Unitary subsemigroups in commutative semigroups

G. SZÁSZ

1. Introduction. We use the terminology and notations of [1]. In particular, a subset U of a semigroup S will be called left [right] unitary if, for each $u \in U$ and $s \in S, u s \in U[s u \in U]$ implies $s \in U$; a subset which is both left and right unitary will be called unitary.

In this paper we deal only with commutative semigroups. Clearly, the terms "left unitary", "right unitary" and "unitary"' have the same meaning in this case.
2. Connections with a special congruence relation. Let S be a commutative semigroup and R a subsemigroup of S. Define $a \varrho_{R} b(a, b \in S)$ to mean that there exists an $x \in R$ such that $a x=b x$. It is well-known that ϱ_{R} is a congruence on S. T. Tamura and H. B. Hamilton discussed in [4] the case when R is cofinal in S (that is, to each $s \in S$ there exists an $r \in R$ such that $s r \in R$). A part of their results can be formulated as follows: If R is a cofinal subsemigroup of the commutative semigroup S, then
(i) R is included in a ϱ_{R}-class (i.e., $x \varrho_{R} y$ for each $x, y \in R$), but
(ii) R is itself $a \varrho_{R}$-class if and only if it is unitary.

Now we show that (i) and (ii) remain true if cofinality is replaced by the condition that R is a subsemilattice of S. We recall that a semilattice is a commutative semigroup every element of which is idempotent.

Theorem 1. Let S be a commutative semigroup and R a subsemilattice of S. Then $x \varrho_{R} y$ for each pair $x, y \in R$.

Proof. For any elements x, y of R we have $x \cdot x y=y \cdot x y$ and $x y \in R$. Hence $x \varrho_{R} y$ indeed.

Before formulating the analogue of (ii) we prove a more general proposition:
Theorem 2. Let S be a commutative semigroup and R a unitary subsemigroup in S. Then $u \varrho_{R} a(a \in R)$ implies $u \in R$ (i.e., R is the union of some ϱ_{R}-classes).

[^0]Proof. Let $a \in R, u \in S$ and $u \varrho_{R} a$. Then there exists an $x \in R$ such that $x u=$ $=x a \in R$. Since R is unitary, $u \in R$.

Theorem 3. Let S be a commutative semigroup and R a subsemilatice of S. Then R is a ϱ_{R}-class if and only if it is unitary.

Proof. If R is unitary, then it is a ϱ_{R}-class by Theorems 1 and 2 . Conversely, suppose that R is a ϱ_{R}-class and $a x=b$ with $a, b \in R$. Then $a x=a^{2} x=a b$ and therefore $x \varrho_{R} b$. Since R is a ϱ_{R}-class, we conclude that $x \in R$. This means that R is unitary, indeed.
3. Unitary subsemilattices in semilattices. A subsemilattice F of a semilatice S is called a filter if, for any elements $e \in F$ and $s \in S$; $e s=e$ implies $s \in F$. By the forlowing theorem the filters and the unitary subalgebras will be identified in semilattices:

Theorem 4. The following assertions concerning a subsemilatice R of a semilattice S are equivalent:
(A) R is a ϱ_{R}-class;
(B) R is a filter;
(C) R is unitary.

Proof. Since (A) and (C) are equivalent by Theorem 3, we have only to show that (B) and (C) are also equivalent.

Let $a x=b$ with $a, b \in R$. Then $b=a x^{2}=b x$. Assuming (B), we get $x \in R$. This means that (B) implies (C).

Let $a=$ as with $a \in R, s \in S$. Assuming (C), we get $s \in R$. This means that (C) implies (B), too.

In the rest of this paper we point to a prominent role of unitary subsemilatices. Let S and Σ be semilattices with identity elements e and ε, respectively. Let, further, $a^{b}(a, b \in S)$ denote a mapping of $S \times S$ into Σ. Define a multiplication in $S \times \Sigma$ by the rule

$$
\begin{equation*}
(a, \alpha) \circ(b, \beta)=\left(a b, a^{b} \alpha \beta\right) . \tag{1}
\end{equation*}
$$

The resulting grupoid, denoted by $S \circ \Sigma$, is a (degenerated) Rédeian skew product of S and Σ in the sense of [2]. It was shown in [3] that $S \circ \Sigma$ is a semilattice if and only if $a^{b}=b^{a}$ and

$$
\begin{equation*}
a^{a}=\varepsilon \tag{2}
\end{equation*}
$$

for each $a, b \in S$. Now we prove

Theorem 5. Let S and Σ be semilattices with the identity elements e and ε, respectively. If their Rédeian skew product $S \circ \Sigma$ is a semilattice, too, then the set

$$
\Gamma=\{(e, \alpha): \alpha \in \Sigma\}
$$

is a subsemilattice of $S \circ \Sigma$ such that
(i) Γ is unitary and isomorphic with Σ;
(ii) $S \circ \Sigma / \varrho_{\Gamma}$ is isomorphic with S.

Proof. By (1), Γ is a subalgebra of $S \circ \Sigma$. Property (i) can be derived immediately from (1) and (2). As for (ii), (a, α) $\varrho_{\Gamma}(b, \beta)$ means that there exists an (e, γ) such that $(a, \alpha) \circ(e, \gamma)=(b, \beta) \circ(e, \gamma)$ which implies $a=b$. Conversely, $a=b$ implies $(a, \alpha) \varrho_{\Gamma}(b, \beta)$ for arbitrary $\alpha, \beta \in \Sigma$ because $(a, \alpha) \circ(e, \alpha \beta)=\left(a, a^{e} \alpha \beta\right)=\left(b, b^{e} \alpha \beta\right)=$ $=(b, \beta) \circ(e, \alpha \beta)$ in this case. Thus (ii) is proved, too.

References

[1] A. H. Clifford-G. B. Preston, The algebraic theory of semigroups. I-II, Math. Surveys 7 (Providence, 1961, 1967).
[2] R. Kochendörffer, Zur Theorie der Rédeischen schiefen Produkte, J. reine u. angew. Math., 192 (1953), 96-101.
[3] G. Szász, Rédeische schiefe Produkte von Halbverbänden, Acta Math. Acad. Sci. Hung., 7 (1957), 441-461.
[4] T. Tamura-H. B. Hamilton, Commutative semigroups with greatest group-homomorphism, Proc. Japan Acad., 47 (1971), 671-675.

[^0]: Received December 1, 1975, revised February 15, 1965.

