Unitary subsemigroups in commutative semigroups

G. SZÁSZ

1. Introduction. We use the terminology and notations of [1]. In particular, a subset U of a semigroup S will be called *left [right] unitary* if, for each $u \in U$ and $s \in S$, $u \in U$ [$su \in U$] implies $s \in U$; a subset which is both left and right unitary will be called *unitary*.

In this paper we deal only with commutative semigroups. Clearly, the terms "left unitary", "right unitary" and "unitary" have the same meaning in this case.

2. Connections with a special congruence relation. Let S be a commutative semigroup and R a subsemigroup of S. Define $a\varrho_R b$ $(a, b \in S)$ to mean that there exists an $x \in R$ such that ax = bx. It is well-known that ϱ_R is a congruence on S. T. TAMURA and H. B. HAMILTON discussed in [4] the case when R is cofinal in S (that is, to each $s \in S$ there exists an $r \in R$ such that $sr \in R$). A part of their results can be formulated as follows: If R is a cofinal subsemigroup of the commutative semigroup S, then

(i) R is included in a ϱ_R -class (i.e., $x \varrho_R y$ for each x, $y \in R$), but

(ii) R is itself a ρ_R -class if and only if it is unitary.

Now we show that (i) and (ii) remain true if cofinality is replaced by the condition that R is a subsemilattice of S. We recall that a *semilattice* is a commutative semigroup every element of which is idempotent.

Theorem 1. Let S be a commutative semigroup and R a subsemilattice of S. Then $x \varrho_R y$ for each pair x, $y \in R$.

Proof. For any elements x, y of R we have $x \cdot xy = y \cdot xy$ and $xy \in R$. Hence $x \rho_R y$ indeed.

Before formulating the analogue of (ii) we prove a more general proposition:

Theorem 2. Let S be a commutative semigroup and R a unitary subsemigroup in S. Then $u\varrho_R a(a \in R)$ implies $u \in R$ (i.e., R is the union of some ϱ_R -classes).

Received December 1, 1975, revised February 15, 1965.

Proof. Let $a \in R$, $u \in S$ and $u \varrho_R a$. Then there exists an $x \in R$ such that $xu = xa \in R$. Since R is unitary, $u \in R$.

Theorem 3. Let S be a commutative semigroup and R a subsemilattice of S. Then R is a ϱ_R -class if and only if it is unitary.

Proof. If R is unitary, then it is a ϱ_R -class by Theorems 1 and 2. Conversely, suppose that R is a ϱ_R -class and ax=b with $a, b \in R$. Then $ax=a^2x=ab$ and therefore $x\varrho_R b$. Since R is a ϱ_R -class, we conclude that $x \in R$. This means that R is unitary, indeed.

3. Unitary subsemilattices in semilattices. A subsemilattice F of a semilattice S is called a *filter* if, for any elements $e \in F$ and $s \in S$, es = e implies $s \in F$. By the following theorem the filters and the unitary subalgebras will be identified in semilattices:

Theorem 4. The following assertions concerning a subsemilattice R of a semilattice S are equivalent:

- (A) R is a ϱ_R -class;
- (B) R is a filter;
- (C) R is unitary.

Proof. Since (A) and (C) are equivalent by Theorem 3, we have only to show that (B) and (C) are also equivalent.

Let ax=b with $a, b \in R$. Then $b=ax^2=bx$. Assuming (B), we get $x \in R$. This means that (B) implies (C).

Let a=as with $a \in R$, $s \in S$. Assuming (C), we get $s \in R$. This means that (C) implies (B), too.

In the rest of this paper we point to a prominent role of unitary subsemilattices. Let S and Σ be semilattices with identity elements e and ε , respectively. Let, further, a^b $(a, b \in S)$ denote a mapping of $S \times S$ into Σ . Define a multiplication in $S \times \Sigma$ by the rule

(1) $(a, \alpha) \circ (b, \beta) = (ab, a^b \alpha \beta).$

The resulting grupoid, denoted by $S \circ \Sigma$, is a (degenerated) Rédeian skew product of S and Σ in the sense of [2]. It was shown in [3] that $S \circ \Sigma$ is a semilattice if and only if $a^b = b^a$ and

$$a^a = \varepsilon$$

for each $a, b \in S$. Now we prove

Theorem 5. Let S and Σ be semilattices with the identity elements e and ε , respectively. If their Rédeian skew product $S \circ \Sigma$ is a semilattice, too, then the set

$$\Gamma = \{(e, \alpha) \colon \alpha \in \Sigma\}$$

is a subsemilattice of $S \circ \Sigma$ such that

(i) Γ is unitary and isomorphic with Σ ;

(ii) $S \circ \Sigma / \varrho_{\Gamma}$ is isomorphic with S.

Proof. By (1), Γ is a subalgebra of $S \circ \Sigma$. Property (i) can be derived immediately from (1) and (2). As for (ii), $(a, \alpha) \varrho_{\Gamma}(b, \beta)$ means that there exists an (e, γ) such that $(a, \alpha) \circ (e, \gamma) = (b, \beta) \circ (e, \gamma)$ which implies a = b. Conversely, a = b implies $(a, \alpha) \varrho_{\Gamma}(b, \beta)$ for arbitrary $\alpha, \beta \in \Sigma$ because $(a, \alpha) \circ (e, \alpha\beta) = (a, a^e \alpha \beta) = (b, b^e \alpha \beta) =$ $= (b, \beta) \circ (e, \alpha\beta)$ in this case. Thus (ii) is proved, too.

References

- A. H. CLIFFORD-G. B. PRESTON, The algebraic theory of semigroups. I-II, Math. Surveys 7 (Providence, 1961, 1967).
- [2] R. KOCHENDÖRFFER, Zur Theorie der Rédeischen schiefen Produkte, J. reine u. angew. Math., 192 (1953), 96-101.
- [3] G. SZÁSZ, Rédeische schiefe Produkte von Halbverbänden, Acta Math. Acad. Sci. Hung., 7 (1957), 441-461.
- [4] T. TAMURA-H. B. HAMILTON, Commutative semigroups with greatest group-homomorphism, Proc. Japan Acad., 47 (1971), 671-675.

TECHNOLOGICAL UNIVERSITY 1111 BUDAPEST MÜEGYETEM RKP. 3 ...H" ÉPÜLET

11 A