On the strong approximation of Fourier series

L. LEINDLER

1. Let $f(x)$ be a continuous and 2π-periodic function and let

$$
\begin{equation*}
f(x) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \tag{1.1}
\end{equation*}
$$

be its Fourier series. Let $s_{n}(x)=s_{n}(f ; x)$ and $\sigma_{n}^{\alpha}(x)=\sigma_{n}^{\alpha}(f ; x)$ denote the n-th partial sum and the (C, α)-mean of (1.1), and let $\tilde{f}(x), \tilde{s}_{n}(x), \tilde{\sigma}_{n}^{\alpha}(x)$ denote the conjugate functions, respectively.

In [2] we investigated among others the means

$$
V_{n}(f, \lambda, p ; x)=\left\{\frac{1}{\lambda_{n}} \sum_{k=n-\lambda_{n}}^{n-1}\left|s_{k}(x)-f(x)\right|^{p}\right\}^{1 / p}
$$

where $\lambda=\left\{\lambda_{n}\right\}$ is a nondecreasing sequence of integers such that $\lambda_{1}=1$ and $\lambda_{n+1}-\lambda_{n} \leqq 1$, and $p>0$. Such a mean is called a "generalized strong de la Vallée Poussion mean", or briefly, a strong (V, λ)-mean.

In [2] we proved the following theorems:
Theorem A. If $n=O\left(\lambda_{n}\right)$ and $p>0$, then

$$
\begin{equation*}
V_{n}(f, \lambda, p ; x)=O\left(E_{n-\lambda_{n}}\right) \tag{1.2}
\end{equation*}
$$

polds uniformly, where $E_{n}=E_{n}(f)$ denotes the best approximation of f by trigonometric holynomials of order at most n.

Theorem B. Suppose that $f(x) r$ times derivable and $f^{(r)} \in \operatorname{Lip} \alpha(0<\alpha \leqq 1)$, and that $n=0\left(\lambda_{n}\right)$. Then for any $p>0$

$$
V_{n}(f, \lambda, p ; x)= \begin{cases}O\left(\frac{1}{n^{r+\alpha}}\right) & \text { for }(r+\alpha) p<1 \tag{1.3}\\ O\left(\frac{1}{n^{r+\alpha}}\left(1+\log \frac{n}{n-\lambda_{n}+1}\right)^{1 / p}\right) & \text { for }(r+\alpha) p=1\end{cases}
$$

[^0]uniformly. The same estimate holds for $V_{n}(\tilde{f}, \lambda, p ; x)$. Furthermore, if ${ }^{*}(r+\alpha) p=1$ $(0<\alpha<\leqq 1)$, then there exist functions $f_{1}(x)$ and $f_{2}(x)$ such that their $r-t h$ derivatives exist and belong to $\operatorname{Lip} \alpha$, moreover, both
$\lim _{n \rightarrow \infty} V_{n}\left(f_{1}, \lambda, p ; 0\right)$ and $\lim _{n \rightarrow \infty} V_{n}\left(f_{2} ; \lambda, p ; 0\right) \quad$ are $\geqq \frac{c}{n^{r+\alpha}}\left(1+\log \frac{n}{n-\lambda_{n}+1}\right)^{1 / p}$,
where $c(>0)$ is independent of n.
In this paper we generalize these results. Among others we omit the restriction $n=O\left(\lambda_{n}\right)$, but then the estimations will not be necessarily best possible, and show that there exists a function f_{0} such that both $f_{0}^{(r)}$ and $f_{0}^{(r)}$ belong to the class Lip 1 and the estimations (1.3) are best possible for the means $V_{n}\left(f_{0}, \lambda, p ; x\right)$ also. Furthermore we show that if $0<\alpha<1$ then the partial sums in the means $V_{n}(f, \lambda, p ; x)$ can be replaced by (C, β)-means of negative order.

More precisely we prove the following theorems:
Theorem 1. For any positive p we have

$$
\begin{equation*}
V_{n}(f, \lambda, p ; x)=O\left(\left(\frac{n}{\lambda_{n}}\right)^{1 / p} E_{n-\lambda_{n}}\right) \tag{1.4}
\end{equation*}
$$

uniformly.
Theorem 2. If $f^{(r)} \in \operatorname{Lip} \alpha(0<\alpha \leqq 1)$, then for any $p>0$

$$
V_{n}(f, \lambda, p ; x)= \begin{cases}O\left(\left(\frac{n}{\lambda_{n}}\right)^{1 / p} \frac{1}{n^{r+\alpha}}\right) & \text { for }(r+\alpha) p<1 \tag{1.5}\\ O\left(\frac{1}{\lambda_{n}^{r+\alpha}}\left(1+\log \frac{n}{n-\lambda_{n}+1}\right)^{1 / p}\right) & \text { for }(r+\alpha) p=1 \\ O\left(\lambda_{n}^{-1 / p}\left(n-\lambda_{n}+1\right)^{\frac{1}{p}-r-\alpha}\right) & \text { for }(r+\alpha) p>1\end{cases}
$$

holds uniformly. The same estimate also holds for $V_{n}(\bar{f}, \lambda, p ; x)$.
Theorem 3. Suppose that $0<\alpha \leqq 1, p>0$, and $n=O\left(\lambda_{n}\right)$. Then there exists f_{0} such that $f_{0}^{(r)}$ and $f_{0}^{(r)}$ belong to the class $\operatorname{Lip} \alpha$, and still

$$
\lim _{n \rightarrow \infty} V_{n}\left(f_{0}, \lambda, p ; 0\right) \geqq \begin{cases}d n^{-r-\alpha} & \text { if }(r+\alpha) p<1 \tag{1.6}\\ d n^{-r-\alpha}\left(1+\log \frac{n}{n-\lambda_{n}+1}\right)^{1 / p} & \text { if }(r+\alpha) p=1 \\ d n^{-1 / p}\left(n-\lambda_{n}+1\right)^{1 / p-r-\alpha} & \text { if }(r+\alpha) p>1\end{cases}
$$

where $d=d(\lambda, p)>0$.

Theorem 4. Suppose that $f \in \operatorname{Lip} \alpha$ for some $0<\alpha<1$, that $\beta>-1 / 2$ and that the positive number p satisfies the inequality $p \beta>-1$. Then we have, uniformly,

$$
\left[\frac{1}{\lambda_{n}} \sum_{k=n-\lambda_{n}}^{n}\left|\sigma_{k}^{\beta}(x)-f(x)\right|^{p}\right]^{1 / p}=\left\{\begin{array}{l}
O\left(\left(\frac{n}{\lambda_{n}}\right)^{1 / p} \frac{1}{n^{\alpha}}\right) \tag{1.7}\\
O\left(\frac{1}{\lambda_{n}^{\alpha}}\left(1+\log \frac{n}{n-\lambda_{n}+1}\right)^{1 / p}\right. \\
O\left(\lambda_{n}^{-1 / p}\left(n-\lambda_{n}+1\right)^{1 / p-\alpha}\right)
\end{array}\right.
$$

according as αp is $<1,=1$, or >1.
In what follows $\|\cdot\|$ and $[\cdot]$ denote supremum norm and integral part, respectively, and $\omega(f ; \delta)$ denotes the modulus of continuity of f.

Finally we improve one part of the following theorem of Szabados [7]:
Theorem C. If $0<p<1$ and $r=[1 / p]$, then the condition

$$
\begin{equation*}
\left\|\sum_{n=0}^{\infty}\left|s_{n}(x)-f(x)\right|^{p}\right\| \leqq K \tag{1.8}
\end{equation*}
$$

implies that $f^{(r-1)}(x)$ is continuous and

$$
\omega\left(f^{(r-1)} ; h\right)=\left\{\begin{array}{l}
O\left(h\left(\log \frac{1}{h}\right)^{1 / p}\right) \text { if } \frac{1}{p}=r \\
O(h) \text { otherwise }
\end{array}\right.
$$

We have the following
Theorem 5. If $0<p<1$ and $1 / p-r=\alpha>0$, then condition (1.8) implies that $f^{(r)}$ is continuous and

$$
\begin{equation*}
\omega\left(f^{(r)}, h\right)=O\left(h^{\alpha}\left(\log \frac{1}{h}\right)^{1 / p-1}\right) \tag{1.9}
\end{equation*}
$$

In connection with these results we formulate the following
Conjecture. *) If $0<p<1$ and $1 / p=r+\alpha$, then condition (1.8) implies that

$$
\begin{equation*}
\omega\left(f^{(r-1)} ; h\right)=O\left(h \log \frac{1}{h}\right) \quad \text { if } \quad \alpha=0 \tag{1.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega\left(f^{(r)} ; h\right)=O\left(h^{\alpha}\right) \quad \text { if } \quad \alpha>0 \tag{1.11}
\end{equation*}
$$

${ }^{*}$) Added in proof: This conjecture has been verified by the author.

Finally we remark that the estimations (1.10) and (1.11) are, in general, best possible. Namely, if $1 / p=r+\alpha$ and r is an odd integer, then the function

$$
f_{0}(x)=\sum_{n=1}^{\infty} \frac{\sin n x}{n^{1+1 / p}}
$$

has $(r-1)$-th and r-th derivatives such that if $\alpha=0$ then

$$
\left|f_{0}^{(r-1)}\left(\frac{\pi}{2^{n}}\right)-f_{0}^{(r-1)}(0)\right|>\frac{1}{8} \frac{\pi}{2^{n}} \log \frac{2^{n}}{\pi} \quad \text { for all } \quad n \geqq 6
$$

(see [5], pp. 224-227); and since

$$
f_{0}^{(r)}(x)= \pm \sum_{n=1}^{\infty} \frac{\cos n x}{n^{1+\alpha}} \quad(\alpha>0)
$$

the inequality $\omega\left(f_{0}^{(r)}, h\right) \geqq c h^{\alpha}(c>0)$ is obvious. Furthermore a standard computation (see e.g. [5], pp. 225-226) shows that for this function $f_{0}(1.8)$ holds.
2. To prove our theorems we require three lemmas.

Lemma 1. ([2], Lemma 2) If $g \in L(0,2 \pi)$ and $|g(x)| \leqq M$ for all x, then, for any $q>0$, we have

$$
\frac{1}{m} \sum_{k=1}^{m}\left|s_{k}(g ; x)\right|^{q} \leqq C_{q}^{q} M^{q}
$$

Lemma 2. ([3], Lemma) If $f \in \operatorname{Lip} \gamma, 0<\gamma<1, \delta>-1 / 2$, and if the positive number p satisfies the inequality $p \delta>-1$, then we have for any $n(\geqq 1)$

$$
\frac{1}{n} \sum_{v=n}^{2 n}\left|\sigma_{v}^{\delta}(f ; x)-\sigma_{v}^{\delta+1}(f ; x)\right|^{p}=O\left(n^{-\gamma P}\right)
$$

Lemma 3. ([2], estimate (6), p. 150) We have for any $q>0$ and n

$$
h_{n}(f, q ; x) \equiv\left(\frac{1}{n} \sum_{v=n}^{2 n}\left|s_{v}(f, x)-f(x)\right|^{q}\right)^{1 / q}=O\left(E_{n}\right)
$$

3. Proof of Theorem 1. Let T_{m}^{*} denote the trigonometric polynomial of best approximation to f of order at most m. From the definition of s_{n} it is clear that if $v \geqq m$ then $s_{v}\left(f-T_{m}^{*} ; x\right)=s_{v}(f ; x)-T_{m}^{*}(x)$. Using this we have
$\left(\frac{1}{\lambda_{n}} \sum_{v=n-\lambda_{n}}^{n-1}\left|s_{v}(x)-f(x)\right|^{p}\right)^{1 / p} \leqq\left[\frac{2^{p}}{\lambda_{n}} \sum_{v=n-\lambda_{n}}^{n-1}\left(\left|s_{v}\left(f-T_{n-\lambda_{n}}^{*} ; x\right)\right|^{p}+\left|T_{n-\lambda_{n}}^{*}(x)-f(x)\right|^{p}\right)\right]^{1 / p} \leqq$

$$
\begin{equation*}
\leqq 2^{1+1 / p}\left(\left\{\frac{n}{\lambda_{n}} \cdot \frac{1}{n} \sum_{v=n-\lambda_{n}}^{n-1}\left|s_{v}\left(f-T_{n-\lambda_{n}}^{*} ; x\right)\right|^{p}\right\}^{1 / p}+E_{n-\lambda_{n}}\right) . \tag{3.1}
\end{equation*}
$$

Applying Lemma 1 (with $g=f-T_{n-\lambda_{n}}^{*}$ and $q=p$) we immediately obtain the statement of Theorem 1 .

Proof of Theorem 2. By the well-known theorem of Jackson the assumption $f^{(r)} \in \operatorname{Lip} \alpha(0<\alpha \leqq 1)$ implies that

$$
E_{n}(f)=O\left(n^{-r-x}\right) \text { and } E_{n}(\tilde{f})=O\left(n^{-r-x}\right)
$$

Hence, by Lemma 3, we obtain that

$$
\begin{equation*}
h_{n}(f, p ; x)=O\left(n^{-r-\alpha}\right) \quad \text { and } \quad h_{n}(f, p ; x)=O\left(n^{-r-a}\right) \tag{3.2}
\end{equation*}
$$

If $2^{m_{1}} \leqq n-\lambda_{n}<2^{m_{1}+1}$ and $2^{m_{2}}<n \leqq 2^{m_{2}+1}$ then, by (3.2), we have

$$
\begin{gathered}
\frac{1}{\lambda_{n}} \sum_{v=n-\lambda_{n}}^{n-1}\left|s_{v}(x)-f(x)\right|^{p} \leqq \frac{1}{\lambda_{n}} \sum_{m=m_{1}}^{m_{2}} \sum_{v=2^{m}}^{2^{m+1-1}}\left|s_{v}(x)-f(x)\right|^{p} \leqq \\
\leqq \frac{O(1)}{\lambda_{n}} \sum_{m=m_{1}}^{m_{2}} 2^{m(1-p(r+\alpha))} \equiv \sum_{1} .
\end{gathered}
$$

Now,

$$
\begin{gathered}
\Sigma_{1} \leqq O(1) \frac{1}{\lambda_{n}} 2^{m_{2}(1-p(r+\alpha))}=O\left(\frac{n}{\lambda_{n}} \cdot \frac{1}{n^{p(r+\alpha)}}\right), \text { if } p(r+\alpha)<1, \\
\Sigma_{1} \leqq O(1) \frac{1}{\lambda_{n}}\left(m_{2}-m_{1}\right)=O\left(\frac{1}{\lambda_{n}}\left(1+\log \frac{n}{n-\lambda_{n}+1}\right)\right), \text { if } p(r+\alpha)=1, \\
\sum_{1}=O\left(\lambda_{n}^{-1}\left(n-\lambda_{n}+1\right)^{1-p(r+\alpha)}\right), \quad \text { if } p(r+\alpha)>1 .
\end{gathered}
$$

Whence (1.5) obviously follows.
The proof for f runs similarly.

Proof of Theorem 3. Set

$$
f_{0}(x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2^{n a}} \sum_{l=2^{n-1}+1}^{2^{n}}\left(\frac{\cos \left(5 \cdot 2^{n}-l\right) x}{\left(5 \cdot 2^{n}-l\right)^{r l}}-\frac{\cos \left(5 \cdot 2^{n}+l\right) x}{\left(5 \cdot 2^{n}+l\right)^{r} l}\right)
$$

In [4] (Theorem 1) it is proved that $f_{0}^{(r)}$ and $\tilde{f}_{0}^{(r)}$ belong to the class Lip α if $\alpha=1$, furthermore in [1] this statement in the case $\alpha<1$ with an odd r is verified. Thus we only have to show that $f_{0}^{(r)} \in \operatorname{Lip} \alpha$ if r is an even integer and $0<\alpha<1$. In this case

$$
\begin{aligned}
f_{0}^{(r)}(x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+\frac{r}{2}+1}}{2^{n a}} & \sum_{l=2^{n=1}+1}^{2^{n}}\left(\frac{\cos \left(5 \cdot 2^{n}-l\right) x}{l}-\frac{\cos \left(5 \cdot 2^{n}+l\right) x}{l}\right) \equiv \\
& \equiv \sum_{n=1}^{\infty} \frac{(-1)^{n+\frac{r}{2}+1}}{2^{n \alpha}} R_{n}(x)
\end{aligned}
$$

where $\left\|R_{n}(x)\right\| \leqq 2$. Thus, if $4 \cdot 2^{m} \leqq n<4 \cdot 2^{m+1}$, then

$$
E_{n}\left(f_{0}^{(r)}\right) \leqq\left\|f_{0}^{(r)}(x)-s_{n}\left(f_{0}^{(r)} ; x\right)\right\| \leqq 2 \sum_{k=m}^{\infty} \frac{1}{2^{k \alpha}}=O\left(\frac{1}{n^{\alpha}}\right)
$$

which implies $f_{0}^{(r)} \in \operatorname{Lip} \alpha(0<\alpha<1)$.

In the proof of (1.6) we distinguish two cases according as the sequence $\left\{\frac{n}{n-\lambda_{n}}\right\}$ is bounded or not. First we investigate the bounded case. Let $n=12 \cdot 2^{m}$ and let $m_{1}=\max \left(n-\lambda_{n}, 22 \cdot 2^{m-1}\right), m_{2}=\max \left(m_{1}, 23 \cdot 2^{m-1}\right)$ and $m_{3}=\max \left(m_{2}, n-\left[\frac{\lambda_{n}+1}{2}\right]\right)$. Then

$$
\begin{aligned}
& V_{n}\left(f_{0}, \lambda, p ; 0\right)=\left\{\frac{1}{\lambda_{n}} \sum_{v=n-\lambda_{n}}^{n-1}\left|S_{v}(0)-f_{0}(0)\right|^{p}\right\}^{1 / p} \geqq \\
& \geqq\left.\left\{\frac{1}{\lambda_{n}}\left(\sum_{v=m_{1}}^{m_{2}-1}+\sum_{v=m_{2}}^{m_{2}}\right)\left|\frac{1}{n^{\alpha}} \sum_{t=v=-10 \cdot m^{\prime}+1}^{2 m+1} \frac{1}{n^{l}}\right|\right\}^{p}\right|^{1 / p} .
\end{aligned}
$$

Hence, by $n=0\left(\lambda_{n}\right)$, it follows that

$$
\begin{aligned}
& \sum_{v=m_{1}}^{m_{2}-1}\left|\frac{1}{n^{\alpha}} \sum_{l=v-10 \cdot 2^{m+1}}^{2 m+1} \frac{1}{n^{\prime}}\right|^{p} \geqq\left(m_{2}-m_{1}\right)\left|\frac{1}{n^{\alpha}} \sum_{t=m_{2}-10 \cdot 2^{m}+1}^{2^{m+1}} \frac{1}{n^{\prime} l}\right|^{p} \geqq \\
& \geqq\left(m_{2}-m_{1}\right)\left|\frac{1}{n^{\alpha+r+1}}\left(n-m_{2}\right)\right|^{p} \geqq d_{1}(p, \lambda)\left(m_{2}-m_{1}\right) \frac{1}{n^{(\alpha+r) p}},
\end{aligned}
$$

and

$$
\sum_{v=m_{3}}^{m_{3}}\left|\frac{1}{n^{\alpha}} \sum_{l=v-10 \cdot m^{m+1}}^{2 m+1} \frac{1}{n^{n} l}\right|^{p} \geqq\left(m_{3}-m_{2}\right)\left|\frac{1}{n^{\alpha+r+1}}\left(n-m_{3}\right)\right|^{p} \geqq d_{2}(p, \lambda)\left(m_{3}-m_{2}\right) \frac{1}{n^{(\alpha+r) \rho}} .
$$

Thus we obtain that

$$
V_{n}\left(f_{0}, \dot{\lambda}, p ; 0\right) \geqq d_{3}(p, \lambda)\left[\left(m_{3}-m_{1}\right) \frac{1}{\lambda_{n}} \cdot \frac{1}{n^{(\alpha+r) p}}\right]_{1}^{1 / p} \geqq d_{4}(p, \lambda) \frac{1}{n^{r+\alpha}},
$$

which proves the statements of (1.6) under the assumption that the sequence $\left\{\frac{n}{n-\lambda_{n}}\right\}$ is bounded.

If $\left\{\frac{n}{n-\lambda_{n}+1}\right\}$ is not bounded, then we may suppose that there exist infinitely many n with $4 \cdot 2^{m}<n \leqq 4 \cdot 2^{m+1}$ and $4 \cdot 2^{\mu} \leqq n-\lambda_{n}+4<4 \cdot 2^{a+1}$ such that $m>\mu+2$. Then

$$
\begin{align*}
& V_{n}\left(f_{0}, \lambda, p ; 0\right)^{p} \geqq \frac{1}{\lambda_{n}} \sum_{i=\mu+1}^{m-1} \sum_{v=4 \cdot 2^{i}+1}^{4 \cdot 2^{i+1}}\left|s_{v}(0)-f_{0}(0)\right|^{p} \geqq \tag{3.3}\\
& \geqq \frac{1}{\lambda_{n}} \sum_{i=\mu+1}^{m-1} \sum_{v=11 \cdot \sum_{2^{i-1}+1}^{12 \cdot 2^{-1}}}\left|s_{v}(0)-f_{0}(0)\right|^{p} \equiv \frac{1}{\lambda_{n}} \sum_{i=\mu+1}^{m-1} I_{i} .
\end{align*}
$$

I_{i} can be estimated as follows

$$
\begin{gathered}
I_{i} \geqq \sum_{v=11 \cdot 2^{i-1}}^{23 \cdot 2^{i-2}}\left(\frac{1}{2^{i \alpha}} \sum_{l=v=10 \cdot 2^{i-1}+1}^{2^{i}} \frac{1}{6^{r} 2^{i r} l}\right)^{p} \geqq \sum_{v=11 \cdot 2^{i-1}}^{23 \cdot 2^{-2}}\left(\frac{1}{2^{i \alpha}} \sum_{l=3 \cdot 2^{i-1}}^{2^{i}} \frac{1}{6^{r} 2^{t r}}\right)^{p} \geqq \\
\geqq d_{1}(p, r) 2^{i-2} \frac{1}{2^{i(r+\alpha) P}}=d_{2}(p, r) 2^{i(1-(r+\alpha) p) .}
\end{gathered}
$$

Hence and from (3.3) we obtain that

$$
V_{n}\left(f_{0}, \lambda, p ; 0\right) \geqq d_{3}(p, r)\left(\frac{1}{\lambda_{n}} \sum_{i=\mu+1}^{m-1} 2^{i(1-(r+\alpha) p)}\right)^{1 / p}
$$

whence (1.6) can be deduced by an easy calculation.
The proof of Theorem 3 is thus completed.

Proof of Theorem 4. It is clear that

$$
\begin{gather*}
\frac{1}{\lambda_{n}} \sum_{k=n-\lambda_{n}}^{n}\left|\sigma_{k}^{\beta}(x)-f(x)\right|^{p} \leqq \frac{K}{\lambda_{n}} \sum_{k=n-\lambda_{n}}^{n}\left(\left|\sigma_{k}^{\beta}(x)-\sigma_{k}^{\beta+1}(x)\right|^{p}+\left|\sigma_{k}^{\beta+1}(x)-f(x)\right|^{p}\right) \equiv \tag{3.4}\\
\equiv \sum_{1}+\sum_{2}
\end{gather*}
$$

It is known (see e.g. [1] Theorem 3) that $f(x) \in \operatorname{Lip} \alpha$ implies

$$
\left|\sigma_{k}^{\beta+1}(x)-f(x)\right|=O\left(k^{-\alpha}\right) \quad\left(\beta>-\frac{1}{9}\right),
$$

whence

$$
\begin{equation*}
\Sigma_{2}=O\left(\frac{1}{\lambda_{n}} \sum_{k=n-\lambda_{n}}^{n} k^{-\alpha p}\right) \tag{3.5}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
\left.\sum_{1}=\frac{1}{\lambda_{n}}\left(\sum_{k=n-\lambda_{n}}^{n / 2}+\sum_{k=n / 2}^{n}\right)\left|\sigma_{k}^{\beta}(x)-\sigma_{k}^{\beta+1}(x)\right|^{p}=\sum_{3}+\sum_{4} \cdot{ }^{1}\right) \tag{3.6}
\end{equation*}
$$

By Lemma 2

$$
\begin{equation*}
\Sigma_{4}=O\left(\frac{1}{\lambda_{n}} n^{1-\alpha p}\right) \tag{3.7}
\end{equation*}
$$

and if $2^{\mu} \leqq n-\lambda_{n}<2^{\mu+1}$ and $2^{\mu_{1}}<n / 2 \leqq 2^{\mu_{1}+1}$, then

$$
\begin{equation*}
\Sigma_{3} \leqq \frac{1}{\lambda_{n}} \sum_{m=\mu}^{\mu_{1}} \sum_{k=2^{m}}^{2^{m+1}}\left|\sigma_{k}^{\beta}(x)-\sigma_{k}^{\beta+1}(x)\right|^{p} \leqq \frac{1}{\lambda_{n}} \sum_{m=\mu}^{\mu_{1}} 2^{m(1-\alpha p)} . \tag{3.8}
\end{equation*}
$$

Collecting the estimates (3.4), (3.5), (3.6), (3.7) and (3.8) an easy calculation gives the statements of (1.7), which is the required proof.
${ }^{\text {1 }}{ }^{1} \sum_{n=a}^{b}$, where a and b are not integers, means a sum over all integers between a and b; if $b<a$ then the sum means zero.

Proof of Theorem 5. The proof runs on analogous lines as that of Szabados. Using the Lebesgue's estimate and (1.8) we obtain

$$
\begin{gathered}
E_{2 n} \leqq\left\|\frac{1}{n+1} \sum_{k=n}^{2 n} s_{k}(x)-f(x)\right\| \leqq \\
\leqq \frac{1}{n}\left\|\sum_{k=n}^{2 n}\left|s_{k}(x)-f(x)\right|^{p}\left|s_{k}(x)-f(x)\right|^{1-p}\right\| \leqq K_{1} \frac{1}{n}\left(E_{n} \log n\right)^{1-p}
\end{gathered}
$$

whence, by a standard computation (see inequality (8) in [7]),

$$
\begin{equation*}
E_{n}^{p}=O\left(n^{-1}(\log n)^{1-p}\right) \tag{3.9}
\end{equation*}
$$

follows. Using the estimate ([6], Theorem 8, p. 61)
(3.9) implies that

$$
E_{n}\left(f^{(r)}\right) \leqq K(r) \sum_{k=[n / 2]}^{\infty} k^{r-1} E_{k}(f),
$$

(3.9) imics

$$
E_{n}\left(f^{(r)}\right)=O\left(\frac{(\log n)^{1 / p-1}}{n^{\alpha}}\right),
$$

whence, according to the inequality ([6], Theorem 4, p. 59)

$$
\omega(f, h) \leqq K h \sum_{n=0}^{1 / h} E_{n}(f)
$$

we get

$$
\omega\left(f^{(r)}, h\right) \leqq K h \sum_{n=1}^{1 / h} \frac{(\log n)^{1 / p-1}}{n^{\alpha}} \leqq K_{1} h^{\alpha}\left(\log \frac{1}{h}\right)^{1 / p-1}
$$

which completes the proof.

References

[1] L. Leindler, Über die Approximation im starken Sinne, Acta Math. Acad. Sci. Hung., 16 (1965), 255-262.
[2] L. Leindler, On summability of Fourier series, Acta Sci. Math., 29 (1968), 147-162.
[3] L. Leindler, On strong approximation of Fourier series, Periodica Math. Hung., 1 (1971), 157-162.
14] L. Leindler, On strong approximation of Fourier series, Approximation Theory, Proceedings of a Conference in Poznań 1972; 129-140.
[5] L. Leindler and E. M. Nikišin, Note on strong approximation by Fourier series, Acta Math. Acad. Sci. Hung., 24 (1973), 223-227.
[6] G. G. Lorentz, Approximation of Functions, Holt, Rinehart and Winston (1966).
[7] J. Szabados, On problem of L. Leindler concerning strong approximation by Fourier series, Analysis Math., 2 (1976), 155-161.

[^0]: Received January 13, 1976.

