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On the strong approximation of Fourier series

L. LEINDLER

" 1. Let f(x) be a continuous and 2zn-periodic functﬁon and let

(1.1) f(x) ~ -a2—°+ S’ (a, cos nx+ b, sin nx)
n=1

be its Fourier series. Let s,(x)=s,(f; x) and o} (x)=0,(f; x) denote the n-th partial
sum and the (C, «)-mean of (1.1}, and let f(x), §,(x), 6%(x) denote the conjugate
functions, respectively.

In [2] we investigated among others the means

n—-1 1p
V(£ 2, s x)={; 2, leto- f(x){"} ,

n k=n—24

where 2={A,} is a nondecreasing sequence of integers such that ;=1 and 4,,, —-4,=1,
and p=0. Such a mean is called a “generalized strong de la Vallée Poussion mean”,
or briefly, a strong (V, A)-mean.

In [2] we proved the following theorems:

Theorem A. If n=0(4,) and p=>0, then
(12) Vn(f: A" D, x) = 0‘(En—}.,,)

polds uniformly, where E,=E,(f) denotes the best approximation of f by trigonometric
holynomials of order at most n.

Theorem B. Suppose that f(x) r times derivable and f®¢Lip a (0<aSl),
and that n=0(A,). Then for any p=0

1
| O[W) Jor (r+o)p <1,
(1.3) Vu(fidp; %)= ( . e
O[nr+a 1+log —l"-i-l) ] for (r+o)p =1,
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318 : L. Leindler

uniformly. The same estimate holds for V,(f, A, p; x). Furthermore, if (r+a)p=1
(O<a< =1), then there exist functions f,(x) and fo(x) such that their r-th derivatives
exist and belong to Lip a, moreover, both

1p
4 n
E.m:Vn(fu/{aPsO) and EVn(f2,Aapso) are =7+—;[1+108m] ’

where ¢(=0) is independent of n.

In this paper we generalize these results. Among others we omit the restriction
n=0(4,), but then the estimations will not be necessarily best possible, and show
that there exists a function f, such that both £ and /"’ belong to the class Lip 1
and the estimations (1.3) are best possible for the means V,( fy, 4, p; X) also. Further-
more we show that if 0<a<1 then the partial sums in the means V,(f, 4, p; x) can
be replaced by (C, f)-means of negative order.

More precisely we prove the following theorems:

Theorem 1. For any positive p we have
n i/p
(1.4 Voo 23 %) = O|(3) " Eucs,
uniformly.

Theorem 2. If fM¢Lip o (0<a=1), then for any p>0

0 [(—%}w —;'IT;] Jor (r+a)p<1,

15) Vu(fihpix)=14 o[ 1 n__
(1.3)  Va(fi 4, p; %) lo[—gﬁ(lﬂogm] ] for (r+a)p=1,
1
0(1"-1/;:(”_/1"_‘_1)7_'”“) for (r+a)p=>1,

holds uniformly. The same estimate also holds for V,(f, 4, p; x).
Theorem 3. Suppose that O<oa=1, p=>0, and n=0(4,). Then there exists f,
such that £ and f{ belong to the class Lip a, and still

dn="-* if (r+9)p=<1,

—r—a" n e ; —
(1.6) EV,,(fO,A,p; 0)= 14dn (1+logm] if (r+o)p=1,
dn=Y?(n—),+1)Mp-r-a if (r+a)p=>1,
where d=d(A, p)=0.
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Theorem 4. Suppose that f¢Lipa for some O<a~<1, that B> —1/2 and that the
positive number p satisfies the inequality pp=> —1. Then we have, uniformly,

n)ir 1

0[(7,) ;«']

1 n 1/?_ Ap

(1.7 A—"Mz_lnlaf(x)—f(x)l"] = 0[ 1 +1og#+1]

O(A7Y/7 (n— A, + 1)V/7-%)

according as ap is <1, =1, 0r >1.

In what follows || - || and [:] denote supremum norm and integral part, respec-
tively, and w( f; 8) denotes the modulus of continuity of f.

Finally we improve one part of the following theorem of SzABaDOS [7]:

Theorem C. If O0<p-<1 and r={[1/pl, then the condition

(1.8) =K

2 I ) -fCP

implies that £~ (x) is continuous and

: ye) 1
o(f-1: By = O[h[logi) ] if ;—r,

O(h) otherwise.
We have the following

Theorem 5. If O<p<1 and 1/p—r=0=0, then condition (1.8) implies that
S is continuous and

(1.9) o(fO,h) =0 [h“ (log -}1;]”"']] .

In connection with these results we formulate the following

Conjecture. *).If O<p<1 and 1/p=r+a, then condition (1.8) implies that

(1.10) o(fC-V; =0 [hlog%] if a=0,
and ‘
a.11) ' o(fO;h) =0 if a=D0.

*) Added in proof: This conjecture has been verified by the author.

7*
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Finally we remark that the estimations (1.10) and (1.11) are, in general, best
possible. Namely, if 1/p=r+a and r is an odd integer, then the function .

= sinnx

flx) = 2 A
has (r—1)-th and r-th derivatives such that if «=0 then

Zi gz— forall n=z=6,

f(r—l) [ ] _f(r-l)(o)

(see [5], pp. 224—227); and since
cos nx

0 =+ 3L @>0),

the inequality w (£, h)z=c h*(c=>0) is obvious. Furthermore a standard computation
(see e.g. [5], pp. 225—226) shows that for this function f;, (1.8) holds.
2, To prove our theorems we require three lemmas.

Lemma 1. ([2], Lemma 2) If g€L(0, 27) and |g(x)| =M for all x, then, for
any q=0, we have

1 Zm’ s (g5 x)|1 = CIMe.
m =y

Lemma 2. (I3), Lémma) If f€Lipy, O<y<]1, 6d>—1/2, and if the positive
number p satisfies the inequality pS>—1, then we have for any n(=1)

2n '
% 2 oS x)—a3*(f; x)F = O(n~7?).
Lémma 3. ([2], estimate (6), p. 150 )We have for any g=0 and n
1 2n 1/q
h(f, q; x) = [~n— 2 s (f, x) —f(x)lq]- = O(E,).
3. Proof of Theorem 1. Let T} denote the trigonometric polynomial of

best approximation to f of order at most m. From the definition of s, it is clear that
if v=m then s5,(f—T%; x)=s,(f; x)— T, (x). Using this we have

1 n—1 1/p 2P 1/p
L3 @] = > 2 (80T, 9+ T )| =
3.1 n—1 1p
G.1) = 21+1/p[{;l -% =Z_' ls, (f— n-}.,. x)lp} +En-;.,.]-

Applying Lemma 1 (with g=f—T;_, and ¢= p) we immediately obtain the statement
of Theorem 1. . , .
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Proof of Theorem 2. By the well- known theorem of Jackson the assumption
fO¢cLip a (0<a=1) implies that

E(f)=0(n""9) and E,(f)=0(n"").
Hence, by Lemma 3, we obtain that
(3.2) hn(f; D; x) = 0(""—1) and hn(f: D; x) = O(n—r—a).

If 2™ =pn—1,<2™*! and 2™ <n=2"™"" then, by (3.2), we have

1 n—-1 my 2mtl-q
5 _Z' Isy (X)—f(x)l"s— _Z' 2' =S =
0(1) Z' 2m(1-p(r+a)) = 2’1
Now \ e
315 0(1) - 2ma-re 4 = 0[_;'-",(—1“] if p(r+a) <1,

SisoM)—+ (m2 my) = 0[,{1 [1+1og _ZnH)J, if p(r+a) =1,

Zl — 0(/1;. 1(n_,1n+1)1 p(r+a))’ . if p(r+a) > 1.

Whence (1.5) obviously follows.
The proof for f runs similarly.

Proof of Theorem 3. Set

o=yt fcos(5-2"—~D)x  cos(5-2"+ x|}
f°(")"’,.=21 e &g Ge2r=Iyl T (B-2+1y] ]

In [4] (Theorem 1) it is proved that £ and £ belong to the class Lip a if a=1,
furthermore in [1] this statement in the case « < 1 with an odd r is verified. Thus we only
have to show that £{P¢Lip « if r is an even integer and O<a~1. In this case

n+ +1

f")( )= Z.( )M f [cos(5-2"—1)x_cos(5-2"+l)x] =
n=1 2 i1y ) . !
n+ =41
= 35 R,

where ||R,(x)|=2. Thus, if 4-2"=n<4.2"*!, then

1
B = O@ -5 Dl =2 5 20 = [n]
which implies £”¢Lip « (0<a<I). - ' '
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=

is bounded or not. First we investigate the bounded case. Let n=12.2™ and let

1
my=max (n—4,,22-2""1), my=max(m,, 23-2™"!) and m,=max [m,, n— [A" + ]]
Then

1 a—1 . te
Vn(ﬁh A', Y 0) = {T 2 |sv(0) _f(')(o)’p} =
n ven—2,
{ my—1 gm+l 1 v}llp
+ .
Ay v::zn'nl vzn:. N {oy-16iem 41 i
Hence, by n=0(4,), it follows that
my~1] 1 2';-*l ° gmel 11°
|-=Zn'|1 N foy—f5iemiy 1l (m, 1 pam,30.2m iy 1l
1 P 1
= (my—my) "";W(”—mz) = di(p, AY(my—m)) e
and ‘ B
m | ] g+l [ 4 1 4 1
vé,.', T iy Biem 1 1| = (2 FmT(n—'fts) = do(p. D) (ma—me) —

Thus we obtain that

1

1jp
v, (f;)a » P 0) = ds(P: j') [(m3 ml) l,, (a+r)p] = dd(p1 ’1) ’t,+a ’

which proves the statements of (1.6) under the assumption that the sequence

{n— 31.} is bounded.

If —)‘1—1} is not bounded, then we may suppose that there exist infinitely
n—

many n with 4-2"<n=4.2"*! and 4.2*=n—1,+4<4.2*! such that m>u+2.

Then

] m-1  agitl:

Vn(f09 A) D, 0)" = 2.— ._2 L 42: IS‘,(O) —A(O)lp =
(3.3) n i=pu+1 v=4-21+1

1] m-=t 13.gi~1 m—1

2. OO =7 3 L

=
Ay i=eht vert T~
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I, can be estimated as follows

23.2{-2 1 at 1 14 23.2{ -3 { l at 1 14
AN RPN ) R P )

= ‘d2(p, '-)2'.(1 =(r+a)p)

i)

= dy(p, 2"

2i(r + a)p

Hence and from (3.3) we obtain that
-1

1o
Vn(.ﬁ)’ )" p; 0) da(P, r) [ 2 2i(l—(' +¢)p)] ’
n i=p+1
whence (1.6) can be deduced by an easy calculation. ‘
The proof of Theorem 3 is thus completed.

Proof of Theorem 4. It is clear that

L3 we-ror=E 3 (@ -dr o —ron =
(3.4) 'n k=n—4, n k=n—4i,

=1t 2
It is known (see e.g. [1] Theorem 3) that f(x)€Lip « implies »

of 1)~ () = O~ (B> -,

whence
(3.5) 3, =0 [—1 > k"P] :
}‘u k=n—4, *
Furthermore,
1 n/2 ]
3.6) 2= T [I‘_Z_l1 +k_2/2 lof (x)—af* ()P = 3+ ¢ Y
By Lemma 2 )
G.7) S.=0 [711_ nl-ap]
and if 2u§n—z,,<'2u+l and 2<n/2=2%*1 then
py 2em+l
3.8 Ds=— 2 3 lof(x)— a,‘;’“(x)ll’ = T 2 2m(1~ep)
i n m=p k=2m n m=u

Collecting the estimates (3.4), (3.5), (3.6), (3.7) and (3.8) an easy calculation
gives the statements of (1.7), which is the required proof.

b
1) ¥, where a and b are not integers, means a sum over all integers between g and b; if b<a

nz=a

then the sum means zero.
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Proof of Theorem 5. The proof runs on analogous lines as that.of Szaba-
dos. Using the Lebesgue’s estimate and (1.8) we obtain

Z' 5i(x) —f ()| =

Ep=

n+1

= K- (E,log np=>,

2n -
- kZ |5 ) = P [ (x) =S ()PP
whence, by a standard computation (see inequality (8) in [7)),

(3.9) EP:= O(n~'(log n*~¥)
follows. Using the estimate ([6], Theorem 8, p. 61)

E(f®) =K 3 kE(),
k=[n/2)
(3.9) implies that

E(f™) =0 M} ,

nl!

whence, according to the inequality ([6], Theorem 4, p. 59)

o h = Kh 3 E(f)

we get :
1/p-1 1/p-1
w0 (fO, h) Kh zﬂl’l— = K [log—ﬁ]

which completes the proof.
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