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Star-algebras induced by non-degenerate inner products 

J. BOGNAR 

§ 1. Introduction 

Let denote the algebra of all bounded linear operators on the Banach 
space C. According to a classical theorem of Kawada, Kakutani and Mackey (see e.g. 
[1; Corollary 4.10.8]), if * is an involution on ^((E) satisfying the condition 7"*7V0 
for every non-zero T t h e n there is a positive definite inner product ( • , • ) 
on (£ such that 

(i){Tx,y)=(x,T*y) for every x,y£<& and T£ &(<£); 
(ii) the norm induced by (• , •) is equivalent to the original norm on <£. 
In our paper [2] we generalized this theorem to a class of indefinite inner products 

and began similar investigations for wider classes. 
J. S A R A N E N [3] has obtained numerous further improvements and generalizations 

involving non-symmetric bilinear forms as well as operator algebras different from 
on normed or non-normed vector spaces. 

Below, combining the stand-point and methods of [2] with achievements of [3], 
we try to give a unified, elementary and possibly complete treatment of those aspects 
of the subject which are relevant to the general theory of indefinite inner product 
spaces [4]. For this purpose, we single out certain results explicit or implicit in [3], 
regroup, reformulate, extend or restrict them, modify their proofs, and add some new 
observations (cf. especially Theorems 3.5, 3.7, 4.7, 4.10 and some corollaries). 

It should be noted that representations for involutions of general (i.e., not 
operator) algebras by means of indefinite inner products have been known prior to 
[2] (see [1; Theorem 4.3.7]). However, they seem to be of a different nature, since 
their representation space is not fixed in advance. 

Received March 8, 1976. 



16 J. Bognár 

§ 2. Preliminaries 

1. Admissible *-algebras. Let & be a vector space over the complex field C. 
The algebra of all linear operators (i.e., all homomorphisms) T:(S-* (£ will be denoted 
by 

Let s/ be a subalgebra of i f ((f). The mapping *: sf ^si is said to be an 
involution if for all Tx, T2, T^si and a£C the following conditions are satisfied: 
(i) (TX+T2)*^T* + T*, (ii) (aT)*—aT*, (iii) (TiT2)* = T*T*, (iv) T** = T. 

An algebra equipped with an involution * is called a *-algebra. 
The algebra (or *-algebra) s/c£f((£) is said to be dense if, for any positive 

integer n, linearly independent vectors xx, ..., and vectors yx, •••, 
there is an operator T£s i such that Txj=y } (_/'= 1, ..., n). 

J2?((E) itself is a dense algebra. What is more, the finite-rank elements of J5f ((£) 
also form a dense algebra (see [3; Lemma 2.2]). If (£ is a Banach space, the algebra 
£%((£) of all bounded linear operators T: £ is dense. Even the finite-rank elements 
of ¿¡8(0) form a dense algebra ([3; Lemma 2.2]). 

We say the algebra (* -algebra) .s/c •£?((£) is admissible if is dense and 
contains an operator of rank 1. 

2. Non-degenerate inner products. Let (£ be a vector space over C. We say 
a mapping of CsxG into C is an inner product if, denoting the image of the ordered 
pair x, by (x,y), for any xx, x2, X, >>£(£ and a£C the following conditions 
are fulfilled: (i) (xx+x2,y)=(xx,y) + (x2,y), (ii) (atx, y)=a(x, y), (iii) (y, x) = 
= <X y). 

The inner product ( • , • ) is said to be non-degenerate if for x^O there exists 
y£(£ such that (x,y)?±0. 

A norm | • | is said to be compatible with the non-degenerate inner product 
( • , • ) on ©if (i) for any fixed the linear form (py(x)=(x, j ) is continuous 
in the norm | • |, (ii) for any | • |-continuous linear form cp there exists satisfying 
the relation (p = cpy. 

Here we note that if (x, y) is | • ¡-continuous in the variable x then it is | • |-
continuous in y as well (since (y, x)=(x, j>)) and, in case (£ is complete for | • |, 
it is jointly | • ¡-continuous in x and y (a consequence of the principle of uniform 
boundedness; see [4; Theorem IV. 2.3]). 

3. Induced *-algebras. Let (• , •) be a non-degenerate inner product on the 
vector space (£. Given a linear operator T£ i?((S) it may happen that for each 
y£<& there is a with the property 

(2.i) (Tx, y) = (x, yT) (*ee). 

By the non-degeneracy of the inner product, the vector yT is unique. The relation 
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T()y=yT 0 ' c d e f i n e s a linear operator r°€JSf((£). Thus the existence, for each 
of a vector j r6(£ with property (2.1) is equivalent to the existence of a linear 

operator T ( ' £ ((£) satisfying the condition 

(2.2) (Tx,y) = (x,TOy) (x,y£<£). 

Obviously, J ( ) is unique; it is called the adjoint of T relative to the inner product 

We write Ind ( ) for the set of all operators 7*€.S?((S) which do have an adjoint 
relative to (• , •): 
(2.3) Ind( j = {TeS£((g) : ) exists}. 

It is easy to see that Ind ( ) is an algebra and that the mapping > (r£lnd (>) 
is an involution on Ind ( ) . We say Ind ( ) is the *-algebra induced by the non-
degenerate inner product (• , • )• 

4. Inner products representing a *-algebra. Let ?((£) be a *-algebra. 
If there exists a non-degenerate inner product (• , •) on (£ satisfying 

(2.4) (Tx, y) = (x, T*y) ( r e j / ; x, y€(£), 

we say (., .) represents the *-algebra s4 (or the involution *). 
In other words, (• , •) represents s i if s i is a *-subalgebra of Ind ( ) . In this 

case we write j / c l n d ( ) . (More generally, if s4x and are *-algebras, then 
will signify that six is a *-subalgebra of si2.) 

5. Decomposable inner products. Let ( • , •) be a non-degenerate inner product 
on the vector space (£. 

Two vectors x, are said to be orthogonal if (x, j ) = 0 . Two subsets 91, 
S c C are said to be orthogonal if (x, >>)=0 for all and yd®. 

We say that the (linear) subspace 9Jlc:G is positive definite (or that ( • , •) is 
positive definite on SOi) if (x, _r)>0 for all x^O. The definition of negative 
definite subspace is similar. A subspace is said to be definite if it is either positive 
definite or negative definite. 

The subspace 931 c © is said to be neutral if (x, .Y)=0 for all 
In case (£ is the orthogonal direct sum of a positive definite subspace and 

a negative definite subspace (E~, 
(2.5) e = <£+( + )<£-, 

we say the space (£ (or: the inner product ( • , •)) is decomposable and (2.5) is a funda-
mental decomposition. 

Let P+ denote the projection to (£+ along <&~, and set P~ — I—P+. Then 
the operator J=P+—P~ has the properties J2=T, (Jx, y) = (x, Jy) for all x, 

2 



18 J. Bognár 

Moreover, (Jx, .x)=~0 if x^O. The positive definite inner product 

(2.6) (x, y)j = (Jx, y) (x, yt<&) 
and the norm 
(2.7) x)1/2||xL = (Jx, (xi<£) 

will be called the fundamental inner product and the fundamental norm corresponding 
to (2.5). 

If, for some fundamental norm, £ is complete, we say G is a Krein space. 
All fundamental norms on a Krein space are topologically equivalent (cf. 

[4; Corollary IV. 6.3]). 
If G is a decomposable space and or has finite dimension, the space 

(or: the inner product) is said to be quasi-definite; the non-negative integer 

(2.8) *(<£) = min {dim(£+, dim(£"} 

is called the rank of indefiniteness. 
Quasi-definiteness and the value (2.8) do not depend on the choice of the funda- ^ 

mental decomposition (2.5) (cf. [4; Corollary II. 10.4]). 
A quasi-definite Krein space is called a Pontrjagin space. 

§ 3. Star-algebras on vector spaces 

In this section, G is a vector space over C. 

1. Admissible *-algebras in general. We first examine the problem of representing 
admissible *-algebras on (E without any additional assumption. 

Theorem 3.1 (cf. [3; Folgerung 3.2 and relations (2.3a)—(2.3b)]). Let (•, •) 
be a non-degenerate inner product on C. Then Ind ( ) is an admissible * -algebra on (£. 

P r o o f . We mentioned in Section 2 that Ind ( ) is an algebra and 7V->-T0 

( r£ lnd ( ) ) is an involution on Ind ( ) . 
Set 

(3.1) R x = 2 i x , y } ) z j (*€(£), 

where yj,Zj£(B (j=l, ...,r). Then i?€lnd ( ) , since 

(Rx, u) = J ? (u, Zj)y^ (x, u£G). 

Moreover, in the case r= 1 the operator R has rank 1. Finally, let us be given 2n 
vectors (k = \, ...,n), the system {x l 5 . . . ,xn) being linearly independent. 
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Choose such that (xk,yj)=skj ( j, k = \, ..., n; see e.g. [4; Lemmas 
1.10.4 and 1.10.6]). Then (3.1) with r=n and Zj=Wj (y'=l, ...,«) yields Rxk = wk 

The following result is, in a certain sense, converse to Theorem 3.1. 

Theorem 3.2 (cf. [3; Satz 5.1 and Satz 5.3]). Let st<^S£(<S) be an admissible 
*-algebra. Then there is one and, up to a constant real factor, only one non-degenerate 
inner product on (E which represents si. 

Proof (cf. [2; pp. 56—60]). We first show that there is an operator T0 with 
the properties 
(3.2) T0£s/, dim T0(£ = 1, 7 ? r 0 s* 0. 

By assumption, si contains an operator 7\ of rank 1. The operator is 
non-zero, since T** = 7\ is non-zero whereas 0*=0. Choose vectors 
e^ $ where 91 (T) denotes the kernel of T. The algebra si being dense, 
there exists Qdsi such that QTxe=e^. Set T2 = QT±. 

As 9i(r2):D9i(7\), the operators T2, T1 + T2, Tx+iT2 have rank not greater 
than 1. Therefore if (3.2) cannot be fulfilled then 

T*T, = T*T2 = (T1 + r2)+(r1+r2) = (Ty+iT^iT. + iT^ = 0. 

Hence T* T2=0. On the other hand, the vector T* T2e=T* QTxe= T*e^ is non-zero. 
Contradiction. 

So let T0 satisfy (3.2). Take 

(3.3) RmnT0), g = T?TJ.-

By assumption, for every there exists Qx£si such that Qxg=x. Set 

(3.4) PX = QXT*T0. 
Then 
(3.5) Px£si, Pxf = x, PJKT0) = 0 (*£<£). 

Relation (3.4) implies P*X = T*T0Q*X. In particular, PlQaT*T0(£=(g), the 
span of g. Thus 
(3.6) p$y = <px(y)g (x,ym, 

where cpx:<&—C is a linear form depending on x. 
From (3.6), (3.5), (3.3) and (3.2) we obtain 

(3.7) P*xPy = <px(y)T*T0 (x,ye(£). 

Really, the two sides of (3.7) coincide on/end 9l(T0) while the span of / and 9l(T0) 
equals (£. 

2* 
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Suppose (• , •) is a non-degenerate inner product representing si. Then, in 
particular, {Pxf, y) = ( f , P*xy) for all x,y. Hence, on account of (3.5) and (3.6), 

(3.8) (x, y) = n J y ) ( f , g) (x, ye(£), 

where ( / , g ) = ( / , T^T0f)—(T0f, T 0 f ) , a real number. This proves the uniqueness 
assertion. 

To prove existence, choose a non-zero real number I and set 

(3.9) (x,y) = >^M (x,y;£<£). 

From (3.5)—(3.6) it follows that <pXi+Xl = (pXi + (pXi and cpxx=a(px. From (3.7), 
applying the involution * to both sides, interchanging the vectors x, y and com-
paring the result with (3.7) we find <py(x)=cpx(y). Therefore (3.9) really defines an 
inner product on (£. 

Let the vector x satisfy (x, >>)=0 for all >>£(£. Then relations (3.9) and (3.6) 
yield P*=0 i.e. Px —0. Thus, in view of (3.5), x=0 . Therefore the inner product 
(3.9) is non-degenerate. 

Consider an operator Tisi. From (3.5) it follows that PTx = TPx for all x6(5. 
Consequently, Pjx=P"x T*. Hence, making use of (3.6), we obtain q>Tx(y) = (px(T*y) 
for all Therefore the inner product (3.9) satisfies (2.4); in other words, it 
represents si. 

2. Maximal admissible *-algebras. Theorem 3.2 says that an admissible *-algebra 
is represented by one and, in essence, only one non-degenerate inner product. On the 
other hand, a non-degenerate inner product ( • , •) can represent several admissible 
* -algebras. It will turn out, however, that (•, •) represents only one maximal admis-
sible *-algebra. 

We say the admissible *-algebras are equivalent, 
if six and si* are represented by the same non-degenerate inner products. This 
relation defines a partition of the class of all admissible *-algebras on (£. 

L e m m a 3.3. Let Q be an equivalence class of admissible * -algebras on (£. 
Let (•, •) denote a non-degenerate inner product representing the elements of Q. 
Then each element of Q is a * -subalgebra of Ind( j. 

P roo f . By definition, ( • , •) represents ¿saf if and only if sia Ind ( ) (the inclusion 
being meant in the sense of *-algebras). 

Lemma 3.4. If si1,si2(z&{t£) are admissible *-algebras such that 
then si^si^. 

P r o o f . If ^ c r f j , then the non-degenerate inner products representing si2 

represent sit too. 



Star-algebras induced by non-degenerate inner products 21 

Theorem 3.5. Any equivalence class Q of admissible * -algebras on (£ contains 
exactly one maximal admissible * -algebra, namely Ind ( ) , where (•, •) is a non-dege-
nerate inner product representing the elements of Q. 

Proof . Obviously, Ind ( )€i2. Let $4<z!£{$£) be an admissible *-algebra 
with siz>lndn. Lemma 3.4 implies that s/^Q. Hence, by Lemma 3.3, ¿>/cInd0 . 
Thus Ind ( ) is maximal. 

Conversely, for any Lemma 3.3 yields ¿ / c l n d ( ) . Therefore si cannot 
be maximal unless ,s/=Ind ( ) . 

From Theorems 3.2 and 3.5 we obtain: 

Coro l la ry 3.6. The mapping ( • , •)>-Ind () is a one-to-one correspondence 
between all non-degenerate inner products and all maximal admissible * -algebras on 
the same space (£ provided we do not distinguish between inner products which are 
constant multiples of each other. 

Theorem 3.7. Any admissible * ̂ algebra sicz&HS) can uniquely be extended 
to a maximal one. Namely, if si is represented by ( •, •), then the maximal extension 
is Ind (). 

P roo f . According to Lemma 3.3, siczlnd(). Theorem 3.5 assures that Ind ( ) 

is a maximal admissible *-algebra. Let siczsi1, where six is a maximal admissible 
*-algebra on (E. Then, in view of Lemma 3.4, s4x is also represented by (• , • )• So, 
again by Theorem 3.5, i ^ I n d o . 

Theorems 3.2 and 3.7 yield: 

Coro l la ry 3.8.TWo admissible * -algebras six,si2(z «Sf ((E) are represented by the 
same inner products if and only if s/x and si2 have the same maximal extension. 

3. Admissible ^-algebras represented by quasi-definite inner products. Next we 
impose certain conditions on the inner product and ask the resulting features of the 
*-algebras they represent. 

Theorem 3.9. The non-degenerate inner products representing the admissible 
*-algebra sic are definite if and only if 

(3.10) T*T ^ 0 (Test; T 

Proof . Suppose the non-degenerate inner product (• , •) represents si, i.e. 

(Tx, y) = (x, T*y) (TZs/; x,y£<£). . 

Let (• , •) be definite. If for some T0£si we have T* T0=0, then (T0x, 
= (T*T0x,x)=0 for all x£(S. Hence T0=0. 
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Let ( • , •) be non-definite. Then there is a vector z£(£,z^0, with (z,z)=0 
(cf. [4; Lemma 1.2.1]). As si is admissible, there exist an operator R£si of 
rank 1 and an operator Q£si satisfying QR&={z). Setting TX=QR we have 
(T*TlX, y)=(T1x, Txy)=0 for all x,ye<&. Hence Т*Тг=0 though 0. 

Theorem 3.10. Let к be anon-negative integer. The non-degenerate inner products 
representing the admissible *-algebra si <z £?(<£) are quasi-definite with rank of 
indefiniteness ^k if and only if 

(3.11) T * 7 V 0 (T£si; dim TG > k). 
P r o o f . Let (• , •) represent si. 
Suppose (• , •) is quasi-definite with rank of indefiniteness If for 

some T0£si we have Т*Тй=0, then {T0x, Т0х)=(Т*Тйх, х )=0 for all 
Hence Г0(Е is a neutral subspace, so that [2; Lemma 2] yields dim T0<&^k. 

Suppose, conversely, that the non-degenerate inner product (• , •) belongs to the 
complementary set of quasi-definite inner products with rank of indefiniteness ^ к . 
By [2; Lemma 2] Cc contains a neutral subspace 931 of dimension k+1 . 

Let x1,...,xk+1 be a linearly independent system in (£, and let yx, ..., yk+l 

be a basis of 931. As si is admissible, it contains an operator R of rank 1. For such 
an R there exist vectors x0,y0^0 with 

R<B = <y0>, Rx0 = y0. 
Moreover, as si is dense, we can find operators QJt Sjdsi 0 = 1 , . . . , & +1) such 
that 

Qjx, = 8j,x0, Sjy0 = yj (J, 1 = 1,..,, k+1). 
The operator 

Tx = 2 SjRQj 
j=i 

belongs to si and satisfies the relations 

T1xl = SlRx0 = yl (/ = l , . . . , /c + l), 
it+i 

dim Гх® S 2 d i m SjRQjd = k +1. 
J**1 

Consequently, 
(3.12) T & = юг. 

As ЭИ is neutral, (3.12) yields (T* Txx, x)=(Txx, Txx)=0 for all and 
by the polarization formula (see e.g. [4; relation (1.2.3)]) also (T*T x x,y)=0 for all 

Therefore T*Tx=0. At the same time, dim Tfi^k. 

R e m a r k 3.11. For decomposable inner products in general, the only relevant 
result consists of a reduction to the definite case by means of an operator J £ s i 
satisfying J*=J~1=J (see [3; Satz 6.1]). 



Star-algebras induced by non-degenerate inner products 23 

§ 4. Star-algebras on Banacb spaces 

In this section (E is a Banach space over C. The norm of ;c£(E will be denoted 
by |x|. Further, we denote by i f ((E) the algebra of all (bounded or unbounded) 
linear operators on (E, and by &(<&) the algebra of bounded linear operators on (E. 

1. Admissible *-algebras represented by continuous inner products. We are 
going to study how the mutual behaviour of the norm | • | and of a non-degenerate 
inner product (• , -) is reflected on the relationship between ^((E) and Ind ( ) . 

Theo rem 4.1 (cf. [1; p. 196], [2; Theorem2] and [3; Folgerung 5.6]). The non-
degenerate inner products representing the admissible * -algebra s/cz £?(<&) are 
continuous if and only if sici28(&). 

P roo f . Suppose (• , •) represents si. 
Let (.,.) be continuous. Consider an operator T^si. If the sequence (x„)c(E 

satisfies xn—0 and, for some z, Глг„—z, then for all E we have (Txn, y)^ 
-*(z,y) and (Tx„,y)=(x„, T*y)~+0; hence z=0. Thus T is closed and, by the 
closed graph principle, bounded. 

Let, conversely, s/cz^Q,E). According to the proof of Theorem 3.2 (see espe-
cially (3.8)) we have (x,y)=cpx(y)(f,g), where <px(y) is defined by the relation 
Ply=<Px(y)g with some g^O and Px£si. In particular, P*€si and, consequently, 

E). Thus (px(y) and (x, y) are continuous functions of y. It follows (see 
subsection 2.2) that (л:, у) is jointly continuous in x and y. 

Setting j ^=Ind ( ) we find: 

Coro l l a ry 4.2. The non-degenerate inner product (•, •) is continuous on (E 
if and only if Ind ( )c^((E). 

From Theorem 4.1 and Lemma 3.4 we obtain: 

Coro l l a ry 4.3. If an admissible *-algebra is contained in &((£), then its exten-
sions are also contained in &((£). 

In particular: 

Coro l l a ry 4.4. If $>((£) is a *-algebra, then it is maximal. 

Theorem 4.5 (cf. [3; Satz3.7]). The non-degenerate inner product (•, • ) is com-
patible with | • | on (E if and only if Ind ( )=^((E). 

P roo f . Let (• , •) be compatible with |• |. Consider an operator Г€^((Е). 
By compatibility, (Tx , y) is a continuous function of Tx and therefore, by the 
boundedness of T, it is a continuous function of x. Hence, again by compatibility, 
there exists j>r€<S such that (Tx, y)=(x, yT) for all *£(£. Thus the adjoint Г ( ) 
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exists, i.e. r € l n d ( ) , ^ ( ( £ ) c l n d ( ) . On the other hand, Corollary 4.2 yields I n d ( ) c 

Let, conversely, Ind ( ) =^(G) . Then, on account of Corollary 4.2, ( • , •) is 
continuous. On the other hand, let cp be a continuous linear form on (£. Set Tx= 
= cp(x)z (x£(S), where z^O is fixed. Obviously, Therefore, by assump-
tion, the adjoint 7"° exists: 

(<p(x)z, y) = (A*, TOy) 

for all In particular, if (z,y) = 1, then 

<p(x) = {x,Tl>y) (*€£). 

Theorems 4.5 and 3.7 yield: 
C o r o l l a r y 4.6. The non-degenerate inner products representing the admissible 

* -algebra sic i?((£) are compatible with | • | if and only if the maximal extension of 
si equals 3S{<&). 

2. Admissible *-algebras represented by decomposable, continuous inner products. 
In Theorems 3.9—3.10 we dealt with admissible *-algebras si represented 
by certain kinds of decomposable inner products. Below we obtain additional infor-
mation in the special case si—!%(<&). 

Our starting point is the following application of Theorem 4.5: 

T h e o r e m 4.7. The fundamental norms corresponding to the decomposable, 
non-degenerate inner product (•, •) are topologically equivalent to the given norm 
| • | on <E if and only i / I n d ( ) = ^((£). In this case, (£ equipped with (•, •) is a Krein 
space. 

P r o o f . Consider a fundamental inner product ( • , • a s s o c i a t e d with ( • , •), 
and the corresponding fundamental norm || • ||j (see (2.6)—(2.7)). By Theorem 4.5 
we must prove that || • ||j is equivalent to | • | if and only if ( • , •) is compatible with | • |. 

Let |;x:|^Uxllj^oc2|:v:| (x€(S), where a 1 , a 2 > 0 . Then (£ is a Hilbert space 
relative to (• , • )./• Since J is the difference of two orthogonal complementary 
projectors P+, P~ in this Hilbert space, we have 

\(x, y)\ = | ( /2x, y)I = |(/x, y)jI ^ II/JCWMI, - M J M , ^ 0i||x| \y\ (x, yt<g). 

On the other hand, if the linear form q> is continuous for | • |, then it is continuous 
for || • ||j, so that by the Riesz representation theorem there is a y£<& satisfying the 
relations (p(x) = (x, y)j = (x, Jy) (x£(E). 

Let, conversely, ( • , •) be compatible with | • |. Then || • ||j is continuous relative 
to | • | (see [4; Lemma IV. 5.4]). Hence, if q> is a linear form continuous for || • | | j . 
then <p is continuous for | - | and, consequently, there exists >£(£ such that (p(x) = 
= (x,y) (x£G). Thus q>(x)=(x, J2y)=(x,Jy)j (x£(£). On the other hand, by the 
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Schwarz inequality, \(x, j>)./l = M./ ||j;||j (x,y(i<£). As a result, (* , - ) j is compatible 
with ||-|| j . In other words, the relation (p (x) = (x, z)j (x6 (£) defines an isomorphism 
between (£ and the Banach space of all linear forms which are continuous for 
¡•II/. Moreover, by the elements of Hilbert space theory, !M|7 = j|z||j, i.e. the iso-
morphism is isometrical. Therefore © is complete with respect to | |- | |j. Once more 
recalling that || • is continuous relative to | • |, the closed graph principle guaran-
tees the equivalence of || • ||j and | • |. 

From Theorem 4.7 by the aid of Theorems 3.9 and 3.10, respectively, we obtain 
the following results. 

Coro l l a ry 4.8 (cf. [I; Corollary 4.10.8]). The non-degenerate inner product 
(•, •) turns © into a Hilbert space with norm equivalent to | • | if and only if Ind( > = 
= £(<£) and 

TOT t^O (Ге^(СЕ); T V 0). 

Coro l l a ry 4.9 (cf. [2; Theorem 3]). Let к be a non-negative integer. The non-
degenerate inner product (•, •) turns (f into a Pontrjagin space with rank of indefi-
niteness ^k and fundamental norms equivalent to | • | if and only if Ind ( )=^((S) 
and 

т о т * 0 (Г€#(®); d imr<S> fc). 

As we have no good criterion for decomposability of inner products representing, 
a given *-algebra (see Remark 3.11), for Krein spaces we can give only the following 
characterization: 

Theorem 4.10. The non-degenerate inner product (•,•) turns (E into a Krein 
space with fundamental norms equivalent to \ • \ if and only if (i) Ind ( )=^((E) and 
(ii) (S is topologically isomorphic to a Hilbert space. 

Proof . Suppose that ( • , • ) turns (£ into a Krein space with fundamental 
norms equivalent to | • |. Then, in particular, (£ is decomposable, and Theorem 4.7 
yields Ind ( )=^((E). Moreover, (£ is a Hilbert space with respect to any fundamen-
tal inner product. 

Suppose, conversely, that Ind( )=$?(©) and (S is topologically isomorphic 
to a Hilbert space. The norm | • | being involved in the theorem up to topological 
equivalence only, we may regard С as a Hilbert space with inner product [ • , • ] 
and norm |x| =[x, xf12. On the other hand, by Theorem 4.1, ( • , • ) is continuous 
on G. Consequently, there exists a bounded self-adjoint operator G on G satis-
fying (x,y)=[Gx,y] (x, y£(£). It is easy to see that the positive and negative spectral 
subspaces of G are the components of a fundamental decomposition of (S (cf. 
[4; Theorem IV.5.2]). Hence ( • , • ) is decomposable and Theorem 4.7 applies. 
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