Note on an embedding theorem

J. NÉMETH

Let $\varphi \equiv \varphi_{p}(p>1)$ be a nonnegative increasing function on $[0, \infty)$ with the following properties:

$$
\frac{\varphi(x)}{x} \uparrow \quad \text { and } \quad \frac{\varphi(x)}{x^{p}} \downarrow ; \text { as } \quad x \rightarrow \infty .
$$

The set of measurable functions f on: $[0,1]$ for which $\int_{0}^{1} \varphi(|f(x)|) d x<\infty$ will be denoted by $\varphi(L)$.

If $f \in \varphi(L)$, the "modulus of continuity of f with respect to φ " will be defined by

$$
\omega_{\varphi}(\delta ; f)=\sup _{0 \leqq h \leqq \delta} \bar{\varphi}\left(\int_{0}^{1-h} \varphi(|f(x+h)-f(x)|) d x\right) \quad(0 \leqq \delta \leqq 1),
$$

where $\bar{\varphi}(x)$ denotes the inverse function of $\varphi(x)$. Given a function φ and a nondecreasing continuous function ω with $\omega(0)=0, H_{\varphi}^{\omega} \equiv H_{\varphi}^{\omega(\delta)}$ will denote the collection of functions $f(x)$ satisfying the condition

$$
\omega_{\varphi}(\delta, f)=O(\omega(\delta))
$$

Leindler [2] gave a sufficient condition for $H_{\varphi}^{\omega(\delta)} \subset \varphi(L) \Lambda(L)$, where $\Lambda(x)$ is a "slowly increasing" function. Namely he proved the following:

Theorem A. ([2], Theorem 1) Let $f \in \varphi(L)\left(\varphi=\varphi_{p}, p \geqq 1\right)$ and let $\left\{\lambda_{k}\right\}$ be a nonnegative monotonic sequence of numbers such that

$$
\sum_{k=m}^{\infty} \frac{\lambda_{k}}{k^{1+\varepsilon}} \leqq K(\lambda) \frac{\lambda_{m}}{m^{\varepsilon}}
$$

Received September 5, 1975.

${ }^{1}$) K and K_{i} denote either absolute constants or constants depending on certain functions and numbers which are not necessary to specify; $K(\alpha, \beta)$ and $K_{i}(\alpha, \beta)$ denote positive constants depending only on the indicated parameters. These constants are not necessarily the same at each occurrence.
where $\left.\varepsilon=(4[p+1]+2)^{-1} ;{ }^{2}\right)$ and let $\left.\Lambda(x)=\sum_{k=1}^{x} \frac{\lambda_{k}}{k} .{ }^{3}\right)$ Then

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\lambda_{n}}{n} \cdot \varphi\left(\omega_{\varphi}\left(\frac{1}{n}, f\right)\right)<\infty \tag{1}
\end{equation*}
$$

implies $f \in \varphi(L) \Lambda(L)$ and

$$
\int_{0}^{1} \varphi(|f(x)|) \Lambda(|f(x)|) d x \leqq K(\varphi, \lambda)\left\{\sum_{n=1}^{\infty} \frac{\lambda_{n}}{n} \varphi\left(\omega_{\varphi}^{\prime}\left(\frac{1}{n}, f\right)\right)+\int_{0}^{1} \varphi(|f(x)|) d x\right\} .
$$

In the present paper we are going to prove that for certain functions $\omega(\delta)$ condition (1) is also a necessary for

$$
H_{\varphi}^{\omega(\delta)} \subset \varphi(L) \Lambda(L) .
$$

More precisely, we prove the following
Theorem. Let $\omega(\delta)$ be a nondecreasing, continuous function with $\omega(0)=0$, for which the limit

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{\omega\left(\frac{h}{2}\right)^{4)}}{\omega(h)} \tag{2}
\end{equation*}
$$

exists, and let $\left\{\lambda_{k}\right\}$ be a nonnegative monotonic sequence of numbers satisfying $\lambda_{k} \leqq K \lambda_{k}$ for any k. Then a necessary and sufficient condition for

$$
\begin{equation*}
H_{\varphi}^{\omega(\delta)} \subset \varphi(L) \Lambda(L) \tag{3}
\end{equation*}
$$

is that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\lambda_{n} \varphi\left(\omega\left(\frac{1}{n}\right)\right)}{n}<\infty, \tag{4}
\end{equation*}
$$

where $\Lambda(x)$ means the same as in Theorem A.

1. We make use of the following:

Lemma ([3], Lemma 13). Let $A(u)$ be a nonnegative nondecreasing function on $[0, \infty)$ such that $A\left(u^{2}\right) \leqq K A(u)$ for any $u \in[0, \infty)$ and let $B(u)$ be a nonnegative function on $[0,1]$. Then

$$
\int_{0}^{1} B(u) A(B(u)) d u<\infty \quad \text { implies } \int_{0}^{1} B(u) A\left(\frac{1}{u}\right) d u<\infty .
$$

${ }^{2}$) $[y]$ denotes the integral part of y.
${ }^{\text {a }}{ }^{\text {g }} \underset{a}{b}$, where a and b are not necessarily integers, means a sum over all integers between a and b.
${ }^{4}$) In the proof we shall use instead of (2) only the condition $\frac{1}{p}<\lim _{h \rightarrow 0} \frac{\omega(h / 2)}{\omega(h)}$, where p is from the definition of the function $\varphi=\varphi_{p}$.

2. Proof of the Theorem

The sufficiency of (4) was proved in Leindler [2].
The necessity of (4) will be proved indirectly.
Suppose that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\lambda_{n} \varphi\left(\omega\left(\frac{1}{n}\right)\right)}{n}=\infty \tag{5}
\end{equation*}
$$

but (3) holds. Then we can construct a function f_{0} leading to a contradiction.
The construction of this function is similar to that of LeINDLER [1] made in the case $\varphi(x)=x^{p}$. We define $f_{0}(x)$ as follows:

$$
f_{0}(x)= \begin{cases}\varrho_{n}, & \text { if } \quad x=3 \cdot 2^{-n-2}, \\ 0 & \text { if } \quad x=0, \quad x \in\left[\frac{1}{2}, 1\right], \\ \text { linear on }\left[2^{-n-1}, 3 \cdot 2^{-n-2}\right], & {\left[3 \cdot 2^{-n-2}, 2^{-n}\right],}\end{cases}
$$

$(n=1,2, \ldots)$, where $\varrho_{n}=\bar{\varphi}\left(2^{n+1}\left(\varphi\left(\omega\left(\frac{1}{2^{n}}\right)\right)-\varphi\left(\omega\left(\frac{1}{2^{n+1}}\right)\right)\right)\right)$: First we show that $f_{0}(x) \in H_{\varphi}^{\omega(\delta)}$. Let

$$
\begin{equation*}
h \in\left(2^{-k-3}, 2^{-k-2}\right], \quad k \geqq 2 . \tag{6}
\end{equation*}
$$

Then

$$
\int_{0}^{1-h} \varphi\left(\left|f_{0}(t+h)-f_{0}(t)\right|\right) d t=\left(\int_{0}^{3 h}+\int_{3 h}^{1-h}\right) \varphi\left(\left|f_{0}(t+h)-f_{0}(t)\right|\right) d t=I_{1}+I_{2}
$$

We have

$$
\begin{gathered}
I_{1} \leqq K(\varphi) \int_{0}^{4 h} \varphi\left(\left|f_{0}(x)\right|\right) d x \leqq K \int_{0}^{2-k} \varphi\left(\left|f_{0}(x)\right|\right) d x \leqq \\
\leqq \sum_{n=k}^{\infty} \int_{2^{-n-1}}^{2-n} \varphi\left(\left|f_{0}(x)\right|\right) d x \leqq K_{1} \sum_{n=k}^{\infty} \varphi\left(\varrho_{n}\right) 2^{-n-1}= \\
=K_{1} \sum_{n=k}^{\infty}\left[\varphi\left(\omega\left(\frac{1}{2^{n}}\right)\right)-\varphi\left(\omega\left(\frac{1}{2^{n+1}}\right)\right)\right]=K_{1} \varphi\left(\omega\left(\frac{1}{2^{k}}\right)\right) \leqq K_{2} \varphi(\omega(h)) .
\end{gathered}
$$

Next we prove that for any k :

$$
\begin{equation*}
\sum_{n=0}^{k} 2^{-n} \varphi\left(\frac{2^{n}}{2^{k}} \bar{\varphi}\left(2^{n} \varphi\left(\omega\left(\frac{1}{2^{n}}\right)\right)\right)\right) \leqq K \varphi\left(\omega\left(\frac{1}{2^{k}}\right)\right) \tag{7}
\end{equation*}
$$

To prove (7) we mention first of all that by (2) and (5)

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{\omega\left(\frac{h}{2}\right)}{\omega(h)}=1 \tag{8}
\end{equation*}
$$

follows. For, if $\lim _{h \rightarrow 0} \frac{\omega(h / 2)}{\omega(h)}<q<1$, then we have

$$
\varphi\left(\dot{\omega}\left(\frac{1}{2^{n+1}}\right)\right) \leqq q \varphi\left(\omega\left(\frac{1}{2^{n}}\right)\right)
$$

which by $\lambda_{k^{2}} \leqq K_{1} \lambda_{k}$ implies the contrary of (5).
By (8) we may assume that there exists a positive number α such that $0<\alpha<1$ and that for any $n>n_{0}$

$$
\begin{equation*}
\omega\left(\frac{1}{2^{n-1}}\right) \leqq \sqrt[p]{2} \cdot \alpha \omega\left(\frac{1}{2^{n}}\right) . \tag{9}
\end{equation*}
$$

Hence by $\varphi(k x) \leqq k^{p} \varphi(x)(k>1)$, we have

$$
\begin{equation*}
\varphi\left(\omega\left(\frac{1}{2^{n-1}}\right)\right) \leqq 2 \alpha^{p} \varphi\left(\omega\left(\frac{1}{2^{n}}\right)\right) \tag{10}
\end{equation*}
$$

or

$$
\begin{equation*}
2^{n-1} \varphi\left(\omega\left(\frac{1}{2^{n-1}}\right)\right) \leqq \alpha^{p} 2^{n} \cdot \varphi\left(\omega\left(\frac{1}{2^{n}}\right)\right) \tag{11}
\end{equation*}
$$

Since $\bar{\varphi}(k x) \leqq \sqrt[p]{k} \bar{\varphi}(x)$ for $k \leqq 1$ we have by (11)

$$
\begin{equation*}
\bar{\varphi}\left(2^{n-1} \varphi\left(\omega\left(\frac{1}{2^{n-1}}\right)\right)\right) \leqq \alpha \cdot \bar{\varphi}\left(2^{n} \varphi\left(\omega\left(\frac{1}{2^{n}}\right)\right)\right) \tag{12}
\end{equation*}
$$

and consequently

$$
\begin{equation*}
\frac{2^{n-1}}{2^{k}} \bar{\varphi}\left(2^{n-1} \varphi\left(\omega\left(\frac{1}{2^{n-1}}\right)\right)\right) \leqq \frac{\alpha}{2} \frac{2^{n}}{2^{k}} \bar{\varphi}\left(2^{n} \varphi\left(\omega\left(\frac{1}{2^{n}}\right)\right)\right) \tag{13}
\end{equation*}
$$

Since $\varphi(k x) \leqq k \varphi(x)$ for $k \leqq 1$, we obtain by (13),

$$
\left.\varphi\left(\frac{2^{n-1}}{2^{k}} \bar{\varphi}\left(2^{n-1} \varphi\left(\omega\left(\frac{1}{2^{n-1}}\right)\right)\right)\right)\right\} \leqq \frac{\alpha}{2} \varphi\left(\frac{2^{n}}{2^{k}} \bar{\varphi}\left(2^{n} \varphi\left(\omega\left(\frac{1}{2^{n}}\right)\right)\right)\right) .
$$

Hence,

$$
2^{-n+1} \varphi\left(\frac{2^{n-1}}{2^{k}} \bar{\varphi}\left(2^{n-1} \varphi\left(\omega\left(\frac{1}{2^{n-1}}\right)\right)\right)\right) \leqq \alpha \cdot 2^{-n} \varphi\left(\frac{2^{n}}{2^{k}} \bar{\varphi}\left(2^{n} \varphi\left(\omega\left(\frac{1}{2^{n}}\right)\right)\right)\right)
$$

which implies (7), since $0<\alpha<1$.
Having (7) we can estimate I_{2}. Since

$$
\left|f_{0}(t+h)-f_{0}(t)\right| \leqq h \cdot 2^{n+2}\left(\varrho_{n}+\varrho_{n-1}\right) \quad \text { if } \quad 2^{-n-1} \leqq t \leqq 2^{-n}, \quad 1 \leqq n \leqq k-1
$$

we have

$$
\begin{aligned}
I_{2} & \leqq \int_{2^{-k}}^{2-1} \varphi\left(\left|f_{0}(t+h)-f_{0}(t)\right|\right) d t=\sum_{n=1}^{k-1} \int_{2^{-n-1}}^{2-n} \varphi\left(\left|f_{0}(t+h)-f_{0}(t)\right|\right) d t \leqq \\
& \leqq K(\varphi) \sum_{n=0}^{k} 2^{-n} \varphi\left(\frac{2^{n}}{2^{k}} \varrho_{n}\right) \leqq K_{1}(\varphi) \sum_{n=0}^{k} 2^{-n} \varphi\left(\frac{2^{n}}{2^{k}} \bar{\varphi}\left(2^{n} \varphi\left(\omega\left(\frac{1}{2^{n}}\right)\right)\right)\right) \leqq \\
& \leqq K_{2}(\varphi) \cdot \varphi\left(\omega\left(\frac{1}{2^{k}}\right)\right) \leqq K_{3}(\varphi) \cdot \varphi(\omega(h)) ;
\end{aligned}
$$

and hence,

$$
f_{0}(x) \in H_{\varphi}^{\omega}
$$

Finally we prove that

$$
f_{0}(x) \notin \varphi(L) \Lambda(L) .
$$

By (5)

$$
\begin{equation*}
\sum_{n=1}^{N} \frac{\lambda_{n} \varphi\left(\omega\left(\frac{1}{n}\right)\right)}{n} \rightarrow \infty, \text { as } N \rightarrow \infty \tag{14}
\end{equation*}
$$

Using (14) and $\lambda_{2 n} \leqq K_{1} \lambda_{n}$, furthermore that for any N there exists an integer N_{1} such that $\varphi\left(\omega\left(\frac{1}{N_{1}}\right)\right) \leqq \frac{1}{4 K_{1}} \varphi\left(\omega\left(\frac{1}{N}\right)\right)$, an easy computation gives that

$$
\begin{equation*}
\sum_{n=1}^{\mu} \Lambda\left(2^{n}\right) \varphi\left(\varrho_{n}\right) 2^{-n} \rightarrow \infty \quad \text { as } \quad \mu \rightarrow \infty \tag{15}
\end{equation*}
$$

Indeed, if $2^{\mu}>N_{1}$, we have

$$
\begin{aligned}
& \sum_{k=1}^{N} \lambda_{k} k^{-1} \varphi\left(\omega\left(\frac{1}{k}\right)\right) \leqq 2 \sum_{k=1}^{N} \lambda_{k} k^{-1}\left[\varphi\left(\omega\left(\frac{1}{k}\right)\right)-2 K_{1} \varphi\left(\omega\left(\frac{1}{N_{1}}\right)\right)\right] \leqq \\
& \leqq 2 \sum_{k=1}^{\sum^{\mu}} \lambda_{k} k^{-1}\left[\varphi\left(\omega\left(\frac{1}{k}\right)\right)-2 K_{1} \varphi\left(\omega\left(\frac{1}{2^{\mu}}\right)\right)\right] \leqq \\
& \leqq 2\left[\sum_{n=1}^{\mu} \sum_{k=2^{n-1}+1}^{2^{n}} \lambda_{k} k^{-1} \varphi\left(\omega\left(\frac{1}{k}\right)\right)-2 K_{1} \Lambda\left(2^{\mu}\right) \varphi\left(\omega\left(\frac{1}{2^{\mu}}\right)\right)\right]+K_{2} \leqq \\
& \leqq 2\left[\sum_{n=1}^{\mu} \varphi\left(\omega\left(\frac{1}{2^{n-1}}\right)\right)_{k=2^{n-1}+1}^{2^{n}} \lambda_{k} k^{-1}-2 K_{1} \Lambda\left(2^{\mu}\right) \varphi\left(\omega\left(\frac{1}{2^{\mu}}\right)\right)\right]+K_{2} \leqq \\
& \leqq 2\left[\sum_{n=2}^{\mu} 2 K_{1} \varphi\left(\omega\left(\frac{1}{2^{n-1}}\right)\right) \sum_{k=2^{n-2}+1}^{2^{n-1}} \lambda_{k} k^{-1}-2 K_{1} \Lambda\left(2^{\mu}\right) \varphi\left(\omega\left(\frac{1}{2^{\mu}}\right)\right)\right]+K_{3} \leqq \\
& \leqq K_{4}\left[\sum_{i=1}^{\mu-1} \varphi\left(\omega\left(\frac{1}{2^{i}}\right)\right]_{k=2^{i-1}+1}^{2^{i}} \lambda_{k} k^{-1}-\Lambda\left(2^{\mu}\right) \varphi\left(\omega\left(\frac{1}{2^{\mu}}\right)\right)\right]+K_{3} \leqq \\
& \leqq K_{4}\left[\sum_{i=1}^{\mu-1} \varphi\left(\omega\left(\frac{1}{2^{i}}\right)\right)\left(\Lambda\left(2^{i}\right)-\Lambda\left(2^{i-1}\right)\right)-\Lambda\left(2^{\mu}\right) \varphi\left(\omega\left(\frac{1}{2^{\mu}}\right)\right)\right]+K_{5} \leqq \\
& \leqq K_{4} \sum_{n=1}^{\mu-1} \Lambda\left(2^{n}\right)\left[\varphi\left(\omega\left(\frac{1}{2^{n}}\right)\right)-\varphi\left(\omega\left(\frac{1}{2^{n+1}}\right)\right)\right]+K_{5} \leqq \\
& \leqq K_{4} \sum_{n=1}^{\mu} \Lambda\left(2^{n}\right) \varphi\left(\varrho_{n}\right) \cdot 2^{-n}+K_{5},
\end{aligned}
$$

which proves (15) by (14).

It is clear that for any m

$$
\begin{aligned}
& \int_{1 / 2^{m+1}}^{1} \varphi\left(\left|f_{0}(x)\right|\right) \Lambda\left(\frac{1}{x}\right) d x=\sum_{n=0}^{m} \int_{2^{-n-1}}^{2-n} \varphi\left(\left|f_{0}(x)\right|\right) \Lambda\left(\frac{1}{x}\right) d x \geqq \\
& \geqq \sum_{n=0}^{m} \Lambda\left(2^{n}\right) \int_{2^{-n-1}}^{2-n} \varphi\left(\left|f_{0}(x)\right|\right) d x \geqq K_{6} \sum_{n=0}^{m} \Lambda\left(2^{n}\right) \varphi\left(\varrho_{n}\right) 2^{-n},
\end{aligned}
$$

and thus, by (15), we get

$$
\begin{equation*}
\int_{0}^{1} \varphi\left(\left|f_{0}(x)\right|\right) \Lambda\left(\frac{1}{x}\right) d x=\infty \tag{16}
\end{equation*}
$$

Since $\lambda_{k^{8}} \leqq K_{1} \lambda_{k}$, we have

$$
\begin{equation*}
\Lambda\left(u^{2}\right) \leqq K_{2} \Lambda(u) \tag{17}
\end{equation*}
$$

thus, by (16) and applying our Lemma, we obtain

$$
\begin{equation*}
\int_{0}^{1} \varphi\left(\left|f_{0}(x)\right|\right) \Lambda\left(\varphi\left(\left|f_{0}(x)\right|\right)\right) d x=\infty \tag{18}
\end{equation*}
$$

Using (17) and the properties of the function φ, we have

$$
\begin{equation*}
\Lambda(\dot{\varphi}(x)) \leqq K_{3} \Lambda(x) \tag{19}
\end{equation*}
$$

whence by (18) and (19)

$$
\int_{0}^{1} \varphi\left(\left|f_{0}(x)\right|\right) \Lambda\left(\mid f_{0}(x)\right) d x=\infty
$$

follows, that is,

$$
f_{0} \notin \varphi(L) \Lambda(L)
$$

The proof of our Theorem is completed.

References

[1] L. Leindlek, On embedding of classes $\boldsymbol{H}_{p}^{\infty}$, Acta Sci. Math., 31 (1970), 13-31.
[2] L. Leindler, On imbedding theorems, Acta Sci. Math., 34 (1973), 231-244.
[3] П. Л. Ульянов, Вложение некоторых классов функций H_{p}^{∞}, Изв. АН. СССР, сер. матем.. 32 (1968), 649-686.

