sum decompositions of the underlying spaces.) It readily follows that L also satisfies the hypotheses of Theorem 1. Therefore, by [11; 18], L is a norm limit of algebraic operators with spectra contained in $\Lambda(N)$; furthermore, by an easy approximation argument, L can be actually approximated in the norm by operators which are similar to normal operators with *finite spectrum* contained in $\Lambda(N)$. Thus, in order to complete the proof of Theorem 1 it will be enough to prove the following weaker version of it:

Theorem 1'. Let N be a normal operator in $\mathscr{L}(\mathfrak{H})$ such that $\Lambda(N) = \Lambda_{\mathfrak{h}}(N)$ is a perfect set, let T: $\mathfrak{H}' \to \mathfrak{H}$ be an arbitrary continuous linear mapping from a Hilbert space \mathfrak{H}' , dim $\mathfrak{H}' = h' \leq h$, and let M, $W \in \mathscr{L}(\mathfrak{H}')$, where M is normal with a finite spectrum contained in $\Lambda(N)$ and W is invertible. Then $\mathcal{S}(N)^-$ contains every operator in $\mathcal{L}(\mathfrak{H})$ unitarily equivalent to

$$\begin{bmatrix} N & T \\ 0 & WMW^{-1} \end{bmatrix}$$

(with respect to the orthogonal direct sum decomposition $\mathfrak{H} \oplus \mathfrak{H}'$).

The proof will be given in a series of lemmas.

Lemma 3. Let N be as in Theorem 1 and let $\lambda \in \Lambda(N)$. If

$$A \approx \begin{bmatrix} N & T \\ 0 & \lambda I' \end{bmatrix}$$

(I' = identity on \mathfrak{H}'), then $A \in \mathscr{G}(N)^-$.

Proof. Clearly, we can translate N by a multiple of the identity and assume that $\lambda=0$. According to the characterization of the norm closure of $\mathscr{U}(N) = \{UNU^{-1}: U \text{ is unitary}\}$ given in [12] (see also [7]), $\mathscr{U}(N)^-$ (which is obviously contained in $\mathscr{S}(N)^-$) contains every normal operator $N' \approx N \oplus 0'$, where 0' denotes the zero operator in \mathscr{U}' .

Case I: h' is finite.

In this case A is a compact perturbation of an operator N' as above and the result follows from [10, Lemma 1].

Case II: $\aleph_0 \leq h' < h$.

Proceeding as in [11], it is possible to find an orthogonal direct sum decomposition $\mathfrak{H} = \mathfrak{H}_0 \oplus \mathfrak{H}''$, such that dim $\mathfrak{H}'' = h'$, dim $\mathfrak{H}_0 = h$ and

 $\begin{bmatrix} N & T \\ 0 & 0' \end{bmatrix} = N_0 \oplus \begin{bmatrix} N'' & T'' \\ 0'' & 0' \end{bmatrix}$

with respect to $\mathfrak{H}_0 \oplus \mathfrak{H}'' \oplus \mathfrak{H}'$, where $N_0 \in \mathscr{L}(\mathfrak{H}_0)$, $N'' \in \mathscr{L}(\mathfrak{H}')$ are normal operators satisfying $\Lambda(N_0) = \Lambda_h(N_0) = \Lambda(N'') = \Lambda_h(N'') = \Lambda(N)$.

This reduces our problem to

Case III: h' = h.

Given $\varepsilon > 0$, we can find an ε' , $0 < \varepsilon' < \min \{\varepsilon, 1\}$ such that if $\Delta_0 = \{\lambda : |\lambda| \ge \varepsilon'\}$ and $\Delta'_0 = \{\lambda : |\lambda| < \varepsilon\}$, then $\Delta_0 \cap \Lambda(N)$ and $[\Lambda'_0 \cap \Lambda(N)]^-$ are nonempty perfect sets. To simplify the notation, we can directly assume that $\varepsilon' = \varepsilon$ and $0 < \varepsilon < 1$. Let $E(\cdot)$ be the spectral measure of N; then $E(\Delta_0) \mathfrak{H} = \mathfrak{H}_0$ and $E(\Delta'_0) \mathfrak{H} = \mathfrak{H}_0'$ are complementary *h*-dimensional orthogonal reducing subspaces of N and N can be written as N =

л. . $=N_0\oplus N_0'$, where $N_0\in\mathscr{L}(\mathfrak{H}_0)$ and $N_0'\in\mathscr{L}(\mathfrak{H}_0')$, with respect to this decomposition. Then we can also write

$$B = \begin{bmatrix} N & T \\ 0 & 0' \end{bmatrix} = \begin{bmatrix} N_0 & 0 & T_1 \\ 0 & N'_0 & T_2 \\ 0 & 0 & 0' \end{bmatrix}$$

with respect to $\mathfrak{H}_0 \oplus \mathfrak{H}'_0 \oplus \mathfrak{H}'$.

Combining T_2 with an isometry V from \mathfrak{H}'_0 onto \mathfrak{H}' and using the polar decomposition of VT_2 , it is not difficult to see that \mathfrak{H}'_0 and \mathfrak{H}' can be written as orthogonal direct sums $\mathfrak{H}'_0 = \mathfrak{H}'_{0a} \oplus \mathfrak{H}'_{0b}$ and $\mathfrak{H}' = \mathfrak{H}'_a \oplus \mathfrak{H}'_b$, where dim $\mathfrak{H}'_{0a} = \dim \mathfrak{H}'_{0b} = \dim \mathfrak{H}'_a = \dim \mathfrak{H}'_b = h$ and $T_2 \mathfrak{H}'_a \subset \mathfrak{H}'_b = \mathfrak{H}'_b$. Therefore, we can write $T_2 = T_{2a} \oplus T_{2b}$, where $T_{2a}(T_{2b}) = T_2 | \mathfrak{H}'_a$ (\mathfrak{H}'_b , resp.) and

$$B = \begin{bmatrix} N_0 & 0 & T_1 \\ 0 & N'_0 & T_{2a} \oplus T_{2b} \\ 0 & 0 & 0 \oplus 0 \end{bmatrix}.$$

Let $\Delta_j = \{\lambda: \varepsilon_{j+1} \le |\lambda| < \varepsilon_j\}, j=1, 2, 3, 4$, be such that $[\Delta_j \cap \Lambda(N'_0)]^-$ is perfect for all j and $0 = \varepsilon_5 < \varepsilon_4 < \varepsilon_3 < \varepsilon_2 < \varepsilon^2 < \varepsilon_1 = \varepsilon$. Proceeding as in the first part of the proof, we van decompose $\mathfrak{H}'_0 = \mathfrak{H}'_0 \mathfrak{H}_j$ and $N'_0 = \mathfrak{H}'_0 \mathfrak{H}_j$ in such a way that $N_j \in \mathscr{L}(\mathfrak{H}_j)$ and $\Lambda(N_j) = [\Delta_j \cap \Lambda(N'_0)]^-$. Now choose arbitrary normal operators $M_1 \in \mathscr{L}(\mathfrak{H}'_0)$, $M_2 \in \mathscr{L}(\mathfrak{H}'_0), M_3 \in \mathscr{L}(\mathfrak{H}'_0)$ and $M_4 \in \mathscr{L}(\mathfrak{H}'_0)$ such that $M_j \approx N_j$, j=1, 2, 3, 4. Since $\Lambda(M_1) \cap \Lambda(M_3) = \Lambda(M_2) \cap \Lambda(M_4) = \emptyset$, it follows from ROSENBUML's Corollary ([15, Corollary 0.15]) that the operators $M_1 \oplus M_3$ and $M_2 \oplus M_4$ are similar to

$$\begin{bmatrix} M_1 & T_{2a} \\ 0 & M_3 \end{bmatrix} \text{ and } \begin{bmatrix} M_2 & T_{2b} \\ 0 & M_4 \end{bmatrix},$$

respectively. Hence,

$$R = N_0 \oplus \begin{bmatrix} M_1 & T_{2a} \\ 0 & M_3 \end{bmatrix} \oplus \begin{bmatrix} M_2 & T_{2b} \\ 0 & M_4 \end{bmatrix} = \begin{bmatrix} N_0 & 0 & 0 \\ 0 & M_1 \oplus M_2 & T_{2a} \oplus T_{2b} \\ 0 & 0 & M_3 \oplus M_4 \end{bmatrix} =$$

$$= \begin{bmatrix} N_0 & 0 & 0 \\ 0 & M_1 \oplus M_2 & T_2 \\ 0 & 0 & M_3 \oplus M_4 \end{bmatrix}$$

is similar to N. Thus, if $X = -N_0^{-1}T_1$ and

$$W = \begin{bmatrix} I & 0 & X \\ 0 & I & 0 \\ 0 & 0 & I \end{bmatrix}, \text{ then } WRW^{-1} = \begin{bmatrix} N_0 & 0 & T_1 - X(M_3 \oplus M_4) \\ 0 & M_1 \oplus M_2 & T_2 \\ 0 & 0 & M_3 \oplus M_4 \end{bmatrix}.$$

Since $||B - WRW^{-1}|| \le ||X(M_3 \oplus M_4)|| + ||N_0' - M_1 \oplus M_2|| + ||M_3 \oplus M_4|| \le \varepsilon^2 ||N_0^{-1}|| \cdot ||T|| + 2\varepsilon + \varepsilon^2 \le \varepsilon ||T|| + 2\varepsilon + \varepsilon^2 < (3 + ||T||)\varepsilon$ and WRW^{-1} is similar to N, we conclude that dist $[A, \mathcal{S}(N)] < (3 + ||T||)\varepsilon$, whence the result follows.

Lemma 4. Lemma 3 remains true if N is replaced by WNW^{-1} , for some invertible W.

Proof. Clearly, $\mathcal{G}(N)^- = \mathcal{G}(WNW^{-1})^-$ and therefore it is enough to show that if

$$A \approx \begin{bmatrix} WNW^{-1} & T \\ 0 & \lambda I' \end{bmatrix},$$

then $A \in \mathcal{G}(N)^-$.

By Lemma 3, every operator $A' \in \mathscr{L}(\mathfrak{H})$ such that

$$A' \approx \begin{bmatrix} N & W^{-1}T \\ 0 & \lambda I' \end{bmatrix}$$

belongs to $\mathcal{G}(N)^-$.

On the other hand,

$$\begin{bmatrix} W & 0 \\ 0 & I' \end{bmatrix} \begin{bmatrix} N & W^{-1}T \\ 0 & \lambda I' \end{bmatrix} \begin{bmatrix} W & 0 \\ 0 & I' \end{bmatrix}^{-1} = \begin{bmatrix} WNW^{-1} & T \\ 0 & \lambda I' \end{bmatrix}.$$

Since $\mathscr{G}(N)^-$ is invariant under similarities ([12]), it readily follows that $A \in \mathscr{G}(N)^-$.

Lemma 5. Let N be as in Theorem 1, let $\{\lambda_1, ..., \lambda_m\}$ be a finite subset of $\Lambda(N)$, let I_j be the identity operator on a Hilbert space \mathfrak{H}_j of dimension $h_j \leq h$, and let $M = \bigoplus_{j=1}^{m} \lambda_j I_j \in \mathscr{L}(\mathfrak{H})$, where $\mathfrak{H}' = \bigoplus_{j=1}^{m} \mathfrak{H}_j$. Then $\mathscr{L}(N)^-$ contains every operator $A \in \mathscr{L}(\mathfrak{H})$ unitarily equivalent to

 $\begin{bmatrix} N & T \\ 0 & M \end{bmatrix}.$

(With respect to the orthogonal direct sum $\mathfrak{H}\mathfrak{H}$.)

Proof. This follows by induction over *m*. For m=1, it is the result of Lemma 3. Assume that the result is true for m=n and let m=n+1. Set $M=M_n\oplus\lambda_{n+1}I_{n+1}$, where $M_n=\bigoplus_{j=1}^n \lambda_j I_j$; then

$$\begin{bmatrix} N & T \\ 0 & M \end{bmatrix} = \begin{bmatrix} N & T_n & T_{n+1} \\ 0 & M_n & 0 \\ 0 & 0 & \lambda_{n+1} I_{n+1} \end{bmatrix} = \begin{bmatrix} N_n & T_{n+1} \\ 0 & \lambda_{n+1} I_{n+1} \end{bmatrix}, \text{ where } N_n = \begin{bmatrix} N & T_n \\ 0 & M_n \end{bmatrix}.$$

(The first matrix corresponds to the decomposition $\mathfrak{H} \oplus \mathfrak{H}'$, the second one to $\mathfrak{H} \oplus \left(\bigoplus_{j=1}^n \mathfrak{H}_j \right) \oplus \mathfrak{H}_{n+1}$ and the third one to $\left[\mathfrak{H} \oplus \left(\bigoplus_{j=1}^n \mathfrak{H}_j \right) \right] \oplus \mathfrak{H}_{n+1}$; the matrix of N_n corresponds to the decomposition $\mathfrak{H} \otimes \left(\bigoplus_{j=1}^n \mathfrak{H}_j \right) \right]$.

By our inductive hypothesis, there exists an operator $N'_n \in \mathscr{L}\left[\mathfrak{H} \oplus \left(\bigoplus_{j=1}^n \mathfrak{H}_j \right) \right]$, similar to N, such that $||N_n - N'_n||$ is smaller than an arbitrarily small given $\varepsilon > 0$. On the other hand, by Lemma 4,

$$\begin{bmatrix} N'_n & T_{n+1} \\ 0 & \lambda_{n+1} I_{n+1} \end{bmatrix}$$

can be approximated in the norm by operators similar to N'_n .

Since

$$\begin{bmatrix} N_n & T_{n+1} \\ 0 & \lambda_{n+1} I_{n+1} \end{bmatrix} - \begin{bmatrix} N'_n & T_{n+1} \\ 0 & \lambda_{n+1} I_{n+1} \end{bmatrix} = (N_n - N'_n) \oplus 0_{n+1},$$

dist $[A, \mathcal{S}(N)] \leq ||N_n - N'_n|| < \varepsilon$, whence the result follows.

Proof of Theorem 1'. The last step of the proof is very similar to that of Lemma 4. Indeed, observe that if M is chosen as in Lemma 5 and W is an invertible operator in $\mathcal{L}(\mathfrak{H})$, then

Since

$$\begin{bmatrix} I & 0 \\ 0 & W \end{bmatrix} \begin{bmatrix} N & TW \\ 0 & M \end{bmatrix} \begin{bmatrix} I & 0 \\ 0 & W \end{bmatrix}^{-1} = \begin{bmatrix} N & T \\ 0 & WMW^{-1} \end{bmatrix}.$$
$$\begin{bmatrix} N & TW \\ 0 & M \end{bmatrix}$$

can be uniformly approximated by operators similar to N (Lemma 5) and $\mathscr{G}(N)^-$ is invariant under similarities ([12]), we are done.

4. The main result. The following result is our goal.

Theorem 2. For every dimension $h \ge \aleph_0$ there exists a universal quasinilpotent operator $Q_{uh} \in \mathscr{L}(\mathfrak{H})$, dim $\mathfrak{H} = h$.

Proof. The proof combines the result of Theorem 1 with an argument due to N. SALINAS ([5, Theorem 3.2]). Let $H_k \in \mathscr{L}(\mathfrak{H})$ be an hermitian operator such that $\Lambda(H_k) = \Lambda_h(H_k) = [0, 1/k]$ (k=1, 2, ...). According to [9; 11], there exists a sequence $\{R_{kn}\}_{n=1}^{\infty}$ of nilpotent operators such that $||H_k - R_{kn}|| < 1/n, n=1, 2, ...$ By [16], there also exist nilpotent operators R'_{kn} similar to R_{kn} , such that $||\mathcal{R}'_{kn}|| < 1/(k \cdot n)$.

Let Q_{uh} be an arbitrary quasinilpotent operator in $\mathscr{L}(\mathfrak{H})$, unitarily equivalent to $\bigoplus_{k,n=1}^{\infty} R'_{kn}$. Proceeding as in the proof of Lemma 2, we can see that $\mathscr{S}(Q_{uh})^-$ contains

Π

every operator unitarily equivalent to $R'_{kn} \oplus 0$ (for every fixed pair of values k and n). A fortiori, every $H'_k \approx H_k \oplus 0$ belongs to $\mathscr{S}(Q_{uh})^-$.

Let Q be an arbitrary quasinilpotent operator in $\mathcal{L}(\mathfrak{H})$. It follows from [2; 10; 11] that there exists an operator Q_k unitarily equivalent to

$$\begin{bmatrix} H'_k & T \\ 0 & L \end{bmatrix}$$

where $\Lambda(L) \subset \Lambda(H'_k) = \Lambda_h(H'_k) = [0, 1/k]$, such that $||Q - Q_k|| < 2/k$. Since, by Theorem 1, $Q_k \in \mathcal{S}(H'_k)^- \subset \mathcal{S}(Q_{uh})^-$ for k = 1, 2, ..., it is easy to see that Q belongs to $\mathcal{S}(Q_{uh})^-$ too.

5. Universal quasinilpotents for other closed bilateral ideals of $\mathscr{L}(\mathfrak{H})$. Let \mathscr{J}_{α} be a non-zero proper closed bilateral ideal of $\mathscr{L}(\mathfrak{H})$. Does there always exist a universal quasinilpotent for \mathscr{J}_{α} ? The answer is NO. Indeed, the existence of such universal operator depends on the cardinal α . Following [4; 6], we shall say that α is \aleph_0 -regular if it cannot be written in the form $\alpha = \sum_{n=1}^{\infty} \alpha_n$ (=sup α_n) for a sequence $\{\alpha_n\}_{n=1}^{\infty}$ of cardinal numbers strictly smaller than α ; α is called \aleph_0 -irregular in the converse case. Now the complete answer to the above question is given by the following

Theorem 3. Let dim $\mathfrak{H}=h \geq \aleph_0$ and let \mathscr{J}_{α} , $\aleph_0 \leq \alpha \leq h$, be a proper closed bilateral ideal of $\mathscr{L}(\mathfrak{H})$. If neither

(i) $\alpha = \bigotimes_{v+1}$ for some ordinal v, or

(ii) α is \aleph_0 -irregular,

then there exists a universal quasinilpotent operator $K_u = K_u(\alpha; h)$ for \mathcal{J}_a .

On the other hand, if α is an \aleph_0 -regular limit cardinal, then $\mathscr{G}(K)^- \subset \mathscr{J}_\beta$ for some cardinal β strictly smaller than α , and therefore there is no universal quasinilpotent operator for \mathscr{J}_α .

Proof. Lemma 2 takes care of the case when $\alpha = \aleph_0$, so we can restrict our attention to the case $\alpha > \aleph_0$. We shall need the following auxiliary result.

Lemma 6. Let $\aleph_0 < \alpha \le h = \dim \mathfrak{H}$. Then the closure of the set of all nilpotent operators in \mathscr{J}_{α} coincides with $\mathscr{J}_{\alpha} \cap \mathcal{N}(\mathfrak{H})^{-}$. In particular, this set contains every quasi-nilpotent element of \mathscr{J}_{α} .

Proof. Let $T \in \mathscr{J}_a \cap \mathscr{N}(\mathfrak{H})^-$. Then there exist two sequences of operators, $\{T_n: \dim (T_n\mathfrak{H})^- = \alpha_n < \alpha\}_{n=1}^{\infty}$ and $\{Q_n: Q_n \in \mathscr{N}(\mathfrak{H})\}$ such that $||T - T_n|| + ||T - Q_n|| < 1/n$. Proceeding as in [11] we can find a subspace \mathfrak{H}_n of dimension $\alpha'_n = \max \{\alpha_n, \aleph_0\}$ reducing T_n and Q_n , such that $T_n |\mathfrak{H}_n^\perp = 0$. Clearly, $||T_n|\mathfrak{H}_n - Q_n|\mathfrak{H} = ||T_n - Q_n|| < 2/n$. Let $R_n = (Q_n | \mathfrak{H}_n) \oplus (0 | \mathfrak{H}_n^{\perp})$. It readily follows that $R_n \in \mathscr{J}_a$ and that $R_n^{k_n} = 0$. if $Q_n^{k_n} = 0$, i.e., R_n is a nilpotent element of \mathscr{J}_a . Moreover, $||T - R_n|| \leq ||T - T_n|| + ||T_n - R_n|| < 3/n$. Hence T is a norm limit of nilpotent elements of \mathscr{J}_a . Therefore, $\mathscr{J}_a \cap \mathscr{N}(\mathfrak{H})^- \subset \{Q \in \mathscr{J}_a: Q \text{ is nilpotent}\}^-$. Since the converse inclusion is trivial, we have proved the first statement, the second one follows from [11].

Now we are in a position to finish the proof of Theorem 3. By Lemma 6, it will be enough to show that if $\alpha > \aleph_0$, then $\mathscr{G}(K_u)^-$ contains $\mathscr{J}_{\alpha} \cap \mathscr{N}(\mathfrak{H})^-$, for a suitable $K_u \in \mathscr{J}_{\alpha}$.

If α satisfies (i), $\mathscr{J}_{\alpha} = \{T \in \mathscr{L}(\mathfrak{H}): \dim (T\mathfrak{H})^{-} \leq \aleph_{\nu}\}$ ([6; 14]) and the result follows as in Theorem 2; in fact, if $K \in \mathscr{J}_{\alpha}$ is nilpotent, then $\mathfrak{H} = \mathfrak{H}_{0} \oplus \mathfrak{H}_{1}$, where $\mathfrak{H}_{0}, \mathfrak{H}_{1}$ reduce K, dim $\mathfrak{H}_{0} = \aleph_{\nu}$ and $K | \mathfrak{H}_{1} = 0$. If $Q_{u} \in \mathscr{L}(\mathfrak{H}_{0})$ is the operator defined in Theorem 2, then it readily follows that $K \in \mathscr{S}(Q_{u} \oplus 0)^{-}$, and $K_{u} = Q_{u} \oplus 0 \in \mathscr{J}_{\alpha}$ is the solution to our problem. It α satisfies (ii), write $\mathfrak{H} = \bigoplus_{n=1}^{\infty} \mathfrak{H}_{n}$, where dim $\mathfrak{H}_{n} = \alpha_{n} < \alpha$ and $\sum_{n=1}^{\infty} \alpha_{n} = \alpha$, and define $K_{u} = [\bigoplus_{n=1}^{\infty} (1/n) \mathcal{Q}_{u\alpha_{n}}]$, where $\mathcal{Q}_{u\alpha_{n}}$ is the universal quasinilpotent of Theorem 2 in dimension α_{n} . Clearly, K_{u} is a quasinilpotent element of \mathscr{J}_{α} . Now the arguments of the proof of Theorem 2 and the results of [11] show that $\mathscr{S}(K_{u})^{-}$ actually contains every nilpotent operator of \mathscr{J}_{β} for every cardinal $\beta < \alpha$, and Lemma 3 and its proof show that $\mathscr{S}(K_{u})^{-}$ also contains every nilpotent of \mathscr{J}_{α} .

Let α be an \aleph_0 -regular limit cardinal. Then, $\mathscr{J}_{\alpha} = \{T \in \mathscr{L}(\mathfrak{H}): \dim(T\mathfrak{H})^- < \alpha\}$ and, given $K \in \mathscr{J}_{\alpha}$, there exists a cardinal $\beta < \alpha$ such that dim $(K\mathfrak{H})^- < \beta$ ([4]). Hence, $\mathscr{S}(K)^- \subset \mathscr{J}_{\beta}$, and this ideal is properly contained in \mathscr{J}_{α} . Thus, if $T \in \mathscr{J}_{\alpha} \setminus \mathscr{J}_{\beta}$ and $A \in \mathscr{J}_{\alpha}$ is unitarily equivalent to

$$\begin{bmatrix} 0 & T \\ 0 & 0 \end{bmatrix},$$

then $A^2=0$, and A cannot belong to $\mathscr{G}(K)^-$. Therefore, there is no universal quasinilpotent operator for \mathscr{J}_{α} .

References

- C. APOSTOL, C. FOIAŞ and D. VOICULESCU, On the norm-closure of nilpotents, *Rev. Roum. Math. Pures Appl.*, 19 (1974), 549-577.
- [2] C. APOSTOL, C. FOIAŞ and D. VOICULESCU, Some results on non-quasitriangular operators. IV, *Rev. Roum. Math. Pures Appl.*, 18 (1973), 487-514.
- [3] L. A. COBURN and A. LEBOW, Components of invertible elements in quotient algebras of operators, Trans. Amer. Math. Soc., 130 (1968), 359-366.
- [4] G. EDGAR, J. ERNEST and S. G. LEE, Weighing operator spectra, Indiana Univ. Math. J., 21 (1971), 61-80.
- [5] L. A. FIALKOW, A note on direct sums of quasinilpotent operators, Proc. Amer. Math. Soc., 47 (1975), 125-131.

- [6] B. GRAMSCH, Eine Idealstruktur Banachscher Operatoralgebren, J. reine angew. Math. 225 (1967), 97-115.
- [7] D. W. HADWIN, Closures of unitary equivalence classes, Notices Amer. Math. Soc., 21 (1974), 74T-B55, A-306.
- [8] P. R. HALMOS, Ten problems in Hilbert space, Bull. Amer. Math. Soc., 76 (1970), 887-933.
- [9] D. A. HERRERO, Normal limits of nilpotent operators, *Indiana Univ, Math. J.*, 23 (1974), 1097–1108.
- [10] D. A. HERRERO, Toward a spectral characterization of the set of norm limits of nilpotent operators, Indiana Univ. Math. J., 24 (1975), 847-864.
- [11] D. A. HERRERO, Norm limits of nilpotent operators and weighted spectra in non-separable Hilbert spaces, Rev. Un. Mat. Argentina 27 (1975), 83-105.
- [12] D. A. HERRERO, Clausura de las órbitas de similaridad de operadores en espacios de Hilbert, Rev. Un. Mat. Argentina (to appear).
- [13] D. A. HERRERO, Closure of similarity orbits of Hilbert space operators. II: Normal operators, J. London Math. Soc. (2), 13 (1976), 299-316.
- [14] E. LUFT, The two-sided closed ideals of the algebra of bounded linear operators of a Hilbert space, Czechoslovak Math. J., 18 (1968), 595-605.
- [15] H. RADJAVI and P. ROSENTHAL, Invariant subspaces, Ergebnisse der Math. und ihrer Grenzgebiete, 77, Springer-Verlag (New York-Heidelberg-Berlin, 1973).
- [16] G. C. ROTA, On models for linear operators, Comm. Pure Appl. Math., 13 (1960), 469-472.
- [17] N. SALINAS, Subnormal limits of nilpotent operators, Acta Sci. Math., 37 (1970), 117-124.
- [18] D. VOICULESCU, Norm-limits of algebraic operators, Rev. Roum. Math. Pures Appl., 19 (1974), 371-378.

UNIVERSIDAD SIMÓN BOLÍVAR DEPARTAMENTO DE MATEMÁTICAS APARTADO POSTAL 80659 CARACAS 108, VENEZUELA