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On the strong approximation of Fourier series 

L. LEINDLER 

1. Let f(x) be a continuous and 27r-periodic function and let 

(1.1) f(x) ^ + 2 (an c o s nx + bn sin nx) 
n = l 

be its Fourier series. Let sn(x)=s„(f; x) and a*(jc) = <x*(/; x) denote the n-th partial 
sum and the (C, a)-mean of (1.1), and let f(x),sn(x), &*(x) denote the conjugate 
functions, respectively. 

In [2] we investigated among others the means 

where X={A„} is a nondecreasing sequence of integers such that Xx = 1 and Xn+1—X„^l, 
and />>0. Such a mean is called a "generalized strong de la Vallée Poussion mean", 
or briefly, a strong (V, X)-mean. 

In [2] we proved the following theorems : 

Theorem A. If n=0(X„) andp^Q, then 

polds uniformly, where E„=E„(f) denotes the best approximation off by trigonometric 
holynomials of order at most n. 

Theorem B. Suppose that f(x) r times derivable and /(r)6Lip a ( 0 < a ^ l ) , 
and that n=0(Xn). Then for any p>0 

Vn{f, X, P\ x) = \sk{x)-f(x)\ I P 

(1.2) Vn(fX,p;x) = 0(E„-Xn) 

(1.3) Vn(f,X,p-,x) = 

" { M ^ ^ r ) for (r + a)p = 1, 

for (r+cc)p < 1, 
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318 L. Leindler 

uniformly. The same estimate holds for V„{f, X, p\ x). Furthermore, if (r+a)p=l 
( 0 < o t < ^ 1), then there exist functions ft(x) and f2(x) such that their r-th derivatives 
exist and belong to Lip a, moreover, both 

BS^Ui.A./.jO) and Em Vn(f2; X, p; 0) are g-^fl+log -Y", B-oo /rT" ^ n— A„ + l) 

where c (>0) is independent of n. 
In this paper we generalize these results. Among others we omit the restriction 

n=0(X„), but then the estimations will not be necessarily best possible, and show 
that there exists a function /„ such that both /0

(r) and /¿r) belong to the class Lip 1 
and the estimations (1.3) are best possible for the means V„(f0, X,p\x) also. Further-
more we show that if 0<oc< 1 then the partial sums in the means Vn(f X,p; x) can 
be replaced by (C, /?)-means of negative order. 

More precisely we prove the following theorems : 

Theorem 1. For any positive p we have 

VMX, P\ X) = O ^ y (1.4) 

uniformly. 

Theorem 2. 7 / / ( r ) 6 Lip a (0< a =sl), then for anyp>0 

for (r+a)p < 1, 

(1.5) V„(f,X,p;x)=< 

o f e ) " ' ^ ) 

° ( l i M 1 + l 0 g 7 r ^r ) for <'+•)> = 
J_ ' ") for (r+a)/>> 1, 

holds uniformly. The same estimate also holds for V„{f,X,p\ x). 

Theorem 3. Suppose that 0 -=aSl , />>0, and n = 0(X„). Then there exists f^ 
such that /0

W and /¿'^ belong to the class Lip a, and still 

(1.6) I™ K(fo> X, p; 0) & 
n — ™ 

where d=d(X, p) >0. 

dn-'~" if (r+ct)p < 1, 
7 n yip 

dn—<'(l+iogw_/ln+1J if (r+«)p=l, 

dn-VPin-X^iy'P-'— if (r + a)p > 1, 
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Theorem 4. Suppose thatfi Lip a for some 0 < a <1, that —1/2 andthatthe 
positive number p satisfies the inequality />/?> — !. Then we have, uniformly, 

(1.7) 
11/P 

- 2 (*)-/(*)!' = 
n k=n — A„ J 

Hur̂  

according as ap is < 1, = 1, or > 1. 
In what follows || • || and [ • ] denote supremum norm and integral part, respec-

tively, and <o(f; 5) denotes the modulus of continuity of f . 
Finally we improve one part of the following theorem of SZABADOS [7]: 

Theorem C. If 0-^p-^l and r=[l/p], then the condition 

(1.8) 2 \sn(x)-f{x)\o K 

w(/(,_1); h) = 

implies that f(r (.x) is continuous and 

oKloĝ r) if lP=r> 

0(h) otherwise. 
We have the following 
Theorem 5. If 1 and 1/p—r=a>0, then condition (1.8) implies that 

pr) is continuous and 

( 1 . 9 ) Ö ( / < ' > , A ) = O ( A « ( l o g - [ ) 1 / P ' J . 

In connection with these results we formulate the following 

Conjecture. *) If 0< /?<l and l/p=r+a, then condition (1.8) implies that 

(1.10) 

and 

(1.11) 

c » ( / < , - 1 ) ; A ) = o|Aloglj if a = 0, 

c o ( / ( ' ) ; A ) = 0(h") i f a > 0 . 

*) Added in proof: This conjecture has been verified by the author. 

7' 



320 L. Leindler 

Finally we remark that the estimations (1.10) and (1.11) are, in general, best 
possible. Namely, if 1/р=г+<х and r is an odd integer, then the function 

- ^ s m n x 

Jo\X) — 2J i+i /p n = l n 

has (r—l)-th and г-th derivatives such that if a = 0 then 

(see [5], pp. 224—227); and since 
п = 1 П 

the inequality Л)ёс h* ( o O ) is obvious. Furthermore a standard computation 
(see e.g. [5], pp. 225—226) shows that for this function f0 (1.8) holds. 

2. To prove our theorems we require three lemmas. 

Lemma 1. ([2], Lemma 2) If g£L(0,2n) and \g{x)\^M for all x, then, for 
any q>0, we have 

1 m 
- 2 kte; ^ c;M<. m k=i 

Lemma 2. ([3], Lemma) If /€Lip у, 0 < y < l , ¿ > - 1 / 2 , and if the positive 
number p satisfies the inequality p5 > — 1, then we have for any n(s 1) 

1 2л 
2" kv( / ; x)-a^(f- x)\> = o(n-n n v = n 

Lemma 3. ([2], estimate (6), p. 150 )We have for any q>- 0 and n 

{i 2n V* hn(f, q; x) = 2 М/,*)-/(*)|4 = 0(E„). 
^ n y—„ ) 

3. Proof of Theorem 1. Let T* denote the trigonometric polynomial of 
best approximation to / of order at most m. From the definition of sn it is clear that 
if VS/Й then sv(f—T*; x)=sv(f; x)-T*(x). Using this we have 

( 1 n - i yip Гор " -1 l 1 / p 

\i- 2 kw-ZWIH 2 (ш-т:_Хп-,х)\"+\т:_,п(х)-/wi") s (/„ v = n-X„ ) lAn v=n-A„ J 

Applying Lemma 1 (with g=f—T*_Xn and q=p) we immediately obtain the statement 
of Theorem 1. 

4 - l o g — for all / 1^6 , О Z Tt 
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Proof of Theorem 2. By the well-known theorem of Jackson the assumption 
Lip a (0< a s 1) implies that 

En{f) = 0(n-'~') and £ „ ( / ) = O(«-'-). 

Hence, by Lemma 3, we obtain that 

(3.2) /»„(/, p; x) = 0(n"-*) and hn(f, PI x) = 0(n~'-°). 

If 2" , 1^n-An<2m i + 1 and 2n,2<rt=s2mi»+1 then, by (3.2), we have 
i n—1 1 m2 2m + 1 - l 

y - 2 " K M - / M l " y - 2 " 2 K W - / W I " ^ 
/In V = n-A„ 7̂1 №1 = 1«! v = 2m 

0 ( 1 1 m2 
^ v ; ^ 2«"(1-P(' + «)) = 

^•n m = m, 
Now, x 

Z ^ O ^ O i - A . + l)1-*'*«)), if ^(r + a ) > l . 

Whence (1.5) obviously follows. 
The proof for / runs similarly. 

Proof of Theorem 3. Set 

- (-I)"*1 ^ [ cos (5 -2"- / )x cos(5-2" + /)JCV 
M X ) A 2"« ,=2»-i+i i (5• 2" — / / / (5-2" + / / / J" 

In [4] (Theorem 1) it is proved that /0
(r) and f0

(r> belong to the class Lip a if a = l , 
furthermore in [1] this statement in the case a < 1 with an odd r is verified. Thus we only 
have to show that /0

(r) 6 Lip a if r is an even integer and 0 < a < 1. In this case 

/ r ( j c ) _ | icos(5-2" —/)x cos(5.2" + / )x ) 
n = l 2na \ I I ) 

= 2 2s« Rn(x), 

where ||/?B(x)||^2. Thus, if 4 - 2 m ^ n < 4 - 2 m + 1 , then 

E„(tir))^ №'\x)-s„{fp;x)\\ = 

which implies/0
(r)€Lip a (0<a-=l). 
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In the proof of (1.6) we distinguish two cases according as the sequence j — ^ - j 

is bounded or not. First we investigate the bounded case. Let 12 • 2m and let 

mi=max (n—A„, 22 • 2m_1), w2=max(w I , 23 • 2m~1) and w3=max |m2, n - j • 

Then 
Í i « - 1 I1'" 

Vn(fo,k,P',0)= y 2 k ( 0 ) - / o ( 0 ) | 4 S 

^ { r i V n - 2 
m» I 1 gm + l 

1 

v = m,J | H* l = v - 1 0 - 2 " + l """ ' I 

Pi UP 

Hence, by n—0(A„), it follows that 

2 
I S*"*1 i 

— 2 — 
I f ( = . v - 1 0 - 2 m + l f f l 

3= (m2-mj 
| 2 m * 1 1 

"7 2 — Tfl 

and 

"8 
2 

V£=MA 

1 2m + l . 
- L 2 — 

rf +r + l (n — m2) 
" 1 S dt(p, k)(m2-mt) 

n ( X + r)P ' 

S (m3—m2) 
1 

_»+r + l (n—m3) S i / 2 (p , A ) ( m 3 - m , ) 
1 

nc+np 

Thus we obtain that 

W o , />; 0 ) s MP, X) • 
1 

N < « + O P 

i/p . 

which proves the statements of (1.6) under the assumption that the sequence 

— 1 is bounded. 
n - K J 

If | > is not bounded, then we may suppose that there exist infinitely 
I n - ^ + lJ 

many n with 4 -2 r a <n^4-2 m + 1 and 4 - 2 " ^ / i - A n + 4 < 4 - 2 " + 1 such that m ^ n + 2 . 
Then 

(3.3) 

m 2 * 2 l M 0 ) - / „ ( 0 ) | ' s 

i=p+1 »=4-a'+i 

1 m—1 12-2' - 1 1 m - 1 2 2 K ( 0 ) - / 0 ( 0 ) | " = T 2 it-
f-n {=11 + 1 v^U-sT-'+l "fi f-fj-t-1 
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/, can be estimated as follows 

83-2'-» ( I 2' 1 ) P 2S-2<"« ( } 2< 1 V 

/ ( s v = i S - i h ^ ^ - i S - - i + i ' - . - i ^ - i l ^ . » . ^ « ' s 

Hence and from (3.3) we obtain that 
( 1 n.- l V ' p 

F„(/0, A, />; 0) ^ d3(p, r) f 2 2« W > » , 

whence (1.6) can be deduced by an easy calculation. 
The proof of Theorem 3 is thus completed. 

Proof of Theorem 4. It is clear that 

-f 2 H(x)-/(x)\- S 2 (H(x)-<rt+\x)\>+H^(x)-№\') = 
(3 4) n k=n~ in 

= 2i+2*-

It is known (see e.g. [1] Theorem 3) that /(x)€Lip a implies > 

l « f + 1 ( * ) - / ( * ) l = 0 ( * - ) 
whence 

(3.5) 2* = o{± 2 

Furthermore, 
1 ( (1/2 it 1 

(3.6) £ 1 = 7 - 2 + 2\H(x)-aZ^(x)\<> = 21+2*-1) 

By Lemma 2 

(3.7) 2 4 = o ( j - n1-"") 

and if 2"^«-A n c2" + 1 and 2"'<n/2s2">+1, then 
1 X. 2- + 1 1 „j 

(3.8) 2 s ^ T 2 2 l o f t o - o f ^ W M - p ^ Z * 1 - " . 

Collecting the estimates (3.4), (3.5), (3.6), (3.7) and (3.8) an easy calculation 
gives the statements of (1.7), which is the required proof. 

') Z , where a and b are not integers, means a sum over all integers between a and b: if b<a 
n = a 

then the sum means zero. 
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Proof of Theorem 5. The proof runs on analogous lines as that óf Szaba-
dos. Using the Lebesgue's estimate and (1.8) we obtain 

1 2R 

n+1 k=n 

1 
2 \sk(x)-f(x)\"\sk(x)-f(x)\'-" 

k=n 

whence, by a standard computation (see inequality (8) in [7]), 

(3.9) E r ^ O i n - i Q o g n y - » ) 

follows. Using the estimate ([6], Theorem 8, p. 61) 

^ - ( i T , log ny~", 

(3.9) implies that 
*=l"/2] 

En{m = o 
(log n)l/p~ 

whence, according to the inequality ([6], Theorem 4, p. 59) 
i ih 

(0(f,h)sKh 2 En(f) 

we get 

a;(/<'), h)^Kh 2 ^ (log«)1/p" 

which completes the proof. 

^ Kxh' l o g -
X / p - l 
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