On intertwining dilations. II

T. ANDO, Z. CEAUŞESCU and C. FOIAŞ

1. In this paper we shall consider only (linear bounded) operators on (either all real, or all complex) Hilbert spaces. As usual, $L\left(\mathfrak{G}^{\prime}, \mathfrak{H}\right)$ will denote the space of all operators from \mathfrak{G}^{\prime} into \mathfrak{G} and by $L(\mathfrak{H})$ the space $L(\mathfrak{H}, \mathfrak{H})$. Let $T_{i} \in L\left(\mathfrak{H}_{i}\right)$ be a contraction; and let $U_{i} \in L\left(\Omega_{i}\right)$ be its minimal isometric dilation (i=1,2). Also, let us denote by $I\left(T_{1} ; T_{2}\right)$ the set of all operators $A \in L\left(\mathfrak{H}_{2}, \mathfrak{H}_{1}\right)$ intertwining T_{1} and T_{2} (i.e. $T_{1} A=A T_{2}$). By an exact intertwining dilation (EID) of $A \in I\left(T_{1} ; T_{2}\right)$ we mean any $B \in L\left(\Omega_{2}, \mathfrak{\Omega}_{1}\right)$ satisfying

$$
\begin{equation*}
P_{5_{1}} B=A P_{5_{2}}, \quad B \in I\left(U_{1} ; U_{2}\right) \quad \text { and } \quad\|B\|=\|A\|, \tag{1.1}
\end{equation*}
$$

(where $P_{\mathfrak{S}_{i}}$ is the orthogonal projection of $\mathfrak{\Omega}_{i}$ onto $\mathfrak{S}_{i}(i=1,2)$).
In order to state our sufficient and necessary conditions for the uniqueness of the EID of a contraction $\in I\left(T_{1} ; T_{2}\right)$ we also need the concept of the regularity of a factorization of a contraction as a product of two contractions (see [9], Ch. VII, $\S 3$ and [10]). Namely, for two contractions $A_{1} \in L(\mathfrak{H}, \mathfrak{B}), A_{2} \in L\left(\mathfrak{B}, \mathfrak{V}_{*}\right)$ the factorization of $A_{2} A_{1} \in L\left(\mathfrak{A}, \mathfrak{H}_{*}\right)$ as the product of A_{2} and A_{1} is called regular if

$$
\begin{equation*}
\left\{D_{A_{2}} A_{1} a \oplus D_{A_{1}} a: a \in \mathfrak{N}\right\}^{-}=\left(D_{A_{2}} \mathfrak{B}\right)^{-} \oplus\left(D_{A_{1}} \mathfrak{H}\right)^{-}, \tag{1.2}
\end{equation*}
$$

where, as usual, for any contraction C, D_{C} denotes the defect operator $\left(1-C^{*} C\right)^{1 / 2}$.
Our main result which was suggested by [1], [2] and [3] is given by the following
Theorem 1.1. Let $A \in L\left(\mathfrak{F}_{2}, \mathfrak{F}_{1}\right),\|A\|=1$, intertwine the contractions T_{1} and T_{2}. A sufficient and necessary condition for A to have a unique exact intertwining dilation is that at least one of the factorizations $A \cdot T_{2}$ or $T_{1} \cdot A$ (of $A T_{2}=T_{1} A$) be regular.

[^0]The next three sections are devoted to the proof of this theorem. Some complements and connections with results of [1], [2], [3] and [5] will be discussed in sections 5 and 6.

The authors take this opportunity to express their thanks to Prof. B. Sz.-Nagy for his stimulating interest in this research.
2. Let us start with some simple preliminaries. For a contraction $T_{i} \in L\left(\mathfrak{H}_{i}\right)$ we denote, as above, by $U_{i} \in L\left(\Omega_{i}\right)$ its minimal isometric dilation; and we shall denote by $\hat{U}_{i} \in L\left(\hat{\wedge}_{i}\right)$ the minimal unitary dilation of U_{i}, which is also the minimal unitary dilation of $T_{i}(i=1,2)$.

By the construction of \hat{U}_{i} (see [9], Ch. I and II) it is known that \hat{U}_{i} is the minimal unitary dilation and $U_{i}^{(*)}=\hat{U}_{i}^{-1} \mid \Omega_{i}^{(*)}$ is the minimal isometric dilation, of T_{i}^{*}, where

$$
\mathfrak{\Re}_{i}^{(*)}=\hat{\mathfrak{\Omega}}_{i} \ominus \bigvee_{n=0}^{\infty} U_{i}^{n} \mathscr{Q}_{i} \quad \text { and } \quad \mathfrak{L}_{i}=\left(\left(U_{i}-T_{i}\right) \mathfrak{Y}_{i}\right)^{-} \quad(i=1,2)
$$

Also, it is well known that any EID B of A has a unique extension $\hat{B} \in L\left(\hat{\Omega}_{2}, \hat{\Omega}_{1}\right)$ satisfying: $\hat{B} \hat{U}_{2}=\hat{U}_{1} \hat{B},\|\hat{B}\|=\|A\|$ and $\hat{P}_{\mathfrak{S}_{1}} \hat{B} \mid \mathfrak{G}_{2}=A$, where $\hat{P}_{\mathfrak{S}_{1}}$ denotes the orthogonal projection of $\hat{\mathfrak{S}}_{1}$ onto \mathfrak{S}_{1} ([9], Ch. II, §2). Now, it is easy to see that if $B_{*} \in$ $\in I\left(U_{2}^{(*)} ; U_{1}^{(*)}\right)$ is an EID of $A^{*} \in I\left(T_{2}^{*} ; T_{1}^{*}\right)$ then $\left(\hat{B}_{*}\right)^{*} \mid \AA_{2}$ is an EID of A, and conversely, if $B \in I\left(U_{1} ; U_{2}\right)$ is an EID of $A \in I\left(T_{1} ; T_{2}\right)$ then $(\hat{B})^{*} \mid \Omega_{1}^{*}$ is an EID of A^{*}. So we can conclude with the following

Lemma 2.1. $A \in I\left(T_{1} ; T_{2}\right)$ has a unique EID if and only if $A^{*} \in I\left(T_{2}^{*} ; T_{1}^{*}\right)$ has a unique EID.

Another simple fact is condensed in the following
Remark 2.1. With the above notations, let $A \in I\left(T_{1} ; T_{2}\right)$ be a contraction and let $\tilde{A}=A P_{5_{2}}$. Plainly, $\tilde{A} \in I\left(T_{1} ; U_{2}\right)$; and any EID of \tilde{A} is an EID of A and vice-versa (see [9], Ch. II, $\S 2$). Consequently, A has a unique EID if and only if \tilde{A} enjoys the same property.

Finally, in the sequel we shall also use the following
Lemma 2.2. Let $A \in L(\mathfrak{M}, \mathfrak{B}), T \in L(\mathfrak{N})$ be contractions and U the minimal isometric dilation of T on $\tilde{\mathfrak{U}}=\bigvee_{n=0}^{\infty} U^{n} \mathfrak{A}$. Let $\tilde{A}=A P \in L(\tilde{\mathfrak{U}}, \mathfrak{B})$, where P is the orthogonal projection of $\tilde{\mathfrak{U}}$ onto \mathfrak{M}. Then, the factorization $\tilde{A} \cdot U$ of $\tilde{A} U$ is regular if and only if so is the factorization $A \cdot T$ of $A T$.

Proof. Let us first observe that

$$
\begin{align*}
& \left\|D_{\tilde{A}}\left(\tilde{a}-U \tilde{a}^{\prime}\right)\right\|^{2}=\left\|\tilde{a}-U \tilde{a}^{\prime}\right\|^{2}-\left\|A P\left(\tilde{a}-U \tilde{a}^{\prime}\right)\right\|^{2}= \tag{2.1}\\
& \quad=\left\|D_{A} P\left(\tilde{a}-U \tilde{a}^{\prime}\right)\right\|^{2}+\left\|(I-P)\left(\tilde{a}-U \tilde{a}^{\prime}\right)\right\|^{2}= \\
& \quad=\left\|D_{A}\left(P \tilde{a}-T P \tilde{a}^{\prime}\right)\right\|^{2}+\left\|(I-P)\left(\tilde{a}-U \tilde{a}^{\prime}\right)\right\|^{2},
\end{align*}
$$

for all $\tilde{a}, \tilde{a}^{\prime} \in \tilde{\mathfrak{H}}$. Now, let us assume that the factorization $\tilde{A} \cdot U$ of $\tilde{A} U$ is regular, i.e.

$$
\begin{equation*}
\left(D_{A} U \tilde{\mathfrak{A}}\right)^{-}=\left(D_{\tilde{A}} \tilde{\mathfrak{Q}}\right)^{-} \tag{2.2}
\end{equation*}
$$

For any $a, a^{\prime} \in \mathfrak{N}$, we consider

$$
\begin{equation*}
\tilde{a}=a+(U-T) a^{\prime} \in \tilde{\mathfrak{H}} . \tag{2.3}
\end{equation*}
$$

Then, from (2.2) it.follows that there exists a sequence $\left(\tilde{a}_{j}\right)_{j=1}^{\infty} \subset \tilde{\mathfrak{A}}$ such that

$$
\begin{equation*}
\left\|D_{\tilde{A}}\left(\tilde{a}-U \tilde{a}_{j}\right)\right\| \rightarrow 0 \quad(j \rightarrow \infty) \tag{2.4}
\end{equation*}
$$

Also, for \tilde{a} and \tilde{a}_{j} satisfying (2.3) and (2.4), we have, by (2.1)

$$
\begin{aligned}
\left\|D_{\tilde{A}}\left(\tilde{a}-U \tilde{a}_{j}\right)\right\|^{2} & =\left\|D_{A}\left(a-T P \tilde{a}_{j}\right)\right\|^{2}+\left\|(U-T) a^{\prime}-(I-P) U \tilde{a}_{j}\right\|^{2}= \\
& =\| D_{A}\left(a-T P \tilde{a}_{j}\left\|^{2}+\right\|(U-T)\left(a^{\prime}-P \tilde{a}_{j}\right)\left\|^{2}+\right\|(I-P) U(I-P) \tilde{a}_{j} \|^{2}=\right. \\
& =\left\|D_{A}\left(a-T P \tilde{a}_{j}\right)\right\|^{2}+\left\|D_{T}\left(a^{\prime}-P \tilde{a}_{j}\right)\right\|^{2}+\left\|(I-P) \tilde{a}_{j}\right\|^{2} .
\end{aligned}
$$

From this and from (2.4) we infer that

$$
\begin{equation*}
\left\{D_{A} T a \oplus D_{T} a: a \in \mathfrak{H}\right\}^{-}=\left(D_{A} \mathfrak{U}\right)^{-} \oplus\left(D_{T} \mathfrak{H}\right)^{-}, \tag{2.5}
\end{equation*}
$$

i.e., the factorization $A \cdot T$ of $A T$ is regular. Conversely, let us assume that (2.5) holds. Hence, for any $a, a^{\prime} \in \mathfrak{A}$ there exists $\left(a_{j}\right)_{j=1}^{\infty} \subset \mathfrak{H}$ such that

$$
\begin{equation*}
\left\|D_{A}\left(a-T a_{j}\right)\right\|^{2}+\left\|D_{T}\left(a^{\prime}-a_{j}\right)\right\|^{2} \rightarrow 0 \quad(j \rightarrow \infty) \tag{2.6}
\end{equation*}
$$

Then, for any $\tilde{a} \in \tilde{\mathfrak{I}}$ of the form

$$
\begin{equation*}
\tilde{a}=a+(U-T) a^{\prime}+\tilde{a}^{\prime \prime} \tag{2.7}
\end{equation*}
$$

where $a, a^{\prime} \in \mathfrak{H}$ and $\tilde{a}^{\prime \prime} \in U(I-P) \tilde{\mathfrak{M}}$, consider the elements

$$
\begin{equation*}
\tilde{a}_{j}=a_{j}+U^{*} \tilde{a}^{\prime \prime} \in \tilde{\mathfrak{N}} \quad(j=1,2, \ldots), \tag{2.8}
\end{equation*}
$$

where $\left(a_{j}\right)_{j=1}^{\infty} \subset \mathfrak{H}$ is the sequence occurring in (2.6). By virtue of (2.1) we have for \tilde{a} and \tilde{a}_{j} given in (2.7) and (2.8)

$$
\begin{aligned}
\left\|D_{\tilde{A}}\left(\tilde{a}-U \tilde{a}_{j}\right)\right\|^{2} & =\left\|D_{A}\left(a-T a_{j}\right)\right\|^{2}+\left\|(U-T) a^{\prime}+\tilde{a}^{\prime \prime}-(I-P) U \tilde{a}_{j}\right\|^{2}= \\
& =\left\|D_{A}\left(a-T a_{j}\right)\right\|^{2}+\left\|(U-T)\left(a^{\prime}-a_{j}\right)\right\|^{2}+\left\|\tilde{a}^{\prime \prime}-(I-P) U U^{*} \tilde{a}^{\prime \prime}\right\|^{2}= \\
& =\left\|D_{A}\left(a-T a_{j}\right)\right\|^{2}+\left\|D_{T}\left(a^{\prime}-a_{j}\right)\right\|^{2} .
\end{aligned}
$$

Thus, from (2.6), it follows that $D_{\tilde{A}} \tilde{a} \in\left(D_{\tilde{A}} U \tilde{\mathfrak{Q}}\right)^{-}$, for any \tilde{a} of the form (2.7). Since the set of these \tilde{a} is dense in $\tilde{\mathfrak{U}}$, (2.2) follows at once.

Remark 2.2. In the sequel we shall also use the following characterization of regular factorization. Namely, (1.2) is equivalent to any one of the relations

$$
\begin{equation*}
D_{A_{2}} \mathfrak{B} \cap \operatorname{ker} A_{1}^{*}=\{0\} \quad \text { and } \quad D_{A_{1}} \mathfrak{A} \cap A_{1}^{*} D_{A_{2}} \mathfrak{B}=\{0\} . \tag{2.9}
\end{equation*}
$$

For the equivalence of (1.2) and (2.9) we refer to [6] and [10]. On the other hand, if (2.9) holds then the first relation of (2.10) follows from the inclusion ker $A_{1}^{*} \subset D_{A_{1}^{*}} \mathfrak{B}$ while if $D_{A_{1}} a=A_{1}^{*} b$ for some $b \in D_{A_{2}} \mathfrak{B}$ then by virtue of the relation $A_{1} D_{A_{1}}=D_{A_{1}^{*}} A_{1}$ we have

$$
b=D_{\Lambda_{\mathbf{1}}^{*}}^{2} b+A_{1} A_{1}^{*} b=D_{A_{1}^{*}}\left(D_{A_{1}^{*}} b+A_{1} a\right),
$$

hence $b=0$. Thus (2.9) implies (2.10). Conversely if (2.10) holds and if $D_{A_{2}} b=D_{A_{1}^{*}} b^{\prime}$ for some $b, b^{\prime} \in \mathfrak{B}$, then $A_{1}^{*} D_{A_{2}} b=D_{A_{1}} A_{1}^{*} b^{\prime}$, therefore $D_{A_{2}} b=0$, i.e. (2.9) holds too.

Remark 2.3. Let $A \in L(\mathfrak{A}, \mathfrak{B}), \tilde{A} \in L(\tilde{\mathfrak{I}}, \mathfrak{B})$ be as in Lemma 2.2 and let $T^{\prime} \in L(\mathfrak{B})$ be a contraction. Then, since $D_{\bar{A}^{*}}=D_{A^{*}}$, it is obvious (by virtue of the preceding remark) that the factorization $T^{\prime} \cdot \tilde{A}$ of $T^{\prime} \tilde{A}$ is regular if and only if so is the factorization $T^{\prime} \cdot A$ of $T^{\prime} A$.
3. In order to prove the sufficiency of the condition in Theorem 1.1, we shall firstly consider the case when T_{2} is an isometry. For the simplification of the notations, we shall introduce the following notations: $\mathfrak{G}_{1}=\mathfrak{S}_{1}, T_{1}=T, U \in L(\mathfrak{\Omega})$ - the minimal isometric dilation of T, and $\mathfrak{S}_{2}=\mathfrak{W}, T_{2}=Z$.

Let us also denote by $P_{(n)}$ the orthogonal projection of Ω onto $\mathfrak{Y}_{(n)}=$ $\mathfrak{H} \oplus \mathfrak{L} \oplus \ldots \oplus U^{n-1} \mathfrak{L}$, where $\quad \mathfrak{L}=((U-T) \mathfrak{S})^{-}, P_{(0)}=P_{\mathfrak{S}}$, and $\quad T_{(n)}=P_{(n)} U \mid P_{(n)} \mathfrak{A}$ $(n=1,2, \ldots), T_{(0)}=T$; also for any $A \in I(T ; Z),\|A\|=1$, let us set

$$
\begin{equation*}
\mathscr{B}_{T_{(1)}}(A)=\left\{B_{1} \in L\left(\mathfrak{G}, \mathfrak{G}_{(1)}\right): T_{(1)} B_{1}=B_{1} Z,\left\|B_{1}\right\|=1, P_{\mathfrak{5}} B_{1} \doteq A\right\} . \tag{3.1}
\end{equation*}
$$

In order to show that $\mathscr{B}_{T_{(1)}}(A)$ is not empty we recall the first step of the construction of an EID of A (see [9], Ch. II, § 2). We have to determine an operator of the form

$$
B_{1}=\left[\begin{array}{l}
A \tag{3.2}\\
X
\end{array}\right]: \mathfrak{G} \rightarrow \mathfrak{Y}_{(1)}=\stackrel{\mathfrak{Y}}{\underset{\mathscr{L}}{ }}
$$

satisfying the conditions

$$
\begin{gather*}
\|X g\| \leqq\left\|D_{A} g\right\| \quad(g \in \mathfrak{G}) \tag{3.3}\\
T_{(1)} B_{1}=B_{1} Z \tag{3.4}
\end{gather*}
$$

where

$$
T_{(1)}=\left[\begin{array}{cc}
T & 0 \\
U-T & 0
\end{array}\right]: \begin{gathered}
\underset{\mathscr{E}}{\mathfrak{G}} \rightarrow \underset{\mathfrak{Q}}{\stackrel{\mathfrak{H}}{\oplus}} .
\end{gathered}
$$

The last condition is equivalent to

$$
(U-T) A=X Z \quad(\text { and } T A=A Z)
$$

Since the space \mathfrak{L} can be identified with $\left(D_{T} \mathfrak{G}\right)^{-}$and then the operator corresponding to $U-T$ is $D_{T},\left(3.4^{\prime}\right)$ becomes

$$
D_{T} A=X Z
$$

here X is an operator from $\left(5\right.$ into $\left(D_{T} \mathfrak{5}\right)^{-}$(namely, the operator corresponding to the 'original operator X '). Conditions (3.3) and (3.4") are equivalent to the existence of a contraction $C:\left(D_{A}(\mathfrak{F})^{-} \rightarrow\left(D_{T} \mathfrak{H}\right)^{-}\right.$satisfying

$$
\begin{gather*}
X=C D_{A} \tag{3.5}\\
D_{T} A=C D_{A} Z \tag{3.6}
\end{gather*}
$$

Since $\left\|D_{T} A g\right\|^{2} \leqq\left\|D_{A} Z g\right\|^{2}$ for all $g \in \mathfrak{G}$, it results that there exists a contraction defined on $\left(D_{A} Z(5)\right)^{-}$such that (3.6) holds. Obviously, this can be extended to a contraction $C:\left(D_{A}(\mathfrak{W})^{-} \rightarrow\left(D_{T} \mathfrak{F}\right)^{-}\right.$. Then, if we define by (3.5) an operator $X:\left(\mathfrak{G} \rightarrow\left(D_{T} \mathfrak{H}\right)^{-}\right.$, it is clear that $B_{1}=\left[\begin{array}{l}A \\ X\end{array}\right] \in \mathscr{B}_{T_{(1)}}(A)$.

By recurrence, we define, for every $n \geqq 1$,

$$
\begin{equation*}
\mathscr{B}_{T_{(n)}}\left(B_{n-1}\right)=\left\{B_{n} \in L\left(\mathscr{G}, \mathfrak{S}_{(n)}\right): T_{(n)} B_{n}=B_{n} Z,\left\|B_{n}\right\|=1, P_{\mathfrak{S}_{(n-1)}} B_{n}=B_{n-1}\right\}, \tag{3.7}
\end{equation*}
$$ where $B_{0}=A$.

Remark 3.1. It is easy to show that if $B_{n} \in \mathscr{B}_{T_{(n)}}\left(B_{n-1}\right)(n=1,2, \ldots)$ and if all B_{n} 's are considered in $L(\mathscr{5}, \mathfrak{R})$, then the strong limit $B=\lim _{n \rightarrow \infty} B_{n}$ exists; obviously, B is a dilation of A with $\|B\|=1$. Also, since U is the strong limit of ($\left.T_{(n)} P_{(n)}\right)_{n=1}^{\infty}$, we clearly have $B \in I(U ; Z)$. Thus, B defined as the strong limit of $\left(B_{n}\right)_{n=1}^{\infty}$, where $B_{n} \in \mathscr{B}_{T_{(n)}}\left(B_{n-1}\right)(n=1,2, \ldots)$, is an EID of A. Conversely, for any EID B of A, the compression $B_{n}=P_{(n)} B$ belongs to $\mathscr{B}_{r_{(n)}}\left(B_{n-1}\right)$ and B is the strong limit of $\left.\left(B_{n}\right)_{n=1}^{\infty} \cdot{ }^{1}\right)$

Remark 3.2. It is plain that by the canonical identifications we have $\left(T_{(n)}\right)_{(1)}=$ $=T_{(n+1)}$ and that for any $B_{n} \in \mathscr{B}_{T_{(n)}}\left(B_{n-1}\right)$
(for all $n=1,2, \ldots$).

$$
\mathscr{B}_{T_{(n+1)}}\left(B_{n}\right)=\mathscr{B}_{\left(T_{(n))_{(1)}}\right.}\left(B_{n}\right)
$$

Using the above remarks we shall obtain
Lemma 3.1. A sufficient condition in order that $A \in I(T ; Z),\|A\|=1$, have a unique EID is

$$
\begin{equation*}
\left(D_{A} Z(\mathfrak{5})^{-}=\left(D_{A}(\mathfrak{5})^{-} .\right.\right. \tag{3.8}
\end{equation*}
$$

Proof. We shall show by induction that, by virtue of (3.8), $B_{n} \in \mathscr{B}_{T_{(n)}}\left(B_{n-1}\right)$ (where $\mathscr{B}_{T_{(n)}}\left(B_{n-1}\right)$ is defined by (3.7)) is uniquely determined by A for every $n \geqq 1$. First, it is obvious by the construction of $B_{1}=\binom{A}{X} \in \mathscr{B}_{T_{(1)}}(A)$, where X is

[^1]defined by (3.5), that the contraction C of this formula is uniquely defined on ($D_{A} Z(\mathfrak{b})^{-}$by (3.6); therefore if (3.8) holds, then C is uniquely determined on the whole $\left(D_{A}(5)\right)^{-}$. Consequently X, and thus B_{1}, is uniquely determined by $A=B_{0}$. From here, by the construction of $B_{n} \in \mathscr{B}_{T_{(n)}}\left(B_{n-1}\right)(n=1,2, \ldots)$ and by virtue of Remark 3.2, we infer the following sufficient condition that B_{n} should be uniquely determined by its preceding B_{n-1} :
\[

$$
\begin{equation*}
\left(D_{B_{n-1}} Z(G)^{-}=\left(D_{B_{n-1}}(\mathfrak{G})^{-} .\right.\right. \tag{3.9}
\end{equation*}
$$

\]

Also we notice that

$$
\begin{aligned}
\left\|D_{B_{n}}\left(g-Z g^{\prime}\right)\right\|^{2} & =\left\|g-Z g^{\prime}\right\|^{2}-\left\|B_{n}\left(g-Z g^{\prime}\right)\right\|^{2} \leqq \\
& \leqq\left\|g-Z g^{\prime}\right\|^{2}-\left\|P_{\left.5_{(n-1)}\right)} B_{n}\left(g-Z g^{\prime}\right)\right\|^{2}=\left\|D_{B_{n-1}}\left(g-Z g^{\prime}\right)\right\|^{2} \leqq \ldots \\
& \ldots \leqq\left\|D_{B_{1}}\left(g-Z g^{\prime}\right)\right\|^{2} \leqq\left\|D_{A}\left(g-Z g^{\prime}\right)\right\|^{2}
\end{aligned}
$$

for all $g, g^{\prime} \in \mathfrak{G}(n=1,2, \ldots)$. Hence, if (3.8) holds, (3.9) holds too, for all $n=1,2, \ldots$. Now, let us assume that B_{n-1} is uniquely determined by A. Then, since by the above remark B_{n} is uniquely determined by B_{n-1}, it readily follows by our induction hypothesis that it is uniquely determined by A. From this and by virtue of Remark 3.1 we infer that A has a unique EID.

Now, returning to the original situation we can easily prove that the regularity condition imposed on one of the factorizations $A \cdot T_{2}$ or $T_{1} \cdot A$ implies the uniqueness of the EID of A. First, let us assume that the factorization $A \cdot T_{2}$ of $A T_{2}$ is regular. Then, by Lemma 2.2, the factorization $\tilde{A} \cdot U_{2}$ of $\tilde{A} U_{2}$ is regular, and then, by Lemma 3.1, \tilde{A} has a unique EID. Thus, by Remark 2.1, A also has a unique EID. Now, assume that the factorization $T_{1} \cdot A$ of $T_{1} A$ is regular. Then, it is known ([9], Ch. VII, §2) that the factorization $A^{*} \cdot T_{1}^{*}$ is regular, and thus, by the same rasons as above, A^{*} has a unique EID. Consequently, by virtue of Lemma 2.1, so has A.
4. For the remaining part of Theorem 1.1, we have only to prove that if none of the factorizations $T_{1} \cdot A$ and $A \cdot T_{2}$ (of $T_{1} A=A T_{2}$) is regular, then the contraction A has at least two different EID's.

By virtue of Lemma 2.2 and Remark 2.3, our present assumption concerning the factorizations $T_{1} \cdot A$ and $A \cdot T_{2}$ implies that the factorizations $T_{1} \cdot \tilde{A}$ and $\tilde{A} \cdot U_{2}$, where $\tilde{A}=A P_{\mathfrak{5}_{2}} \in I\left(T_{1} ; U_{2}\right)$ are not regular either. Also, by virtue of Remarks 2.1 and 3.1 , it suffices to show that if the above conditions hold then $\mathscr{B}_{T_{(1)}}(\tilde{A})$ (defined by (3.1)) is not a singleton. We must show, by virtue of (3.2), (3.5), and (3.6), that the contraction C defined by

$$
\begin{equation*}
C D_{\tilde{A}} U_{2}=D_{T_{1}} \tilde{A} \tag{4.1}
\end{equation*}
$$

has at least one contractive extension $C^{\prime}:\left(D_{\bar{\lambda}} \mathcal{R}_{2}\right)^{-} \rightarrow\left(D_{T_{1}} \mathfrak{H}_{1}\right)^{-}$such that

$$
\begin{equation*}
C^{\prime} \mid\left(D_{A} \Omega_{2}\right)^{-} \ominus\left(D_{\bar{A}} U_{2} \Omega_{2}\right)^{-} \neq 0 \tag{4.2}
\end{equation*}
$$

Since the factorization $T_{1} \cdot \tilde{A}$ does not satisfy (2.9), there exist $h_{0} \in\left(D_{T_{1}} \mathfrak{S}_{1}\right)^{-}$and $k_{0} \in \mathfrak{F}_{2}$ such that

$$
\begin{equation*}
D_{T_{1}} h_{0}=D_{\tilde{A}^{*}} k_{0} \neq 0 ; \tag{4.3}
\end{equation*}
$$

also, since the factorization $\tilde{A} \cdot U_{2}$ does not satisfy (1.2), there exists $0 \neq d_{0} \in\left(D_{A} \Omega_{2}\right)^{-} \Theta$ $\Theta\left(D_{\tilde{A}} U_{2} \mathcal{S}_{2}\right)^{-}$, where we can suppose that $\left\|h_{0}\right\|=1$ and $\left\|d_{0}\right\|=1$. Now, we define $C^{\prime}:\left(D_{\bar{A}} \mathfrak{R}_{2}\right)^{-} \rightarrow\left(D_{T_{1}} \mathfrak{H}_{1}\right)^{-}$by

$$
\begin{equation*}
C^{\prime}=C Q+\theta d_{0}^{*} \otimes h_{0} \tag{4.4}
\end{equation*}
$$

where Q is the orthogonal projection of $\left(D_{\tilde{A}} \Omega_{2}\right)^{-}$onto $\left(D_{\tilde{A}} U_{2} \Omega_{2}\right)^{-}, d_{0}^{*} \otimes h_{0}$ is the operator defined on $\left(D_{A} \Re_{2}\right)^{-}$by $\left(d_{0}^{*} \otimes h_{0}\right) d=\left(d, d_{0}\right) h_{0}$, and $0<\theta<1$ will be chosen later. Obviously, $C^{\prime} d_{0} \neq 0$, thus (4.2) holds. Also, we shall show that θ can be chosen such that C^{\prime} defined by (4.4) be a contraction, i.e.

$$
\left\|C Q d+\theta\left((I-Q) d, d_{0}\right) h_{0}\right\| \leqq\|d\|
$$

or equivalently,

$$
\begin{gather*}
\|C Q d\|^{2}+2 \theta \operatorname{Re}\left(C Q d, h_{0}\right)\left(\overline{(I-Q) d, d_{0}}\right)+\theta^{2} \|\left.\left((I-Q) d, d_{0}\right)\right|^{2} \leqq \tag{4.5}\\
\leqq\|Q d\|^{2}+\|(I-Q) d\|^{2}, \text { for all } d \in\left(D_{\bar{A}} \Omega_{2}\right)^{-} .
\end{gather*}
$$

Obviously, it is enough to verify (4.5) for d of the form $D_{A} U_{2} k+\lambda d_{0}\left(k \in \boldsymbol{\Omega}_{2}, \lambda \in \mathbf{C}\right)$, for which (4.5) becomes

$$
\left\|C D_{\bar{A}} U_{2} k\right\|^{2}+2 \theta \operatorname{Re} \bar{\lambda}\left(C D_{\bar{A}} U_{2} k, h_{0}\right)+\theta^{2}|\lambda|^{2} \leqq\left\|D_{\bar{A}} U_{2} k\right\|^{2}+|\lambda|^{2},
$$

or according to (4.1),

$$
\begin{gather*}
2 \theta \operatorname{Re} \bar{\lambda}\left(D_{T_{1}} \tilde{A} k, h_{0}\right) \leqq\left\|D_{\tilde{A}} U_{2} k\right\|^{2}-\left\|D_{T_{1}} \tilde{A} k\right\|^{2}+|\lambda|^{2}\left(1-\theta^{2}\right)= \tag{4.6}\\
=\left\|D_{\tilde{A}} k\right\|^{2}+|\lambda|^{2}\left(1-\theta^{2}\right) \quad\left(k \in \Omega_{2}, \lambda \in \mathbf{C}\right) .
\end{gather*}
$$

It is elementary to deduce that (4.6) is true if

$$
\begin{equation*}
\left|\left(D_{T_{1}} \tilde{A} k, h_{0}\right)\right|^{2} \leqq\left\|D_{\tilde{A}} k\right\|^{2}\left(1-\theta^{2}\right) \theta^{-2} \quad\left(k \in \Omega_{2}\right) \tag{4.7}
\end{equation*}
$$

Since by (4.3) we have $\left(D_{T_{1}} \tilde{A} k, h_{0}\right)=\left(D_{\tilde{A}} k, \tilde{A}^{*} k_{0}\right)$ for all $k \in \boldsymbol{R}_{2}$, it is easy to prove that (4.7) will be true if we choose $0<\theta<\left(1+\left\|\tilde{A}^{*} k_{0}\right\|^{2}\right)^{-1 / 2}$. This concludes the proof of Theorem 1.1.

Remark 4.1. Plainly, the whole proof in this section works for any contraction $A \in I\left(T_{1} ; T_{2}\right)$. Also, if for such an A, one of the factorizations $A \cdot T_{2}$ and $T_{1} \cdot A$ of $T_{1} A=A T_{2}$ is regular then either $\|A\|=1$ or T_{2} is a coisometry or T_{1} is an isometry. By virtue of Theorem 1.1 and Lemma 2.1 we infer that in any of these cases A has exactly one contractive intertwining dilation $\in I\left(U_{1} ; U_{2}\right)$. Thus, we can reformulate Theorem 1.1 in the following, slightly more general form: A contraction $A \in I\left(T_{1} ; T_{2}\right)$ has a unique contractive intertwining dilation $\in I\left(U_{1} ; U_{2}\right)$ if and only if at least one of the factorizations $T_{1} \cdot A$ and $A \cdot T_{2}$ of $T_{1} A=A T_{2}$ is regular.

Remark 4.2. We give an example showing that it is not necessary that both factorizations $A \cdot T_{2}$ and $T_{1} \cdot A$ be regular in order to have the uniqueness property of the EID of A.

To this purpose we define $A \in L\left(l^{2}\right)$, by

$$
A\left(c_{0}, c_{1}, \ldots, c_{n}, \ldots\right)=\left(c_{0},\left(1-d_{1}^{2}\right)^{1 / 2} c_{1}, \ldots\left(1-d_{n}^{2}\right)^{1 / 2} c_{n}, \ldots\right)
$$

where $x=\left(c_{n}\right)_{n=0}^{\infty} \in l^{2}$ and $0<d_{n}<d_{n+1}<1 \quad(n=1,2, \ldots)$ are fixed. Also we denote by $T \in L\left(l^{2}\right)$ the weighted shift

$$
T\left(c_{0}, c_{1}, \ldots, c_{n}, \ldots\right)=\left(0,\left(1-d_{1}^{2}\right)^{1 / 2} c_{0}, \ldots,\left(1-d_{n}^{2}\right)^{1 / 2}\left(1-d_{n-1}^{2}\right)^{-1 / 2} c_{n-1}, \ldots\right)
$$

and by U the unilateral shift

$$
U\left(c_{0}, c_{1}, \ldots, c_{n}, \ldots\right)=\left(0, c_{0}, \ldots, c_{n-1}, \ldots\right)
$$

on l^{2}. Then, clearly, A and T are contractions on l^{2} and U is an isometry. Also, it is easy to verify that $T A=A U, A^{*}=A,\|A\|=1$ and

$$
T^{*}\left(c_{0}, c_{1}, \ldots, c_{n}, \ldots\right)=\left(\left(1-d_{1}^{2}\right)^{1 / 2} c_{1}, \ldots,\left(1-d_{n+1}^{2}\right)^{1 / 2}\left(1-d_{n}^{2}\right)^{-1 / 2} c_{n+1}, \ldots\right)
$$

Then, we obtain

$$
\begin{aligned}
& D_{A}\left(c_{0}, c_{1}, \ldots, c_{n}, \ldots\right)=\left(0, d_{1} c_{1}, \ldots, d_{n} c_{n}, \ldots\right) \\
& D_{T}\left(c_{0}, c_{1}, \ldots, c_{n}, \ldots\right)= \\
= & \left(d_{1} c_{0},\left(d_{2}^{2}-d_{1}^{2}\right)^{1 / 2}\left(1-d_{1}^{2}\right)^{-1 / 2} c_{1}, \ldots,\left(d_{n+1}^{2}-d_{n}^{2}\right)^{1 / 2}\left(1-d_{n}^{2}\right)^{-1 / 2} c_{n}, \ldots\right)
\end{aligned}
$$

Whence, obviously

$$
\begin{gather*}
D_{A} l^{2} \cap D_{U^{*}} l^{2}=D_{A} l^{2} \cap \operatorname{ker} U^{*}=\{0\}, \tag{4.8}\\
D_{T} l^{2} \cap D_{A^{*}} l^{2} \ni(0,1,0, \ldots) . \tag{4.9}
\end{gather*}
$$

Therefore, by virtue of Remark 2.2, we infer from (4.8), respectively from (4.9), that the factorization $A \cdot U$, respectively $T \cdot A$, (of $A U=T A$) is regular, respectively nonregular.
5. Let us notice that Theorem 1.1 has the following direct consequences:

Corollary 5.1. Let A and T be double commuting (i.e. $A T=T A, A T^{*}=T^{*} A$) contractions on $\mathfrak{j},\|A\|=1$. Then A has a unique exact intertwining dilation (with respect to $T_{1}=T=T_{2}$) if and only if there is a decomposition $\mathfrak{S}=\mathfrak{S}_{A} \oplus \mathfrak{S}_{T}$ reducing A and T, such that $A \mid \mathfrak{S}_{A}$ and $T^{*} \mid \mathfrak{H}_{T}$ are isometric or that $A^{*} \mid \mathfrak{S}_{A}$ and $T \mid \mathfrak{H}_{T}$ are isometric.

Indeed, the splitting properties obviously imply

$$
\begin{equation*}
D_{A} D_{T^{*}}=D_{T^{*}} D_{A}=0 \tag{5.1}
\end{equation*}
$$

respectively

$$
\begin{equation*}
D_{T} D_{A^{*}}=D_{A^{*}} D_{T}=0 \tag{5.2}
\end{equation*}
$$

Conversely, if (5.1), respectively (5.2), is satisfied, then defining \mathfrak{H}_{A} as the smallest (linear closed) subspace of \mathfrak{G} reducing T and containing $D_{T^{*}} \mathfrak{H}$, respectively reducing A and containing $D_{A^{*}} \mathfrak{H}$, we obtain the splitting properties stated above.

By the double commuting property, (5.1), respectively (5.2), is equivalent to

$$
D_{A} \mathfrak{G} \cap D_{T^{*}} \mathfrak{H}=\{0\}, \quad \text { respectively } \quad D_{T} \mathfrak{G} \cap D_{A^{*}} \mathfrak{G}=\{0\}
$$

thus, by Remark 2.2 , to the regularity of the factorization $A \cdot T$, respectively $T \cdot A$, of $A T=T A$.

Corollary 5.2. Lět $A, T \in L(\mathfrak{H})$ be commuting contractions. Then A has a unique contractive intertwining dilation (with respect to T) if and only if T has a unique contractive intertwining dilation (with respect to A).

Indeed, by Remark 4.1 each of the two assertions above is equivalent to the regularity of at least one of the factorizations $A \cdot T$ or $T \cdot A$ of $A T=T A$.

Corollary 5.3. Let $A \in L\left(\mathfrak{H}_{2}, \mathfrak{S}_{1}\right),\|A\|=1$, intertwine the coisometry T_{1} and the isometry T_{2}. Then A has a unique exact intertwining dilation if and only if at least one of the following two conditions holds:

$$
D_{A} \mathfrak{H}_{2} \cap \operatorname{ker} T_{2}^{*}=\{0\}, \quad D_{A^{*}} \mathfrak{S}_{1} \cap \operatorname{ker} T_{1}=\{0\}
$$

Indeed, under the present assumptions, these conditions are equivalent to the regularity of the factorizations $A \cdot T_{2}$, respectively $T_{1} \cdot A$ of $A T_{2}=T_{1} A$ (see Remark 2.2).

Remark 5.1. The preceding corollary is a slight extension of the uniqueness theorem of Adamjan, Arov and Krein, [2] Theorem 3.1, which concerns the case when T_{2} and T_{1}^{*} are unilateral shifts. However, in case $T_{2} \in C_{\cdot 0}, T_{1} \in C_{0}$. (i.e. if $T_{2}^{* n} \rightarrow 0, T_{1}^{n} \rightarrow 0$ strongly, for $n \rightarrow \infty$) our Theorem 1.1 is an easy consequence of [2], Theorem 3.1 and [9], Ch. II, Theorem 1.2.

Let us also indicate how one of the main results of [3] follows from our Theorem 1.1. To this purpose we recall that according to [3], a contraction $A \in L\left(\mathfrak{S}_{2}, \mathfrak{H}_{1}\right)$ is said to Harnack-dominate a contraction $B \in L\left(\mathfrak{H}_{2}, \mathfrak{H}_{1}\right)$ if there exists a positive constant γ such that

$$
\begin{equation*}
\left\|D_{B} h\right\| \leqq \gamma\left\|D_{A} h\right\| \quad \text { and } \quad\|(B-A) h\| \leqq \gamma\left\|D_{A} h\right\| \quad\left(h \in \mathfrak{S}_{2}\right) \tag{5.3}
\end{equation*}
$$

Plainly, relations (5.3) imply that

$$
\begin{equation*}
D_{B} \mathfrak{H}_{2} \subset D_{A} \mathfrak{H}_{2} \quad \text { and } \quad(B-A)^{*} \mathfrak{H}_{1} \subset D_{A} \mathfrak{H}_{2} \tag{5.4}
\end{equation*}
$$

Corollary 5.4. ([3], Theorem 3.2) Let $A, B \in L\left(\mathfrak{G}_{2}, \mathfrak{S}_{1}\right)$ intertwine the contractions T_{1} and $T_{2},\|A\|=1$, and such that A Harnack-dominates B. Then if A has a unique EID so has B.

Proof. By Theorem 1.1, one of the factorizations $A \cdot T_{2}$ and $T_{1} \cdot A$ is regular. If the first one is regular, then from (2.9) (with $A_{2}=A, A_{1}=T$ and $A_{2}=B, A_{1}=T$) and from the first relation (5.4) we readily infer that the factorization $B \cdot T_{2}$ is regular, thus by Theorem 1.1, B has a unique EID. In case $T_{1} \cdot A$ is regular, from (2.10) (with $A_{2}=T_{1}, A_{1}=A$) we obtain

$$
\begin{equation*}
D_{T_{1}} \mathfrak{H}_{1} \cap \operatorname{ker} A^{*}=\{0\}, \quad D_{A} \mathfrak{H}_{2} \cap A^{*} D_{T_{1}} \mathfrak{H}_{1}=\{0\} \tag{5.5}
\end{equation*}
$$

If

$$
B^{*} D_{T_{1}} h_{1}=0 \quad \text { and } \quad D_{B} h_{2}=B^{*} D_{T_{1}} h_{1}^{\prime}
$$

for some $h_{1}, h_{1}^{\prime} \in \mathfrak{S}_{1}, h_{2} \in \mathfrak{S}_{2}$, then from (5.4) we infer at once that

$$
A^{*} D_{T_{1}} h_{1} \in D_{A} \mathfrak{S}_{2} \quad \text { and } \quad A^{*} D_{T_{1}} h_{1}^{\prime} \in D_{A} \mathfrak{H}_{2}
$$

by (5.5), it follows $D_{T_{1}} h_{1}=0=D_{T_{1}} h_{1}^{\prime}$. We conclude that $A_{2}=T_{1}, A_{1}=B$ satisfy (2.10), thus that the factorization $T_{1} \cdot B$ is regular. Since (5.3) also implies $\|B\|=1$, the proof is achieved by referring to Theorem 1.1.
6. A less direct consequence of our preceding results is the following

Proposition 6.1. Let $A \in L\left(\mathfrak{H}_{2}, \mathfrak{H}_{1}\right),\|A\|=1$, intertwine the contractions $T_{1} \in$ $\in L\left(\mathfrak{H}_{1}\right)$ and $T_{2} \in L\left(\mathfrak{H}_{2}\right)$ and let \mathfrak{M} be a subspace of \mathfrak{S}_{2}, cyclic for the minimal unitary dilation U_{2} of T_{2}. If, moreover, \mathfrak{M} enjoys also the property

$$
\begin{equation*}
D_{A} \mathfrak{P} \oplus\{0\} \subset\left\{D_{A} T_{2} h \oplus D_{T_{2}} h: h \in \mathfrak{P}\right\}^{-} \tag{6.1}
\end{equation*}
$$

then A has a unique exact intertwining dilation.
Proof. We shall use the notations of the preceding sections. In particular we set $\tilde{A}=A P_{5_{2}}$. Also we set

$$
\begin{equation*}
\mathfrak{\Re}_{2}^{\prime}=\bigvee_{n=0}^{\infty} U_{2}^{n} \mathfrak{M} \tag{6.2}
\end{equation*}
$$

and

$$
U_{2}^{\prime}=U_{2}\left|\Omega_{2}^{\prime}, \quad \tilde{A}^{\prime}=\tilde{A}\right| \Omega_{2}^{\prime}
$$

For elements $h \in \mathfrak{M}$ and $k \in \mathfrak{R}_{2}^{\prime}$ of the form

$$
\begin{equation*}
k=\sum_{n=0}^{\infty} U_{2}^{n} k_{n}, \tag{6.3}
\end{equation*}
$$

where $k_{n} \in \mathfrak{M}(n=0,1,2 ; \ldots)$ and only a finite number of k_{n} 's are $\neq 0$, we have

$$
\begin{align*}
\| D_{\bar{A}^{\prime}} & {\left[k-U_{2}^{\prime}\left(k_{1}+h+\sum_{n=2}^{\infty} U_{2}^{n-1} k_{n}\right)\right] \|^{2}=} \tag{6.4}\\
& =\left\|D_{\bar{A}}\left(k-\sum_{n=1}^{\infty} U_{2}^{n} k_{n}-U_{2} h\right)\right\|^{2}=\left\|D_{\tilde{A}}\left(k_{0}-U_{2} h\right)\right\|^{2}= \\
& =\left\|k_{0}-T_{2} h\right\|^{2}+\left\|\left(U_{2}-T_{2}\right) h\right\|^{2}-\left\|A\left(k_{0}-T_{2} h\right)\right\|^{2}= \\
& =\left\|D_{A}\left(k_{0}-T_{2} h\right)\right\|^{2}+\left\|D_{T_{2}} h\right\|^{2}=\left\|D_{A} k_{0} \oplus 0-D_{A} T_{2} h \oplus D_{T_{2}} h\right\|^{2} .
\end{align*}
$$

The last quantity can be made, by virtue of (6.1), as small as we want if $h \in \mathfrak{M}$ is suitably chosen. Thus, we can deduce from (6.4) that the factorization $\tilde{A}^{\prime} \cdot U_{2}^{\prime}$ is regular. Consequently, from Theorem 1.1 it follows that \tilde{A}^{\prime} has a unique EID; let B^{\prime} be this EID. It enjoys the property

$$
\begin{equation*}
P_{5_{1}} B^{\prime}=\tilde{A}^{\prime} \quad \text { and } \quad U_{1} B^{\prime}=B^{\prime} U_{2}^{\prime} \tag{6.5}
\end{equation*}
$$

Let now $B_{j}(j=1,2)$ be two EID of A. As we already pointed out in Section 2, there exists a unique contractive extension $\hat{B}_{j} \in L\left(\hat{\boldsymbol{R}}_{2}, \hat{\boldsymbol{R}}_{1}\right)$ such that

$$
\begin{equation*}
\left\|\hat{B}_{j}\right\|=\left\|B_{j}\right\|, \quad \hat{B}_{j} \hat{U}_{2}=\hat{U}_{1} \hat{B}_{j} \quad(j=1,2) \tag{6.6}
\end{equation*}
$$

Since $\hat{B}_{j} \mid \Omega_{2}^{\prime}$ is a contraction from Ω_{2}^{\prime} into Ω_{1} enjoying property (6.5), by the uniqueness of B^{\prime} we infer

$$
\begin{equation*}
\hat{B}_{1}\left|\Omega_{2}^{\prime}=B_{1}\right| \Re_{2}^{\prime}=B^{\prime}=B_{2}\left|\Re_{2}^{\prime}=\hat{B}_{2}\right| \Omega_{2}^{\prime} \tag{6.7}
\end{equation*}
$$

whence, by (6.6),

$$
\begin{equation*}
\hat{B}_{1} g=\hat{B}_{2} g \tag{6.8}
\end{equation*}
$$

for any element $g \in \hat{\boldsymbol{\Omega}}_{2}$ of the form

$$
\begin{equation*}
g=\hat{U}_{2}^{n} k^{\prime} \quad \text { (with } n=0, \pm 1, \pm 2, \ldots ; k^{\prime} \in \Omega_{2}^{\prime} \text {). } \tag{6.9}
\end{equation*}
$$

Since Ω_{2}^{\prime} contains \mathfrak{M} which is cyclic for U_{2}, the elements g of the form (6.8) span $\hat{\Omega}_{2}$, thus from (6.6) and (6.8) we deduce that $\hat{B}_{1}=\hat{B}_{2}$, and hence $B_{1}=B_{2}$. This shows that A has a unique EID and thus the proof is achieved.

Remark 6.1. In case \mathfrak{M} is an invariant subspace for T_{2}, then (6.1) is equivalent to the regularity of the factorization $(A \mid \mathfrak{M}) \cdot\left(T_{2} \mid \mathfrak{M}\right)$ of $A T_{2} \mid \mathfrak{M}$.

Corollary 6.1. Let A be a contraction intertwining the contractions T_{1} and T_{2}. Then, if $\operatorname{ker} D_{A}$ is cyclic for the unitary dilation \hat{U}_{2} of T_{2}, A has a unique exact intertwining dilation.

Indeed, in this case, for $\mathfrak{M}=\operatorname{ker} D_{A}$, the left hand side of (6.1) is $\{0\} \oplus\{0\}$ and consequently (6.1) is trivially satisfied.

Remark 6.2. Corollary 6.1 (which however can be easily proved in a direct way by an argument similar to the last part of the proof of Proposition 6.1) contains as particular cases some uniqueness theorems of [1] and [5].

References

[1] V. M. Adamjan-D. Z. Arov-M. G. Krein, Infinite Hankel matrices and generalized Carathéodory-Fejér and Schur problems, Funkc. Anal. Priložen., 2:4 (1968), 1-17. (Russian)
[2] V. M. Adamian-D. Z. Arov-M. G. Krein, Infinite Hankel block-matrices and related continuation problems, Izv. Akad. Nauk Armjan. SSR, Matematika, 6 (1971), 87-112. (Russian)
[3] Z. Ceausescu, On intertwining dilations, Acta Sci. Math., 38 (1976), 281-290.
[4] R. G. Douglas-P. S. Muhly-C. Pearcy, Lifting commuting operators, Michigan Math. J., 15 (1968), 385-395.
[5] D. Sarason, Generalized interpolation in H^{∞}, Trans. Amer. Math. Soc., 127 (1967), 179-203.
[6] Ja. S. Svarcman, On invariant subspaces of a dissipative operator and the divisors of its characteristic function, Funkc. Anal. i Priložen., 4:4 (1970), 85-86. (Russian)
[7] B. Sz.-Nagy-C. Foias, Forme triangulaire d'une contraction et factorisation de la fonction caractéristique, Acta Sci. Math., 28 (1967), 201-212.
[8] B. Sz.-Nagy-C. Foias, Dilatation des commutants d'opérateurs, C. R. Acad. Sci. Paris, Série A, 266 (1968), 493-495.
[9] B. Sz.-Nagy-C. FoiAş, Harmonic analysis of operators on Hilbert space (Amsterdam-Budapest, 1970).
[10] B. Sz.-Nagy-C. Foiss, Regular factorizations of contractions, Proc. Amer. Math. Soc., 43 (1974), 91-93.
Z. CEAUSESCU

BUCHAREST, ROMANIA
C. FOIAS

DEPARTMENT OF MATH.
UNIVERSITY BUCHAREST
STR. ACADEMIEI 14
BUCHAREST, ROMANIA

[^0]: Received June 25, 1976.
 The research of the first author was supported by the Hungarian Institute of Cultural Relations and the Japan Society for the Promotion of Science.

[^1]: ${ }^{1}$) This iterative explication of the construction of an EID, frstly given in [8], was inspired by [4].

