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Unitary subsemigroups in commutative semlgroups

G szAsz

1. Introduction. We use the terminology and notations of [1]. In particular, a
subset U of a semigroup S will be called left [right] unitary if, for each u€U and
S€ S, use U [suc U] implies s€ U; a subset whlch is both left and right unitary will be:
called unitary.

In this paper we deal only with commutatlve semigroups. C]carly, the terms.
“left unitary”, “right unitary” and “unitary” have the same meaning in this case.

2. Connections with a special congruence relation. Let S be a commutative
semigroup and R a subsemigroup of S. Define aggpb (a, b€ S) to mean that there
exists an x¢R such that ax=»bx. It is well-known that g is a congruence on S.
T. TAMURA and H. B. HAMILTON discussed in [4] the case when R is cofinal in §
(that is, to each s€ S there exists an 7€ R such that sr€ R). A part of their results can
be formulated as follows: If R is a cofinal subsemlgroup of the commutative semigroup
S, then

() R is included in a gg-class (i.e., xog y Jor each x, y€R), but

(i) R is itself a pg-class if and only if it is unitary. '

Now we show that (i) and (ii) remain true if cofinality is replaced by the condition
"that R is a subsemilattice of S. We recall that a semilattice is a commutative semi-
group every element of which is idempotent.

Theorem 1. Let S be a commutative semigroup and R a subsemilattice of S.
Then xpgry for each pair x, y€R.

Proof. For any elements X, y of R we have x-xy=y-xy and xy€R. Hence
xpry indeed.
Before formulating the analogue of (u) we prove a more general proposmon'

Theorem 2. Let S be a commutative semigroup and Ra unitary subsemigroup
in S. Then uppa (a€ R) implies u€ R (i.e., R is the union of some gg-classes).
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Proof. Let acR, u€S and ugga. Then there exists an x€R such that xu=
=xa€R. Since R is unitary, u€R,

Theorem 3. Let S be a commutative semigroup and R a subsemilattice of S.
Then R is a gg-class if and only if it is unitary.

Proof. If R is unitary, then it is a gg-class by Theorems 1 and 2. Conversely,
:suppose that R is a gg-class and ax=» with a, b€ R. Then ax=a?x =ab and therefore
xggb. Since R is a gg-class, we conclude that x€ R. This means that R is unitary,
indeed.

3. Unitary subsemilattices in semilattices. A subsemilattice F of a semilattice
S is called a filter if, for any elements e€ F and s€ S; es=e implies s€ F. By the fol-
lowing theorem the filters and the unitary subalgebras will be identified in semi-
lattices: »

Theorem 4. The following assertions concerning a subsemilattice R of a semi-
dattice S are equivalent:
(A) R is a og-class;
(B) R is afilter;
-(C) R is unitary.

Proof. Since (A) and (C) are equivalent by Theorem 3, we have only to show
~ ithat (B) and (C) are also equivalent. '
Let ax=b with a, b€R. Then b=ax?=>bx. Assuming (B), we get x<R. This
means that (B) implies (C). '
Let a=as with a€R, s€S. Assuming (C), we get s€R. This means that (C)
implies (B), too. ' '

In the rest of this paper we point to a prominent role of unitary subsemilattices.
Let S and X be semilattices with identity elements e and &, respectively. Let, further,
.a® (a, b¢ S) denote a mapping of §X S into Z. Define a multiplication in $XZ by
‘the rule

10)) (a, @)o(b, B) = (ab, a®«p).

‘The resulting grupoid, denoted by So Z, is a (degenerated) Rédeian skew product
of § and Z in the sense of [2]. It was shown in [3] that So X is a semilattice if and
only if *=56" and

(2) a® =g

for each a, b€ S. Now we prove
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Theorem 5. Let S and X be semilattices with the identity elements e and
g, respectively. If their Rédeian skew product So X is a semilattice, too, then the set

I'={(e,0): aeZ}
is a subsemilattice of So X such that

(i) I is unitary and isomorphic with X ;
(ii) So Z/gr is isomorphic with S.

Proof. By (1), I' is a subalgebra of So Z. Property (i) can be derived immedia-
tely from (1) and (2). As for (ii), (@, @) g (b, f) means that there exists an (e, 7)
such that (a, @)o (e, y)=(b, B)o (e, y) which implies a=5b. Conversely, a=5b implies
(a, ) or (b, B) for arbitrary «, B€Z because (a, @)o (e, af)=(a, a°uf)=(b, b°uf)=
=(b, B)o(e, af) in this case. Thus (ii) is proved, too.

t
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