On a property of strictly logarithmic concave functions

V. A. TOMILENKO

1. Introduction. In the work [1] by A. Prékopa the following theorem was proved.

Theorem 1. Let $f(x, y)$ be a function of $n+m$ variables, where x is an n-component and y is an m-component vector. Suppose that f is logarithmic concave in R^{n+m} and let A be a convex subset of R^{m}. Then the function

$$
I(x)=\int_{A} f(x, y) d y
$$

is logarithmic concave in the entire space R^{n}.
The main result of this work is a similar statement for strictly logarithmic concave functions.

Let f be a non-negative logarithmic concave function in R^{n+m}. We denote $D=\left\{z \in R^{n+m}: f(z)>0\right\}, \quad D(x)=\left\{y \in R^{m}: f(x, y)>0\right\}, \quad B=\left\{x \in R^{n}: I(x)>0\right\}$. The sets $D(x)\left(x \in R^{n}\right), D$ and B are convex in R^{m}, R^{n+m} and R^{n}, respectively. The relative interior of a convex set $C \subset R^{k}$ is denoted by ri C (see [2] p. 57) and the closure of C by \bar{C}. The basic theorem of this work is

Theorem 2. Let $f(x, y)$ be a function of $n+m$ variables where $x \in R^{n}, y \in R^{m}$. Suppose f is logarithmic concave in R^{n+m} and strictly logarithmic concave in ri D, and let A be convex subset of the space R^{m}. If the sets $D(x) \subset R^{m}$ are bounded for every $x \in R^{n}$, then the function I is logarithmic concave in the entire space R^{n} and strictly logarithmic concave in ri B.

The first part of this statement is just Theorem 1. We shall begin with proving the strictly logarithmic concavity of the function I in ri B with subsidiary statements.

In this work the terminology has been taken from [2].
2. Auxiliary statements. We define the function $g: R^{n+m} \rightarrow R$ as follows

$$
g(z)=-\ln f(z), \quad z=(x, y) \in R^{n+m}
$$

Received June 13, 1975.

Under the conditions imposed on f, g is a proper convex function with effective domain

$$
\operatorname{dom} g=\left\{z \in R^{n+m}: g(z)<\infty\right\}=D .
$$

We denote

$$
f_{*}(z)=\limsup _{v \rightarrow 2} f(v), v, z \in R^{n+m} .
$$

Lemma 1. For all $z \in R^{n+m}$

$$
(\operatorname{cl} g)(z)=-\ln f_{*}(z),
$$

where $\mathrm{cl} g$ is the closure of the convex function g.
Proof. From the definition of $\mathrm{cl} g([2] \mathrm{p} .67-68)$ and g we have

$$
(\mathrm{cl} g)(z)=\underset{v \rightarrow z}{\liminf } g(v)=\underset{v \rightarrow z}{\liminf }[-\ln f(v)]=-\limsup _{v \rightarrow z} \ln f(v) .
$$

The continuity and strict monotonicity of the logarithm implies that

$$
\limsup _{v \rightarrow z} \ln f(v)=\ln \left[\limsup _{v \rightarrow z} f(v)\right]=\ln f_{*}(z) .
$$

The lemma is proved.
Corollary 1. The function f_{*} is logarithmic concave in R^{n+m}.
Corollary 2. The function f agrees with f_{*} in R^{n+m} except perhaps at relative boundary points of a convex set D.

Corollaries 1 and 2 follow from Theorem 7.4 [2] and Lemma 1.
Lemma 2. If f is upper semi-continuous on the closed bounded set $D \subset R^{k}$, then there exists $z_{0} \in D$ such that

$$
\sup _{z \in D} f(z)=f\left(z_{0}\right) .
$$

Proof. Let $\sup _{z \in D} f(z)=C$ and $\varepsilon_{n}>0, \varepsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$. Then one can find a sequence $\left\{z_{n}\right\} \subset D$ such that for $n=1,2, \ldots$

$$
f\left(z_{n}\right)>C-\varepsilon_{n} .
$$

Since D is a bounded closed set without loss of generality we may assume that

$$
z_{n} \rightarrow z_{0} \text { as } n \cdot \rightarrow \infty, \quad z_{0} \in D, \text { and }\left|z_{n}-z_{0}\right| \leqq \varepsilon_{n} \text { for } n=1,2, \ldots
$$

Hence the inequality

$$
\begin{equation*}
\sup _{\left|z_{0}-z\right|<\varepsilon_{n}} f(z) \geqq f\left(z_{n}\right)>C-\varepsilon_{n}, \quad n=1,2, \ldots \tag{1}
\end{equation*}
$$

is valid. Taking into account the upper semi-continuity of the function f we get from (1) that

$$
f\left(z_{0}\right)=\lim _{n \rightarrow \infty} \sup _{\left|z-z_{0}\right|<e_{n}} f(z) \geqq C .
$$

Thus $f\left(z_{0}\right)=C$. The lemma is proved.

Lemma 3. Let $z_{1}, z_{2} \in R^{n+m}$ and $0<\lambda<1$. If f is strictly logarithmic concave in ri $D \subset R^{n+m}$ and $\lambda z_{1}+(1-\lambda) z_{2} \in \operatorname{ri} D$, then the inequality

$$
\begin{equation*}
f_{*}\left(\lambda z_{1}+(1-\lambda) z_{2}\right)>f_{*}^{\lambda}\left(z_{1}\right) f_{*}^{1-\lambda}\left(z_{2}\right) \tag{2}
\end{equation*}
$$

is valid.
Proof. Two cases are possible.
(i) One of the points, either z_{1} or z_{2}, does not belong to \bar{D}. In this case inequality (2) is obviously correct.
(ii) Let $z_{1}, z_{2} \in \bar{D}$. Let us draw a straight line l across the points z_{1} and z_{2} and choose some point $z \in l \cap$ ri D. Let $\varphi(\mu)=g\left(\mu z_{1}+(1-\mu) z_{2}\right)$. Then $\mathrm{cl} \varphi$ is a proper strictly convex function on $[0,1]$. From Theorems 7.4 and 7.5 of [2] it follows that (cl φ) $(\mu)=\varphi(\mu)$ for $\mu \in(0,1)$ and

$$
\begin{gathered}
(\mathrm{cl} \varphi)(1)=\lim _{v+1}\left(v+(1-v) \mu_{0}\right)=\lim _{v+1} g\left(v z_{1}+(1-v) z\right)=(\operatorname{cl} g)\left(z_{1}\right), \\
(\operatorname{cl} \varphi)(0)=\lim _{v+1}\left(\mu_{0}-v \mu_{0}\right)=\lim _{v+1} g\left(v z_{2}+(1-v) z\right)=(\operatorname{cl} g)\left(z_{2}\right),
\end{gathered}
$$

'where $z=\mu_{0} z_{1}+\left(1-\mu_{0}\right) z_{2}$. This means that the function $\mathrm{cl} g$ is strictly convex on the set $1 \cap \bar{D}$, that is

$$
\begin{equation*}
(\operatorname{clg} g)\left(\lambda z_{1}+(1-\lambda) z_{2}\right)<\lambda(\operatorname{cl} g)\left(z_{1}\right)+(1-\lambda)(\operatorname{cl} g)\left(z_{2}\right), \quad 0<\lambda<1 . \tag{3}
\end{equation*}
$$

From (3) and Lemma 1 it can be seen that inequality (2) is true. The lemma is proved.

Corollary 3. Let $z_{1}, z_{2} \in R^{n+m}$ and $0<\dot{\lambda}<1$. If fis strictly logarithmic concave in ri $D \subset R^{n+m}$ and $\lambda z_{1}+(1-\lambda) z_{2} \in \operatorname{ri} D$, then we have the inequality

$$
f\left(\lambda z_{1}+(1-\lambda) z_{2}\right)>f^{\lambda}\left(z_{1}\right) f^{1-\lambda}\left(z_{2}\right) .
$$

Lemma 4. If $x_{0} \in \operatorname{ri} B, y_{0} \in \operatorname{int} D\left(x_{0}\right)$, then $z_{0}=\left(x_{0} y_{0}\right) \in \operatorname{ri} D$.
Proof. Let P be the projection $(x, y) \rightarrow x$ from R^{n+m} onto R^{n}. It can be shown that $B \subset P D$ and if B is not empty then the dimension of the set B agrees with that of $P D$. Hence ri $B \subset \mathrm{ri}(P D)$ and the point $\left(x_{0}, y_{0}\right) \in \operatorname{ri} D$ by Theorem 6.8 of [2]. The lemma is proved.
3. Proof of Theorem 2. We denote

$$
D_{*}(x)=\left\{y \in R^{m}: f_{*}(x, y)>0\right\} .
$$

For all $x \in \operatorname{ri} B$ the sets $D(x)$ and $D_{*}(x)$ have the same closure and the same interior (see Corollary 2).

Let $x_{1}, x_{2} \in$ ri $B, 0<\lambda<1$ and $x_{0}=\lambda x_{1}+(1-\lambda) x_{2}$. We define the functions f_{1} and f_{2} as follows:

$$
\begin{array}{llll}
f_{1}(y)=f_{*}\left(x_{1}, y\right) & \text { if } & y \in \bar{A}, & \text { and } \\
f_{1}(y)=0 & \text { otherwise; } \\
f_{2}(y)=f_{*}\left(x_{2}, y\right) & \text { if } & y \in \bar{A}, & \text { and } \\
f_{2}(y)=0 & \text { otherwise }
\end{array}
$$

For given $y \in R^{m}$ and $\lambda, 0<\lambda<1$, we shall denote by $S(y ; \lambda)$ the set of points (u, v) such that $u, v \in R^{m}, \lambda u+(1-\lambda) v=y$.

It can be shown that for all $y \in R^{m}$

$$
\sup _{S(y ; \lambda)} f_{*}^{\lambda}\left(x_{1}, u\right) f_{*}^{1-\lambda}\left(x_{2}, v\right) \geqq \sup _{S(y ; \lambda)} f_{1}^{\lambda}(u) f_{2}^{1-\lambda}(v)
$$

and for $y \bar{\in} \bar{A} \cap \bar{D}\left(x_{0}\right)$

$$
\sup _{S(y ; \lambda)} f_{1}^{\lambda}(u) f_{2}^{1-\lambda}(v)=0 .
$$

Since f_{*} is logarithmic concave in R^{n+m} (Corollary 1), the following inequality will be valid for all $y \in R^{m}$:

$$
f_{*}\left(x_{0}, y\right) \geqq \sup _{S(\lambda ; y)} f_{*}^{\lambda}\left(x_{1}, u\right) f_{*}^{1-\lambda}\left(x_{2}, v\right)
$$

We shall prove that for all $y \in \operatorname{int} D\left(x_{0}\right)$ we have

$$
\begin{equation*}
f_{*}\left(x_{0}, y\right)>\sup _{S(y ; \lambda)} f_{*}^{\lambda}\left(x_{1}, u\right) f_{*}^{1-\lambda}\left(x_{2}, v\right) \tag{4}
\end{equation*}
$$

Suppose on the contrary that there could be found a $y_{0} \in \operatorname{int} D\left(x_{0}\right)$ such that

$$
f_{*}\left(x_{0}, y_{0}\right)=\sup _{S\left(y_{0} ; \lambda\right)} f_{*}^{\lambda}\left(x_{1}, u\right) f_{*}^{1-\lambda}\left(x_{2}, v\right)
$$

In this case $f_{*}\left(x_{0}, y_{0}\right)>0$ as $\left(x_{0}, y_{0}\right) \in \operatorname{ri} D$ (Lemma 4). According to Lemma 2 there exists a point $\left(u_{0}, v_{0}\right) \in S\left(y_{0} ; \lambda\right)$ such that

$$
u_{0} \in \bar{D}\left(x_{1}\right), \quad v_{0} \in \bar{D}\left(x_{2}\right) \quad \text { and } \quad f_{*}\left(x_{0}, y_{0}\right)=f_{*}^{\lambda}\left(x_{1}, u_{0}\right) f_{*}^{1-\lambda}\left(x_{2}, v_{0}\right)
$$

We have got a contradiction to Lemma 3. So, for all $y \in \operatorname{int} D\left(x_{0}\right)$ inequality (4) is valid.
From the definition of the function I and from Corollary 2 we get

$$
I\left(x_{0}\right)=\int_{A} f\left(x_{0}, y\right) d y=\int_{\pi \cap D\left(x_{0}\right)} f_{*}\left(x_{0}, y\right) d y
$$

Taking into account (4) and Theorem 3 of [1] we obtain:

$$
\begin{gathered}
\int_{\sum_{D\left(x_{0}\right)}} f_{*}\left(x_{0}, y\right) d y>\int_{A \cap D\left(x_{0}\right)} \sup _{S(y ; \lambda)} f_{*}^{\lambda}\left(x_{1}, u\right) f_{*}^{1-\lambda}\left(x_{2}, v\right) d y \geqq \\
\geqq \int_{D\left(x_{0}\right) \cap \bar{A}} \sup _{S(; \lambda)} f_{1}^{\lambda}(u) f_{2}^{1-\lambda}(v) d y=\int_{R^{m}} \sup _{S(; ; \lambda)} f_{1}^{\lambda}(u) f_{2}^{1-\lambda}(v) d y \geqq \\
\geqq\left[\int_{R^{m}} f_{1}(y) d y\right]^{\lambda}\left[\int_{R^{m}} f_{2}(y) d y\right]^{1-\lambda}=\left[\int_{\bar{A} D\left(x_{1}\right)} f_{*}\left(x_{1}, y\right) d y\right]^{\lambda}\left[\int_{A \cap D\left(x_{2}\right)} f_{*}\left(x_{2}, y\right) d y\right]^{1-\lambda}= \\
=\left[I\left(x_{1}\right)\right]^{\lambda}\left[I\left(x_{2}\right)\right]^{1-\lambda} .
\end{gathered}
$$

The theorem is proved.
Corollary 4. Let $x_{1}, x_{2} \in R^{n}$ and $0<\lambda<1$. If $\lambda x_{1}+(1-\lambda) x_{2} \in \operatorname{ri} B$, then the inequality

$$
\begin{equation*}
I\left(\lambda x_{1}+(1-\lambda) x_{2}\right)>\left[I\left(x_{1}\right)\right]^{\lambda}\left[I\left(x_{2}\right)\right]^{-\lambda} \tag{5}
\end{equation*}
$$

is valid.
Proof. It follows from Theorem 2 and Corollary 3.
In conclusion the author expresses his gratitude to G. G. Pestov for his help in carrying out the present work.

References

[1] A. Prékopa, On logarithmic concave measures and functions, Acta Sci. Math., 34 (1973), 335343.
[2] Р. Рокафеллар, Выпуклый анализ, Изд-во Мир (Москва, 1973).

